Upper Bounds for \boldsymbol{k}-th Maximal Spacings

Paul Deheuvels
7 Avenue du Château, F-92340 Bourg-la-Reine, France and Ecole Pratique des Hautes Études

Summary. If K_{n} denotes the k-th maximal spacing generated by an i.i.d. sequence of random variables uniformly distributed on (0,1), we show that for any $p \geqq 3$,

$$
P\left(n K_{n} \geqq \log n+\left(2 \log _{2} n+\log _{3} n+\ldots+(1+\varepsilon) \log _{p} n\right) / k \text { i.o. }\right)=1 \quad \text { or } \quad 0
$$

according as $\varepsilon \leqq 0$ or $\varepsilon>0$. We also obtain strong limiting bounds for the record times and inter-record times of K_{n}.

1. Introduction

Let U_{1}, U_{2}, \ldots be a sequence of independent uniformly distributed random variables on $[0,1]$. Let $U_{0}^{(n)}=0<U_{1}^{(n)}<\ldots<U_{n}^{(n)}<U_{n+1}^{(n)}=1$ be the order statistic corresponding to $0,1, U_{1}, \ldots, U_{n}$. The corresponding spacings are defined by

$$
S_{i}^{(n)}=U_{i}^{(n)}-U_{i-1}^{(n)}, \quad 1 \leqq i \leqq n+1 .
$$

Let $K_{n, 1}>K_{n, 2}>\ldots>K_{n, n+1}$ be the order statistic of the spacings. For any $k \leqq n, K_{n, k}$ will be called the k-th largest spacing of order n, and $M_{n}=K_{n, 1}$ the maximal spacing of order n.

The upper class for $M_{n}, n \uparrow \infty$ is yet known and given by

$$
\begin{equation*}
P\left(n M_{n} \geqq \log n+2 \log _{2} \mathrm{n}+\log _{3} n+\ldots+(1+\varepsilon) \log _{p} n \text { i.o. }\right)=0 \quad \text { or } \quad 1, \tag{1}
\end{equation*}
$$

according as $\varepsilon>0$ (Devroye [4]) or $\varepsilon \leqq 0$ (Deheuvels [2]), for any $p \geqq 3$, where $\log _{j}$ is the j-th times iterated logarithm.

For $k \geqq 2$, however, the best results available up to now are:

$$
\begin{equation*}
P\left(n K_{n, k} \geqq \log n+\frac{1}{k}\left(2 \log _{2} n+\log _{3} n+\ldots+(1+\varepsilon) \log _{p} n\right) \text { i.o. }\right)=0 \tag{2}
\end{equation*}
$$

for any $\varepsilon>0$ and $p \geqq 3$, and

$$
\begin{equation*}
P\left(n K_{n, k} \geqq \log n+\frac{2-\varepsilon}{k} \log _{2} n \text { i.o. }\right)=1 \tag{3}
\end{equation*}
$$

for any $\varepsilon>0$ (Devroye [4]).
The aim of the following is to make this result more precise, by proving:
Theorem 1. For any fixed $k \geqq 1$, if $K_{n}=K_{n, k}$ is the k-th largest spacing of order n, then

$$
P\left(n K_{n} \geqq \log n+\frac{1}{k}\left(2 \log _{2} n+\log _{3} n+\ldots+(1+\varepsilon) \log _{p} n\right)=0 \quad \text { or } 1\right.
$$

according as $\varepsilon>0$ or $\varepsilon \leqq 0$.
In the proof, we shall make use of a sequence of random stopping times defined on U_{1}, U_{2}, \ldots in the following way. For any $n \geqq k$, note by $I_{n}=I_{n, k}$ the union of the spacing intervals corresponding to $K_{n, 1}, K_{n, 2}, \ldots, K_{n, k}$. The length of I_{n} will be denoted by $L_{n}=K_{n, 1}+\ldots+K_{n, k}$. Put now

$$
\begin{align*}
& N_{1}=k \\
& N_{n}=\operatorname{Inf}\left\{m>N_{n-1} ; L_{m}<L_{N_{n-1}}\right\}, \quad n=2,3, \ldots \tag{4}
\end{align*}
$$

The definition of N_{1}, N_{2}, \ldots corresponds to the fact that $K_{n, 1}, \ldots, K_{n, k}$ remain unchanged when n varies between N_{k-1} and N_{k}. When n takes the value N_{k}, one of them decreases, U_{n} falling then in $I_{n, k}$.

