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Summary. If K,  denotes the k-th maximal spacing generated by an i.i.d. 
sequence of random variables uniformly distributed on (0, 1), we show that 
for any p > 3, 

P(nK,>Logn+(2Log2n+Log3n+...+(l+e)Logvn)/ki.o)=l or 0 

according as e<0  or e>0. We also obtain strong limiting bounds for the 
record times and inter-record times of Kn. 

1. Introduction 

Let U1, U 2 . . . .  be a sequence of independent uniformly distributed random 
variables on [0, 1]. Let U0~n/=0< U~/<. . .  < U~"~< U(n~l =1 be the order statistic 
corresponding to 0, 1, U~ .. . .  , U~. The corresponding spacings are defined by 

(n) __ g/(n) S i - -U~(~)I, l _ < i < n + l .  

Let K,, 1 >Kn,2 >. . .  >Kn,n+ 1 be the order statistic of the spacings. For any 
k<n, Kn, k will be called the k-th largest spacing of order n, and Mn=Kn, 1 the 
maximal spacing of order n. 

The upper class for Mn, n T oo is yet known and given by 

P(nM,>Logn+2Log2n+Log3n+...+(l+e)Logpn i.o.)=O or 1, (1) 

according as e>0  (Devroye [4]) or e_<_0 (Deheuvels [2]), for any p>3,  where 
Logj is the j-th times iterated logarithm. 

For k__> 2, however, the best results available up to now are: 

P(nK,,k>Logn+l (2Log2n+Log3n+... +(l +e)Log;n) i .o.)=O (2) 

for any e > 0 and p > 3, and 
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P(nK,,k> Logn + ~  Log2 n 2 - e  i.o.) = l, (3) 

for any e>0  (Devroye [4]). 
The aim of the following is to make this result more precise, by proving: 

Theorem 1. For any fixed k > l, if K , =  K,, k is the k-th largest spacing of order 
n, then 

( 1 
+ e) Logp n t = 0 1, P \nK,  >Log  n +~(2Log 2 n + L o g  3 n + . . .  +(1 / or 

according as ~ > 0 or a < O. 

In the proof, we shall make use of a sequence of random stopping times 
defined on U1, [/2, ... in the following way. For any n>k,  note by I ,=1, ,  k the 
union of the spacing intervals corresponding to K,, 1, K,, z .... , K,, k. The length 
of I ,  will be denoted by L , = K , ,  1 + ... +K,,k.  Put now 

N~=k 
(4) 

N , = I n f { m > N , _ ~ ; L m < L s , _ l } ,  n=2,3 , . . . .  

The definition of N1,N2,... corresponds to the fact that K,, I, ... , K,, k re- 
main unchanged when n varies between N k_~ and N k. When n takes the value 
Nk, one of them decreases, U, falling then in I,, k. 

Our main results about Na, N2,... are the following: 

Theorem 2. For any fixed k> l, if N1,N2, ... is defined by (4), then 

where 
LimSup G = 1 a.s., LimInf~,  = - 1 a.s., 

n m n ~  

and, for any j > 4, almost surely 

L imSup{k( -N"+~2-N"]LogN - 2 L o g 2 N n - L o g 3 N  - . .  
N, ! 

=1 a.s. 

- L o g j - l N , } / L o g j N n  

(6) 

Remarks. 1 ~ Theorem 2 makes precise Theorem 1 of [2], where it was proved 
in the case k = 1 that 

N n = exp(lfl2n + O(Log n)) a.s. 

2 ~ The study of the sequence {N, ,n> 1} has some interest in itself. In fact, 
it is for the maximal spacings the equivalent of the record times for maxima of 
i.i.d, sequences (see [3]). It behaves though in a quite different way. We shall, 
in the following paragraph, describe the main properties of this sequence which 
we have named as the record time sequence of the k-th maximal spacing. 
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2. The Record Time Sequence of the Maximal Spacings 

We shall, in the following, use the notations of w 1 and assume that  k > l  is 
fixed. 

Lemma 1. The sequence N~ = k < N  2 < . . .  <N,  < . . .  is an increasing sequence of 
stopping times on 1I~ C . ~ [ 2 ~  . . .  c ~ [ n = o - ( U 1 ,  . . . ,  Un) c . . . .  Furthermore, if ~I(N,) 
denotes the a-field generated by the events measurable on U 1 .... , UN,, then 

P(N.+ I --N,~rlU(N,))=(1 --LN,) ~-1, r = 1, 2, .... (7) 

Proof The first part of the Lemma is straightforward. For  the second, note 
that if LN, is given, the probability that N,+~-N ,  is greater than r is the 
probability that  at least r independent  U~ fall outside IN, ,. The result follows. 

Lemma 2. For any ~>0, there exists almost surely an n~ such that for any n>n~, 

- k ( l  +e)Log3n<=nLn-kLogn<(2 +e) ( i~  ~) Log2n (8) 

Proof Note first that  by (4), N, > n and the sequence N, increases to infinity. 
Hence, it suffices to prove (8), which in turn follows from (2) and (see Devroye 
[5]) 

Lira In f (nK,  - Log n + Log 3 n) = - Log 2 a.s. (10) 
n ~  

Lemma 3. On the same probability space where UI, U2,... is defined (eventually 
extended), there exists a sequence ~1, ~2, ..., independent of Ui, U 2, ..., of inde- 
pendent uniformly distributed on [0, 1] random variables such that if for n 
=1 ,2 , . . . ,  

co =-(-Log(1-LN,))(N,+ a - N  - 1 ) - L o g ( 1 - ~ ( 1 - L N ~ ) )  , (11) 

then the sequence {ca,, n> 1} is an i.i.d, sequence of exponentially E(1) distributed 
random variables such that, for any n >= 1, oa R is independent of II(N,) and satisfies 

co, --LN,,) L o g ( 1 - ~ , L N )  [ - L ~  LN~iC~ ] N ; + ~ - N , -  - L o g o  ~- 1 L ~ o g ( i 2 ~  - + i, (12) 

where [u] denotes the integer part of u. 

