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1. Introduction

We consider the two following probability distributions on (0, + o).

a2 p=H2 L L
a dx = X" " ex _l(ax+bx7 )}1 %] (x)dx
I3, a,5(dX) 2K,1(1/ab) p—z {0, 00)

where A is real and a, b >0 and

—A

y},,a(dx)z (l) xlil exp(_aﬁlx) ]I(O,w)(x) dx)

where A, a>0.
The generalized inverse Gaussian distribution introduced by Barndorfi-
Nielsen and Halgreen (1977) is u, , ,. Since

Em,a,b(dxhfu;l,a,b<dx)=1, 1)

denoting the distribution of the random variable X by L(X), and changing

1
X in the first integral yields
1
L(X)=p, ,, ifand only if L(Y)zu;“’a, (2)

K,(e)=K _,(c) for ¢>0. (3)

Indeed (3) is a consequence of the known propertiecs of the Bessel function
K;(c) (see G.N. Watson (1966), p. 78). Hence the Laplace transform of u, , ,
defined for s>0 is

%i)‘*/ZKl(V(aHs)b)_ @

R ()= ] €xD(—53) o y(dx) = (142 ‘o
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From (3) we get

. (1+§)M2 K, (y/(a+2s) b). (5)

A ap(0)= —
Bt a K,()/ab)
Comparing (4) and (5) we obtain our basic relation
Baab=H aap*Vi2a fOT 4 a,b>0 (6)

where * denotes convolution.
If we now consider two independent random variables X and Y such that

LX)=p_, ,, and L(Y)=y,“/a with A, a>0,

we obtain from (6)
LY+ X)=1;, 4,
and from (2) we have

L(X)=L (—Y—iy) (7

Likewise if we consider three independent random variables X, Y; and Y, such
that
LX)=p_j 05 LY)=y, ap and  L(Y))=vy; 5.

with 4, a, b>0, we obtain from (6) and (2)

1
O+ 0=t00 L(gg) =
L (Y1 +Y‘2+_X) =UU, 5 o and eventually
1
L(X)=L 7 (8)
Y. -
Y X

2. Characterizations

Formulae (7) and (8) raise the question, whether these properties are character-
isticof u_, , ,and of u_, ... This question is answered in the affirmative by
the following.

Theorem 1. (i) Let X and Y be two independent random variables such that X >0

and L(Y)=y, ,, for 4, a>0. Then L(X)zL(?_%Z) if and only if L(X)

::u—}.,a,a'
(i) Let X, Y, and Y, be three independent random variables such that X >0,

L(Y))=7,, 2pp» LY2)=7;, 250 Jor 2,a,b>0. Then L(X)=L

1 if and
Only if‘L(X):I’L—).,a,b' Y1+m
2
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The proof, as can easily be guessed from (8), is based on elementary
properties of continued fractions. We shall therefore adopt the following no-
tations.

If (v,)2, is a sequence of positive numbers, we define inductively the
sequence ([yy, y,, -, a2 by [y, 1=y, and

1
s Ve oos Vol =y +———— for nz2.
v C g 0l

The following facts are well known (see for instance (Olds (1963), 3.7)). If
(p); and (g,)%° , are defined by

P1=Yi, DPy=y1Y,+1, and p,=y,p,_,+p,_, for n>2

©)
q1:1’ q2:y2: and qn=-)}nqn¥1+qn¥2 for n>2
then
Py

Ly, Yo ooos Yud ==, (10)

-1\
[ylz"'7yn]_[y17"'5yn+1]:)(h)a (11)

nqn+1

15 =25 Vpo kqn_l_qn—l-

The proof of Theorem 1 is based on the following.

Theorem 2. If d is an integer >0 and if X,, Y|, Y,, Y;,... is a sequence of
strictly positive independent random variables such that

(Y, )=L(Y), VYr=1,2,..,d and ¥Ym=0,1,2,....

() Z=1lim [Y,, Y,, ..., Y,] exists almost surely.
(il) The Markov chain (X,)%_, defined by

! :[Y e ¥ S Y i}

md+ 1> o tmd 20t (m+1)d’X
m+ 1 m

1
Jor mz0, is such that L(X,) converges to L (E) for any L(X,); and
1

1
X
0

(iii) L(Xg)=L

if and only ifL(XO)=L(%).

Proof of Theorem 2. (i) Consider p, and g, defined by (9) with Y, replacing y,.

(11) implies that
e
QZnJrl n=0 an n=0
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are two adjacent sequences, and we have only to show that g,q,, ;> as
n— oo almost surely.
Now

n n
Gony1=1 +kz (2501~ 92n_1)=1 +kZ Yoer 140
= =1

1

n
23y Y, Y,»00 asn-oo almost surely.
k=1

Since ¢q,,2Y,, clearly ¢,q,, , = o as n— o0 almost surely.
(i) We now use the fact that

1 1
Y_: I/Em_1)d+1a Y(m;l)djuz’ tre Ymd> YEm——Z)d-{»l’ ey YEm~1}d7 Y1= SRR Yd’ X‘]
m 0

o 1
has the same distribution as [Yl, Y,, ..., Y, Y]
0

1 .
From (10) and (12) we see that [Yl, s Yog, —] belongs to the interval
with end points Xo

Pma  opg Dmexs

Ima qmd+1
. a ¢ a atc ¢
S ,b,c,d>0 —<Zimply —<——<—].
( ince a, b, ¢, d>0 and b<d1mpy b<b+d<d)
1 .
Hence, from, (i) Z=Iim [Yl, e Yoo L] and L(Xm)~—»L(ﬁ) which is
m XO mioo \Z

the unique stationary distribution of the Markov chain (X )*_,.
(ii)) The “if” part is obvious from (ii).

1 .
Conversely, if L(X,) =L necessarily L(X,)=L(X,)

[
Xo
. 1
=L(X,) for all m. From (i), L(X,)=L (—Z—);
Proof of Theorem 1. The “if” parts of (i) and (ii} are respectively (7) and (8).
Conversely, we apply Theorem 2(iii) to the case d=1 and L(Y,)=9y, ,, to
obtain (i), and to the case d=2, L(Y;)=y, ,, and L(Y,)=y, ,, to obtain (ii).
Indeed, Theorem 2(iii) shows that the equation in L(X,)

L(Xo)zL(—-l—l_>
[t ]

has a unique solution, and (7) and (8) give such a solution for d=1 and 2.

Remarks. Applying Theorem 2 to any d, and L(Y)=y, ,, Wwhere 4,
aq, ..., a,>0, we can consider:
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Z=Y,+
Y, +

A

+.i
Y +...

which makes sense because of Theorem 2(i). If we denote by

1
L(E>:,u—l,ad,ad—1,...,ala (13)

L(Z)=:ul,a1,ad,,..,az> (14)
it is then easy to see that

Hiag, cvay—H s ag, .ay ¥Va, 22 (15)
Theorem 2 implies that for fixed d, the family u, , . ,, of probabilities on
(0, + o) satisfying (13), (14) and (15) is unique. But it is indeed a challenging
problem to determine the distribution explicitly. The cases d=1 and d=2
described in Theorem 1 turn out to be lucky accidents.
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