Our main results about N_{1}, N_{2}, \ldots are the following:
Theorem 2. For any fixed $k \geqq 1$, if N_{1}, N_{2}, \ldots is defined by (4), then

$$
\begin{equation*}
N_{n}=\exp \left(\sqrt{2 n / k}+\frac{\alpha_{n} \sqrt{\log _{2} n}}{\sqrt{k}}\right) \tag{5}
\end{equation*}
$$

where

$$
\underset{n^{\infty}}{\operatorname{LimSup}} \alpha_{n}=1 \text { a.s., } \quad \underset{n^{\infty}}{\operatorname{Lim} \operatorname{Inf}} \alpha_{n}=-1 \text { a.s., }
$$

and, for any $j \geqq 4$, almost surely

$$
\begin{gather*}
\operatorname{LimSup}_{n^{\infty}}\left\{k\left(\frac{N_{n+1}-N_{n}}{N_{n}}\right) \log N_{n}-2 \log _{2} N_{n}-\log _{3} N_{n}-\ldots-\log _{j-1} N_{n}\right\} / \log _{j} N_{n} \\
=1 \text { a.s. } \tag{6}
\end{gather*}
$$

Remarks. 1°) Theorem 2 makes precise Theorem 1 of [2], where it was proved in the case $k=1$ that

$$
N_{n}=\exp (\sqrt{2 n}+O(\log n)) \text { a.s. }
$$

2°) The study of the sequence $\left\{N_{n}, n \geqq 1\right\}$ has some interest in itself. In fact, it is for the maximal spacings the equivalent of the record times for maxima of i.i.d. sequences (see [3]). It behaves though in a quite different way. We shall, in the following paragraph, describe the main properties of this sequence which we have named as the record time sequence of the k-th maximal spacing.

2. The Record Time Sequence of the Maximal Spacings

We shall, in the following, use the notations of $\S 1$ and assume that $k \geqq 1$ is fixed.

Lemma 1. The sequence $N_{1}=k<N_{2}<\ldots<N_{n}<\ldots$ is an increasing sequence of stopping times on $\mathfrak{U}_{1} \subset \mathfrak{U}_{2} \subset \ldots \subset \mathfrak{U}_{n}=\sigma\left(U_{1}, \ldots, U_{n}\right) \subset \ldots$. Furthermore, if $\mathfrak{U}\left(N_{n}\right)$ denotes the σ-field generated by the events measurable on $U_{1}, \ldots, U_{N_{n}}$, then

$$
\begin{equation*}
P\left(N_{n+1}-N_{n} \geqq r \mid \mathfrak{U}\left(N_{n}\right)\right)=\left(1-L_{N_{n}}\right)^{r-1}, \quad r=1,2, \ldots \tag{7}
\end{equation*}
$$

Proof. The first part of the Lemma is straightforward. For the second, note that if $L_{N_{n}}$ is given, the probability that $N_{n+1}-N_{n}$ is greater than r is the probability that at least r independent U_{i} fall outside $I_{N_{n}}$. The result follows,
Lemma 2. For any $\varepsilon>0$, there exists almost surely an n_{ε} such that for any $n \geqq n_{\varepsilon}$,

$$
\begin{equation*}
-k(1+\varepsilon) \log _{3} n \leqq n L_{n}-k \log n \leqq(2+\varepsilon)\left(\sum_{i=1}^{k} \frac{1}{i}\right) \log _{2} n \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
-k(1+\varepsilon) \log _{3} N_{n} \leqq N_{n} L_{N_{n}}-k \log N_{n} \leqq(2+\varepsilon)\left(\sum_{i=1}^{k} \frac{1}{i}\right) \log _{2} N_{n} \tag{9}
\end{equation*}
$$

Proof. Note first that by (4), $N_{n} \geqq n$ and the sequence N_{n} increases to infinity. Hence, it suffices to prove (8), which in turn follows from (2) and (see Devroye [5])

$$
\begin{equation*}
\underset{n^{\infty}}{\operatorname{Lim} \operatorname{Inf}}\left(n K_{n}-\log n+\log _{3} n\right)=-\log 2 \text { a.s. } \tag{10}
\end{equation*}
$$

