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1. Introduction 

We consider the two following probability distributions on (0, + oo). 

aX/2 b-;q2 
__ x x-1 exp -�89 1)~l(o, oo)(x)dx 

2Kx(l/ab) 

where 2 is real and a, b > 0 and 
a - X  

7z, a (dx )=F~)  x ~ 1 e x p ( _ a - 1  x) ~(o,~)(x)dx, 

where 2, a > 0. 
The generalized inverse Gaussian distribution introduced by Barndorff- 

Nielsen and Halgreen (1977) i s /%. ,  b. Since 

Oo 

S ~,a,b(dx)= ~ ~_ ~,o,b(ax) = 1, (1) 
o o 

denoting the distribution of the random variable X by L(X), and changing 
1 

x~-* in the first integral yields 
x 

L [1~ L(X)=#z,~,b if and only if ~ ]  =#-X,b,a (2) 

Kx(c)=K ~(c ) for c>0 .  (3) 

Indeed (3) is a consequence of the known properties of the Bessel function 
K~(c) (see G.N. Watson (1966), p. 78). Hence the Laplace transform of #~,~,b 
defined for s > 0 is 

( 2s) -~/2 K~(I/~b)K;~(]/~) fi;..,b(s) = y exp(--sx)#x.~,b(dx)= 1+ a (4) 
o 
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From (3) we get 

Comparing (4) and (5) we obtain our basic relation 

#~,.,b=#_x,a,b*7~,2/a for 2, a, b>O 

where �9 denotes convolution. 
If we now consider two independent random variables X and Y such that 

and L(Y)=7~,g/a with 2, a>O, L(X)=#_~ .... 

we obtain from (6) 

and from (2) we have 
L(Y+ X) = #~ . . . .  

(5) 

(6) 

(1) 
L ( X ) = L  ~ .  (7) 

Likewise if we consider three independent random variables X, Y1 and Y2 such 
that 

L(X)=#_,La, b, L(Y1)=~)L2/b and L(Y2)---~;L2/a, 

with 2, a, b > O, we obtain from (6) and (2) 

L(Y2-l-X)=#a,a,b, L(y2--~X)=# X,b,a, 

L ( Y I + & X ) = # X , b , a  and eventually 

L(X) = L (Y1 + 1 ) .  (8) 

2. Characterizations 

Formulae (7) and (8) raise the question, whether these properties are character- 
istic of #_ ~ .... and of #_4,,,b. This question is answered in the affirmative by 
the following. 

Theorem 1. (i) Let X and Y be two independent random variables such that X > 0 

and L(Y)=Tz, 2/a for 2, a>O. Then L ( X ) = L ( v T ~  ) if and only if L(X) 
=#--~.,a,a" \ I T A /  

(ii) Let X, I11 and ]12 be three independent random variables such that X > O, 

L(u , L(Y2)=7z, 2/, for 2, a ,b>0.  Then L(X)= if and 
only if L(X) = # ~, a, b. Y1 + 
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The proof, as can easily be guessed from (8), is based on elementary 
properties of continued fractions. We shall therefore adopt the following no- 
tations. 

If (y.)~_ 1 is a sequence of positive numbers, we define inductively the 
sequence ([Yl, Y2, --., Y.]).~ 1 by [Yl] =Yl and 

1 
[yx, Y 2 , . . . , y , ] = y 1 4  for n>2.  

[ y >  ...,  y.] 

The following facts are well known (see for instance (Olds (1963), 3.7)). If 
(G)~= 1 and (G)~= 1 are defined by 

P~=Yl, p e = y l Y e + l ,  and P , = G P ,  ~ + G - 2  for n > 2  
(9) 

q , = l ,  q2=Y2, and q , = y ~ G _ l + G _ 2  for n > 2  
then 

[Yl, Y2, ..., Yn] =P", (10) 
qn 

[YD'" ,Y , ] - - [Y~  . . . .  ,y,+~]__ (--1)" , (11) 
q,, q,, + 1 

kp. + p,_,  
I-Y1 . . . .  , y,, k] - ~ ; .  (12) 

The proof of Theorem 1 is based on the following. 

Theorem 2. I f  d is an integer >0  and if Xo, Y1, Ye, Y3, "" is a sequence of 
strictly positive independent random variables such that 

L(Ymd+r)=L(Y,.), V r = l ,  2 . . . . .  d and f r o = 0 , 1 , 2 , . . . .  

(i) Z = lim [Y1, Y> ..., fn] exists almost surely. 

(ii) The Markov chain (Xm)m~176 0 defined by 

Xm+ l Yma+ l, ..., ,2 ,  ..., 

form>O,  is such that L(X,,) converges w L ( 1 )  for any L(Xo)," and 

1 if and only if L(Xo)= L . 
 [Y1,Y  ..... 

Proof of  Theorem 2. (i) Consider G and q,, defined by (9) with Y, replacing y,. 
(11) implies that 

(P2n+ l ] ~176 (P2n ] ~176 
~q2~+~/.=0 and \q2n/n=o 
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are two adjacent sequences, and we have only to show that q~q~+~ ~ as 
n ~ oo almost surely. 

Now 

k = l  k = l  

> ~ Y2~ Ir as n--,oo almost surely. 

Since q~,> g2, clearly q,q,+ 1 --+ oo as n--* oo almost surely. 
(ii) We now use the fact that 

X~4 m-- 

has the same distribution as [Yj, Y2,..., Yme, x--~]. 

From (10)and (12)we see that /I71 . . . . .  Ymd, 1___] belongs 
4 ~  

with end points L ~ 0 J  

P~d and P~,d+l 
qma q~d+ 1 

to the interval 

has a unique solution, and (7) and (8) give such a solution for d =  1 and 2, 

Remarks. Applying Theorem 2 to any d, and L(~)=7~,2/o ~ where 
a~ . . . .  , ad>0, we can consider: 

, 

a c a a+c cX 
Since a, b, c, d > 0  and ~ < ~  imply ~ < ~ < ~ ) .  

Hence, from, ( i ) Z = l i m / Y 1 ,  ..., lima, , 1 ]  and L(Xm) ~L(I t  which is 
m E  a o J  m-bOO \ m /  

the unique stationary distribution of the Markov chain (X,,),,~= o. 
(iii) The "if" part is obvious from (ii). 

Conversely, if L(Xo)=L([ 1 _) 1 -  ' necessarily L(Xo)=L(X1) 
Y1 . . . . .  

=L(X~) for all m. From (ii), L(Xo)=L(z ). 

Proof of Theorem 1. The "if" parts of (i) and (ii) are respectively (7) and (8). 
Conversely, we apply Theorem2(iii) to the case d = l  and L(Y,)=7~,2/, to 
obtain (i), and to the case d=2,  L(Y1)=7~,2/b and L(Y2)=7~,2/~ to obtain (ii). 
Indeed, Theorem 2(iii) shows that the equation in L(Xo) 
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z=gl-~ 
1 

g2+ 1 
Y3 -~ y 4 + . . .  

which makes sense because of Theorem 2(i). If we denote by 

c ( z ) = ~ ,  o~, o~ . . . . . . .  , 

it is then easy to see that 

[A;~, aa . . . . .  al  ----- ] 1  )~, aa . . . . .  al  * ~)~, 2/aa" 

(13) 

(14) 

(15) 

Theorem 2 implies that for fixed d, the family #4 ....... . .  d of probabilities on 
(0, + ~)  satisfying (13), (14) and (15) is unique. But it is indeed a challenging 
problem to determine the distribution explicitly. The cases d = l  and d = 2  
described in Theorem 1 turn out to be lucky accidents. 
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