Lemma 3. On the same probability space where U_{1}, U_{2}, \ldots is defined (eventually extended), there exists a sequence $\zeta_{1}, \zeta_{2}, \ldots$, independent of U_{1}, U_{2}, \ldots, of independent uniformly distributed on $[0,1]$ random variables such that if for n $=1,2, \ldots$,

$$
\begin{equation*}
\omega_{n}=\left(-\log \left(1-L_{N_{n}}\right)\right)\left(N_{n+1}-N_{n}-1\right)-\log \left(1-\zeta_{n}\left(1-L_{N_{n}}\right)\right), \tag{11}
\end{equation*}
$$

then the sequence $\left\{\omega_{n}, n \geqq 1\right\}$ is an i.i.d. sequence of exponentially $E(1)$ distributed random variables such that, for any $n \geqq 1, \omega_{n}$ is independent of $\mathfrak{l}\left(N_{n}\right)$ and satisfies

$$
\begin{equation*}
N_{n+1}-N_{n}=\frac{\omega_{n}}{-\log \left(1-L_{N_{n}}\right)}+1-\frac{\log \left(1-\zeta_{n} L_{N_{n}}\right)}{\log \left(1-L_{N_{n}}\right)}=\left[\frac{\omega_{n}}{-\log \left(1-L_{N_{n}}\right)}\right]+1 \tag{12}
\end{equation*}
$$

where $[u]$ denotes the integer part of u.
Proof. It follows as a direct corollary of [3], Theorem 1. Note that Lemma 3 is essentially the same as [1], Lemma 2.

In the following, we shall use the notations

$$
\lambda_{n}=L_{N_{n}}, \quad n=1,2, \ldots
$$

Lemma 4. Let, for $0<z, \zeta<1, \phi(z)=\frac{1}{-\log (1-z)}-\frac{1}{z}+\frac{1}{2}$ and

$$
\begin{aligned}
\psi(\zeta, z)= & -\frac{\log (1-\zeta z)}{\log (1-z)}+\zeta, \quad \text { then }, \\
& -\frac{z}{2}<\phi(z)<0 \text { and } 0<\psi(\zeta, z)<\zeta z .
\end{aligned}
$$

Proof. See [3], Lemma 3 and Lemma 4.
Lemma 5. For any $r>0, \operatorname{Lim}_{n^{\infty}} N_{n} / n^{r}=+\infty$.
Proof. The result is clearly true for any $r: 0<r<1$, since by (4) for any $n \geqq 1$, $N_{n} \geqq n$. Let us assume that it is true for some $r>0$. If we use the fact that (see (9)) as $n \uparrow \infty, \lambda_{n} \sim k\left(\log N_{n}\right) / N_{n}$ a.s., we obtain that $\left.\lambda_{n}=o(\log n) / n^{r}\right)$ a.s. Next, by (12) and Lemma 4,

$$
N_{n+1}-N_{n} \geqq \frac{\omega_{n}}{-\log \left(1-\lambda_{n}\right)} \geqq \omega_{n}\left\{\frac{1}{\lambda_{n}}-\frac{1}{2}-\frac{\lambda_{n}}{2}\right\} .
$$

By summing up and by Kronecker's lemma, it follows that

$$
N_{n}=k+\sum_{i=1}^{n-1}\left(N_{i+1}-N_{i}\right)=\frac{n^{r+1}}{(\log n) o(1)} \quad \text { a.s. }
$$

Hence, the result is still true for $r+\frac{1}{2}$ and also for any $r>0$.
Lemma 6. Almost surely as $n \uparrow \infty$,

$$
N_{n+1}-N_{n} \sim \frac{\omega_{n} N_{n}}{k \log N_{n}} .
$$

Proof. It suffices to prove by (12) and (9) that $\operatorname{Lim}_{n^{\infty}} \frac{\omega_{n} N_{n}}{\log N_{n}}=+\infty$ a.s.
This follows from Lemma 5 and:
Lemma 7. For any $p \geqq 1$,

$$
\begin{aligned}
P\left(\omega_{n} \geqq \log n+\ldots+(1+\varepsilon) \log _{p} n \text { i.o. }\right) & =P\left(\omega_{n} \leqq\left(n(\log n) \ldots\left(\log _{p} n\right)^{1+\varepsilon}\right)^{-1} \text { i.o. }\right) \\
& =0 \text { or } 1
\end{aligned}
$$

according as $\varepsilon>0$ or $\varepsilon \leqq 0$.
Proof. By Borel-Cantelli.
Lemma 8. Almost surely as $n \uparrow \infty$,

$$
\log N_{n} \sim \sqrt{2 n / k}
$$

Proof. By Lemma 6 and Lemma 7,

$$
\log N_{n+1}=\log N_{n}+\frac{\omega_{n}}{k \log N_{n}}(1+o(1)) \text { a.s. }
$$

By taking squares,

$$
\log ^{2} N_{n+1}-\log ^{2} N_{n}=\frac{2 \omega_{n}}{k}(1+o(1)) \text { a.s. }
$$

It follows by summing up and using the law of large numbers that

$$
\log ^{2} N_{n} \sim 2 n / k \text { a.s. } \quad \text { as } n \uparrow \infty
$$

Lemma 9. Let for $n \geqq 1$

$$
N_{n+1}=N_{n}\left\{1+\frac{\omega_{n}}{k \log N_{n}}\left(1+\delta_{n}\right)\right\}
$$

Then

$$
\operatorname{LimSup}_{n^{\infty}} \delta_{n} \frac{\log N_{n}}{\log _{2} N_{n}} \leqq \frac{4}{k} \sum_{i=1}^{k} \frac{1}{i} \text { a.s. }
$$

Proof. By (9), if $C=(2+\varepsilon) \sum_{i=1}^{k} \frac{1}{i}$, as $n \uparrow \infty$, we get

$$
\left|\frac{1}{N_{n} \lambda_{n}}-\frac{1}{k \log N_{n}}\right| \leqq \frac{C \log _{2} N_{n}}{k N_{n} \lambda_{n} \log N_{n}} \sim \frac{C \log _{2} N_{n}}{k^{2} \log ^{2} N_{n}} .
$$

Next, from (12), using the notations of Lemma 4,

$$
N_{n+1}-N_{n}=\frac{\omega_{n}}{\lambda_{n}}-\frac{1}{2} \omega_{n}+1-\zeta_{n}+\omega_{n} \phi\left(\lambda_{n}\right)+\psi\left(\zeta_{n}, \lambda_{n}\right)
$$

Clearly, by Lemma 4 and Lemma 7, since by (9), $\lambda_{n} \sim \frac{k \log N_{n}}{N_{n}}$ a.s.,

$$
N_{n+1}-N_{n}=N_{n}\left\{\frac{\omega_{n}}{k \log N_{n}}+\omega_{n}\left(\frac{1}{N_{n} \lambda_{n}}-\frac{1}{k \log N_{n}}\right)+O\left(\frac{\log _{2} N_{n}}{N_{n}}\right)\right\} \text { a.s. }
$$

Finally, we use the fact that, as $n \uparrow \infty, \omega_{n} \leqq(1+\varepsilon) \log n \sim 2 \log _{2} N_{n}$ a.s.
Lemma 10. Let for $n \geqq 1$

$$
\begin{equation*}
\log N_{n+1}=\log N_{n}+\frac{\omega_{n}\left(1+\delta_{n}\right)}{k \log N_{n}}-\frac{\varepsilon_{n} \omega_{n}^{2}}{2 k^{2} \log ^{2} N_{n}} \tag{13}
\end{equation*}
$$

then

$$
\operatorname{Lim}_{n \infty} \varepsilon_{n}=1 \text { a.s. }
$$

Proof. It follows from Lemma 9, by taking logarithms.
We now take squares in (13). It gives

$$
\begin{aligned}
& \log ^{2} N_{n+1}-\log ^{2} N_{n} \\
& \quad=\frac{2 \omega_{n}\left(1+\delta_{n}\right)}{k}-\frac{\varepsilon_{n} \omega_{n}^{2}}{k^{2} \log N_{n}}-\frac{\varepsilon_{n} \omega_{n}^{3}\left(1+\delta_{n}\right)}{k^{3} \log ^{3} N_{n}}+\frac{\omega_{n}^{2}\left(1+\delta_{n}\right)^{2}}{k^{2} \log ^{2} N_{n}}+\frac{\varepsilon_{n}^{2} \omega_{n}^{4}}{4 k^{4} \log ^{4} N_{n}}
\end{aligned}
$$

Next, since $\log N_{n} \sim \sqrt{2 n / k}$ by Lemma 8 , we get easily the following evaluations:

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{\varepsilon_{i} \omega_{i}^{2}}{k^{2} \log N_{i}} \sim \sum_{i=1}^{n} \frac{\omega_{i}^{2}}{k^{2} \sqrt{2 i / k}} \sim(2 / k)^{3 / 2} \sqrt{n} \text { a.s. } \\
& \sum_{i=1}^{n} \frac{\omega_{i}^{2}}{k^{2} \log ^{2} N_{i}} \sim \sum_{i=1}^{n} \frac{\omega_{i}^{2}}{2 k i} \sim k^{-1} \log n \text { a.s., } \\
& \sum_{i=1}^{\infty} \frac{\varepsilon_{n} \omega_{n}^{3}}{k^{3} \log ^{3} N_{n}}<\infty \quad \text { and } \sum_{i=1}^{\infty} \frac{\varepsilon_{n} \omega_{n}^{4}}{4 k^{4} \log ^{4} N_{n}}<\infty \text { a.s. }
\end{aligned}
$$

From there the following result can be proved.
Theorem 3. If $\left\{N_{n}, n \geqq 1\right\}$ is defined by (4), then, on the same probability space (eventually extended), it is possible to define an i.i.d. sequence $\left\{\omega_{n}, n \geqq 1\right\}$ of exponentially $E(1)$ distributed random variables such that

$$
\begin{equation*}
\left.\operatorname{Lim}_{n \infty} n^{-1 / 2}\left\{\log ^{2} N_{n}-\frac{2}{k} \sum_{i=1}^{n} \omega_{i}\right\}=R \in\right]-\infty,+\infty[\text { a.s. } \tag{14}
\end{equation*}
$$

Corollary 1. If $N(0,1)$ denotes the standard normal distribution, then, as $n \rightarrow \infty$,

$$
\frac{k}{2 \sqrt{n}}\left\{\log ^{2} N_{n}-\frac{2 n}{k}\right\}-\frac{R k}{2} \xrightarrow{w} N(0,1)
$$

and

$$
\sqrt{2 k}\left\{\log N_{n}-\sqrt{2 n / k}\right\}-\frac{R k}{2} \xrightarrow{w} N(0,1)
$$

Proof. It follows directly from Theorem 3 and the central limit theorem.
Proof of Theorem 2. Note first that (5) is a direct consequence of Theorem 3 and of the law of the iterated logarithm applied to $\sum_{i=1}^{n} \omega_{i}$. Next, we prove the following Lemma.
Lemma 11. Almost surely as $n \uparrow \infty$,

$$
\begin{aligned}
& \log _{2} N_{n}=\frac{1}{2} \log n+\frac{1}{2} \log (2 / k)+O\left(n^{-1 / 2} \log n\right) \\
& \log _{3} N_{n}=\log _{2} n-\log 2+O(1 / \log n)
\end{aligned}
$$

and, for any $p \geqq 4$,

$$
\log _{p} N_{n}=\log _{p-1} n+O\left(1 / \prod_{j=2}^{p-2} \log _{j} n\right)
$$

Proof. It suffices to take the p-th iterated logarithm of both sides of (5).
It is possible by Lemma 11 and Lemma 7 to prove that, for any $p \geqq 3$, $P\left(\omega_{n} \geqq 2 \log _{2} N_{n}+\log _{3} N_{n}+\ldots+(1+\varepsilon) \log _{p} N_{n}\right.$ i.o. $)=0$ when $\varepsilon>0$ and 1 when $\varepsilon<0$. Finally, by Lemma 9 , almost surely as $n \uparrow \infty$,

$$
\begin{equation*}
k\left\{\frac{N_{n+1}-N_{n}}{N_{n}}\right\} \log N_{n}=\omega_{n}\left(1+0\left(\frac{\log n}{\sqrt{n}}\right)\right) \tag{15}
\end{equation*}
$$

This suffices to complete the proof of (6).

Let us now consider (15), and evaluate:

$$
\log k+\log \left(N_{n+1}-N_{n}\right)=\log N_{n}-\log _{2} N_{n}+\log \omega_{n}+O\left(\frac{\log n}{\sqrt{n}}\right) \text { a.s. }
$$

An easy deduction from Theorem 2 and Lemma 7 gives the following result.

Theorem 4. If $\left\{N_{n}, n \geqq 1\right\}$ is defined by (4), then,

$$
\underset{n \infty}{\operatorname{Lim} \operatorname{Sup}}\left(\log _{2} n\right)^{-1}\left\{\log \left(N_{n+1}-N_{n}\right)-\sqrt{2 n / k}+\frac{1}{2} \log n\right\}=1 \text { a.s., }
$$

and

$$
\operatorname{Lim}_{n \infty} \operatorname{Inf}\left(\log _{2} n\right)^{-1}\left\{\log \left(N_{n+1}-N_{n}\right)-\sqrt{2 n / k}+\frac{3}{2} \log n\right\}=-1 \text { a.s. }
$$

Further expansions of the upper and of the lower class of $N_{n+1}-N_{n}$ may be deduced easily from Lemma 9, Lemma 7, and Theorem 2. It may be remarked here that theses classes differ from the classes of N_{n}.

3. Upper Bounds for the \boldsymbol{k}-th Maximal Spacing

We shall now give the proof of Theorem 1. Even though this proof follows closely the case of $k=1$, treated in [2], the extension from this case to an arbitrary k is not trivial and needs to be detailed.

We first define the sequence $\left\{n_{l}, l \geqq 1\right\}$ by $n_{l}=[\exp (\sqrt{2 l / k})], l=1,2, \ldots$, and put $T_{l}=\omega_{n_{i}}$. Next, we consider the random sequence defined by

$$
\begin{align*}
& l(1)=\operatorname{Min}\left\{l \geqq 1 ; L_{n_{l}}>L_{n_{l+1}}\right\}, \tag{16}\\
& l(r)=\operatorname{Min}\left\{l>l(r-1) ; L_{n_{l}}>L_{n_{l}+1}\right\}, \quad r=2,3, \ldots
\end{align*}
$$

Lemma 12. If $\{l(r), r \geqq 1\}$ is defined by (16), then $\left\{n_{l(r)+1}, r \geqq 1\right\}$ is an increasing sequence of stopping times on $\left\{\mathfrak{u}_{n}, n \geqq 1\right\}$ and if for $r=1,2, \ldots, \theta_{r}=\omega_{l(r)+1}$, then $\left\{\theta_{r}, r \geqq 1\right\}$ is an i.i.d. sequence of exponentially $E(1)$ distributed random variables.
Proof. See [2], Lemma 4.
Lemma 13. With the hypothesis of Lemma 12,

$$
\operatorname{Lim}_{r^{\infty}} l(r) / r=\frac{e^{1 / k}}{e^{1 / k}-1} \text { a.s. }
$$

Proof. See [2], Lemma 5.
Following exactly the proof in [2], it can be seen that Theorem 1 will be proved for an arbitrary $k \geqq 1$ if the following Lemma is true.
Lemma 14. For any $j \geqq 4$ and $c>0$,

$$
\operatorname{Lim}_{N^{\infty}} \frac{1}{N} \sum_{l=1}^{N} I\left(n_{l} K_{n_{l}}-\log n_{l} \geqq-c \log _{j} n_{l}\right)=1 \text { a.s., }
$$

where $I(A)$ denotes the indicator function of the event A.

To see that it is indeed the case, it can be verified that then, as in [2] Lemma 8 and Lemma 10, there exists a.s. an infinite set of indices n such that:

$$
\begin{equation*}
n K_{n} \geqq \log n-c \log _{j} n \tag{17}
\end{equation*}
$$

and hence, since $L_{n} \geqq k K_{n}$, that

$$
n L_{n} \geqq k \log n-c k \log _{j} n
$$

and such that there exists an $m>n$ with $L_{m}=L_{n}$ and $K_{m}=K_{n}$, satisfying:

$$
\begin{equation*}
\left(\frac{m-n}{n}\right) \log n \geqq \frac{1}{k}\left(2 \log _{2} n+\log _{3} n+\ldots+\log _{j} n\right) \tag{18}
\end{equation*}
$$

by an inequality analogous to (8).
It follows from (17) and (18) that

$$
m K_{m}>\log m+\frac{1}{k}\left(2 \log _{2} m+\log _{3} m+\ldots+\log _{j-1} m\right)+\left(\frac{1}{k}-c\right) \log _{j} m+o(1)
$$

proving Theorem 1.
An important point of this proof is to note that any index n where K_{n} decreases is also an index where L_{n} decreases. Hence, if $L_{n}=L_{m}$, we must have $K_{n}=K_{m}$.

We shall not repeat here the steps detailed in [2], which are, after the preceding remarks, identical in the case $k=1$ and $k \geqq 1$. It remains only to prove Lemma 14.

To do so, we shall use the following evaluation given by Devroye [4], Lemma 3.2:

Lemma 15. If $a_{n} \rightarrow 0$ and $a_{n} \log n \rightarrow \infty$ as $n \rightarrow \infty$, then,

$$
\begin{equation*}
P\left(n K_{n} \log n-1<-a_{n}\right) \sim n^{(k-1) a_{n}} \exp \left(-n^{a_{n}}\right) /(k-1)! \tag{19}
\end{equation*}
$$

If we put $a_{n}=\left(c \log _{j} n\right) / \log n$, we obtain that

$$
\begin{aligned}
& \left.P\left(n K_{n}<\log n-c \log _{j} n\right) \sim(1 /(k-1)!) \exp \left(-\exp \left(a_{n} \log n\right)+(k-1) a_{n} \log n\right)\right) \\
& \quad=(1 /(k-1)!) \exp \left(-\left(\log _{j-1} n\right)^{c}+c(k-1) \log _{j} n\right)
\end{aligned}
$$

Let $\eta_{l}=I\left(n_{l} K_{n_{l}}-\log n_{l}<-c \log _{j} n_{l}\right)$. By the preceding evaluation,

$$
E\left(\eta_{l}\right) \sim(1 /(k-1)!) \exp \left(-\left(\log _{j-2} \sqrt{2 l / k}\right)^{c}+c(k-1) \log _{j-1} \sqrt{2 l / k}\right) \rightarrow 0 \text { as } l \rightarrow \infty
$$

The Lemma 14 will be proved if we prove that $\operatorname{Lim}_{n^{\infty}} \frac{1}{N} \sum_{l=1}^{n}\left(\eta_{l}-E\left(\eta_{l}\right)\right)=0$, or equivalently (see [12]), if $\xi_{n}=\frac{1}{N} \sum_{l=1}^{N} \eta_{l}$, if there exists an $a>1$ such that

$$
\sum_{n=1}^{\infty} D^{2}\left(\xi_{\left[a^{n}\right]}\right)<\infty, \text { where } D^{2}\left(\xi_{N}\right)=N^{-2} \sum_{i=1}^{N} \sum_{l=1}^{N}\left(E\left(\eta_{i} \eta_{l}\right)-E\left(\eta_{i}\right) E\left(\eta_{l}\right)\right)
$$

Let us now put $c>1, j \geqq 4, b_{i}=\left[i /(\log i)^{1+\varepsilon}\right]$, where $\varepsilon>0$,

$$
A_{N}=N^{-2} \sum_{i=4}^{N} \sum_{l=i-b_{i}}^{i+b_{i}} \operatorname{Cov}\left(\eta_{i}, \eta_{l}\right) \text {, and } B_{N}=N^{-2} \sum_{i=4}^{N} \sum_{l=i+b_{i}+1}^{N} \operatorname{Cov}\left(\eta_{i}, \eta_{l}\right) .
$$

Clearly $E\left(\eta_{l}\right)=o\left(\left(\log _{j-3} l\right)^{-2}\right), l \rightarrow \infty$, and, as in [2], (26), it follows that A_{N} $=O\left((\log N)^{-1-\varepsilon}\left(\log _{j-3} N\right)^{-2}\right)$ as $N \rightarrow \infty$. Consequently if $a>0$, then $\sum_{n \geqq 1} A_{\left[a^{n}\right]}<\infty$.

Following [2], it suffices to prove that $\sum_{n \geqq 1} B_{\left[a^{n}\right]}<\infty$. To do so, we have to evaluate $E\left(\eta_{i} \eta_{l}\right)$ when $l>i+b_{i}$. By a similar proof as in [2], we obtain the following upper bound for B_{N} :

$$
\begin{equation*}
B_{N} \leqq N^{-2} \sum_{i=4}^{N} \sum_{l=i+b_{i}+1}^{N} E\left(\eta_{i}\right)\left\{P\left(n_{l} K_{n_{l}-n_{i}}<\log n_{l}-c \log _{j} n_{l}\right)-E\left(\eta_{l}\right)\right\} . \tag{20}
\end{equation*}
$$

Next, it follows likewise from [2] that

$$
\begin{aligned}
n_{i}\left(\log n_{l}\right) / n_{l} & \leqq n_{i}\left(\log n_{i+b_{i}}\right) / n_{i+b_{i}} \\
& =c_{i}^{\prime}=\exp \left(-b_{i}(1+o(1)) / \sqrt{2 k i}\right) \rightarrow 0 \text { as } i \rightarrow \infty
\end{aligned}
$$

Hence, we get

$$
P\left(n_{l} K_{n_{i}-n_{i}}<\log n_{l}-c \log _{j} n_{l}\right)=P\left(\left(n_{l}-n_{i}\right) K_{n_{l}-n_{i}}<\log \left(n_{l}-n_{i}\right)-c \log _{j} n_{l}+O\left(c_{i}^{\prime}\right)\right)
$$

Finally we get from (20) $B_{N} \leqq N^{-2} \sum_{i=4}^{N} \sum_{l=i+b_{i}+1}^{N} E\left(\eta_{i}\right) \gamma_{i}$, where

$$
\begin{gathered}
\gamma_{i}=\left\{P\left(\left(n_{l}-n_{i}\right) K_{n_{l}-n_{i}}<\log \left(n_{l}-n_{i}\right)-c \log _{j} n_{l}+O\left(c_{i}^{\prime}\right)\right)-P\left(n_{l} K_{n_{l}}<\log n_{l}\right.\right. \\
\left.\left.-c \log _{j} n_{l}\right)\right\} .
\end{gathered}
$$

Following the bounds given in Devroye [4] (3.3) and Lemma 3.1, if L_{n}^{\prime} is the k-th largest of n independent identically distributed random variables with exponential density and whose sum is T_{n}, then

$$
\begin{align*}
P\left(L_{n}^{\prime}<\right. & (1-a-b) \log n)-P\left(T_{n}<n(1-b)\right) \leqq P\left(n K_{n} / \log n<1-a\right) \\
& \leqq P\left(L_{n}^{\prime}<(1-a+b) \log n\right)+P\left(T_{n} \geqq n(1+b)\right), \tag{21}
\end{align*}
$$

and for n large enough,

$$
P\left(\left|T_{n}-n\right| \geqq b n\right) \leqq 2 \exp \left(-n b^{2} / 4\right) .
$$

Let us take now in (21) $a=a_{n}$ and $b=n^{-1 / 4}$. It follows that

$$
P\left(\left|T_{n}-n\right| \geqq b n\right) \leqq 2 \exp (-\sqrt{n} / 4) \text {. Next, } P\left(L_{n}^{\prime}<x\right)=\sum_{j=0}^{k-1}\binom{n}{j}\left(1-e^{-x}\right)^{n-j} e^{-j x} .
$$

Put for $j=0, \ldots, k, C_{n}^{j}(x)=\binom{n}{j}\left(1-e^{-x}\right)^{n-j} e^{-j x}$. We get, for any $\varepsilon>0$ as $n \rightarrow \infty$,

$$
C_{n}^{j}((1-a \pm b) \log n)=\frac{1}{j!}\left(1+O\left(\frac{1}{n}\right)\right) \exp \left(-n^{a \mp b}+O\left(n^{\varepsilon-1}\right)+j(a \mp b) \log n\right) .
$$

If now $a=a_{n} \sim c\left(\log _{j} n\right) / \log n$, it follows that for any $\theta>0$,

$$
C_{n}^{j}((1-a \pm b) \log n)=n^{j a} \exp \left(-n^{a}\right)\left(1+o\left(n^{\theta-1 / 4}\right)\right) .
$$

Hence,

$$
P\left(n K_{n} / \log n<1-a\right)=\sum_{j=0}^{k-1} n^{j a} \exp \left(-n^{a}\right)\left(1+O\left(n^{\theta-1 / 4}\right)\right) .
$$

From there it follows as in [2] (27) that

$$
B_{N} \leqq N^{-2} \sum_{i=4}^{N} \sum_{l=i+b_{i}+1}^{N} E\left(\eta_{i}\right) E\left(\eta_{l}\right) o\left(n_{l}^{\theta-1 / 4}\right)=O\left(N^{-1}\right)
$$

Hence $\sum_{n=1}^{\infty} B_{\left[a^{n}\right]}<\infty$ and the proof of Theorem 1 is complete.

References

1. Deheuvels, P.: The strong approximation of extremal processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 58, 1-6 (1981)
2. Deheuvels, P.: Strong limiting bounds for maximal uniform spacings. Ann. Probability. 10, 1058-1065 (1982)
3. Deheuvels, P.: Strong approximation in extreme value theory and applications. Coll. Math. Soc. Janos Bolyai, Vol. 36. Limit theorems in Probability and Statistics, P. Révész edit. Amsterdam: North Holland 1982
4. Devroye, L.: Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probability. 9, 860-867 (1981)
5. Devroye, L.: A Log Log law for maximal uniform spacings. Ann. Probability. 10, 863-868 (1982)