Proof It follows as a direct corollary of [3], Theorem 1. Note that Lemma 3 is 
essentially the same as [1], Lemma 2. 

In the following, we shall use the notations 

2, =LN, , n =  1, 2, .... 

1 1 1 
Lemma 4. Let, for 0<z ,  ~<1,  q~(z)= ~-x and 

~ g o g ( ~  ~ Z~ Z Z 
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Log(1 - ~ z) 
~(~, z) = q- ~, then, 

Log(1 - z )  

Z 
2<~b(z)<0 and 0<O(~,z)<~z.  

Proof See [3], Lemma 3 and Lemma 4. 

Lemma 5. For any r > 0, Lira N,/n r = + oo. 
n ~ 

Proof The result is clearly true for any r: 0 < r <  1, since by (4) for any n>  1, 
N,>n. Let us assume that it is true for some r >0. If we use the fact that (see 
(9)) as nToo, 2 , ~ k ( L o g g , ) / g ,  a.s., we obtain that 2,=o(Logn) /n  r) a.s. Next, by 
(12) and Lemma 4, 

09, >co J 1  1 ~ }  
N " + I - N " > - L o g ( 1 - 2 . ) =  (2.  2 

By summing up and by Kronecker's lemma, it follows that 

n--1 n r +  1 

N , = k + i = l  ~ (Ni+l-Ni)  (Logn)o(1) a.s. 

Hence, the result is still true for r + �89 and also for any r > 0. 

L e m m a  6. Almost surely as n T oo, 

co.  
N"+ I - N "  kLogN," 

co, N, 
Proof It suffices to prove by (12) and (9) that L im Lo~N~N - + oo a.s. 

. gN, 

This follows from Lemma 5 and: 

Lemma 7. For any p >= 1, 

P(co,>=Logn+ ... +(1 +~)Logpn i.o.)=P(co~<=(n(Logn)... (Logpn)l+~) -1 i.o.) 
= 0  or 1 

according as ~ > 0 or e < O. 

Proof By Borel-Cantelli. 

L e m m a  8. Almost surely as nToo , 

Log N . ~  ]/2n/k. 

Proof By Lemma 6 and Lemma 7, 

LogN.+ 1 = L o g N .  4 09. (1+o(1)) a.s. 
k Log N. 
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By taking squares, 

2 CO,z 
LogZN.+ 1 -LogZN.  = - ~ - ( 1  +o(1)) a.s. 

It follows by summing up and using the law of large numbers that 

Log2Nn~2n/k a.s. as n]'c~. 

L e m m a  9. Let for n > 1 

Then 

% (1 + an)}. N.+t=N. lq kLogN~ 

LogN. 4 Z 1 
LimSnp a. - -  < -  ~ -: a.s. 

.~ togaNn=ki=l  Z 

k 1 
Proof. By (9), if C = (2 + g)~.==, 7' as n T 0% we get 

1 1 < c Log 2 N, 

Nn2. kLogN.  =kN. 2nLogN . 

Next, from (12), using the notations of Lemma 4, 

C Log 2 N. 
k 2 Log 2 N," 

Nn+ 1 -Nn COn 1 -a.n 2 co. + 1 - ~. + con q5(2.) + ~(~., 2.) - 

k Log N. 
Clearly, by Lemma 4 and Lemma 7, since by (9), 2. a.s., 

Nn 

{ CO, 1 1 (L~ a.s. 
N"+I-N"=N" kLogN.  ~-COn(~2. k L o g N . ) + O t ~ - - / J  

Finally, we use the fact that, as n T o% CO. < (1 + e)Log n ~ 2 Log z N. a.s. 

L e m m a  10. Let for n > 1 

CO.(1 + an) 
Log N.+, = Log N. 4 k Log N. 

then 
Lim G = 1 a.s. 

noo 

2 
~n (2)n 

2 ' 2k 2 Log N, 

Proof. It follows from Lemma 9, by taking logarithms. 

We now take squares in (13). It gives 

Log 2 N,+ 1 - L~ 2 N, 

200.(1+3.) Go) 2 G co3(1+ an) + co2(1 +a.)  2 
= k k 2 Log N. k 3 Log 3 N. k 2 Log 2 N. q 

Next, since Log Nn~ 2 1 / ~  by Lemma 8, we get easily the 
luations: 

(13) 

2 4- 8n COn 
4 k 4 Log4. N n 

following eva- 
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~iso[ - ~ 5o[ (2/k) 3/21In a.s., 
k k2 CogN/ i=1 k 2 ~  i = 1  

5O 2 
~ ~ k-  1 Log n a.s., ~k 2 Log 2 N/ 2 ~  

i ~ 1  i = 1  

ks ~--YZS_3 < oo and ~, ~o. i= 1 Log N, i=1 4k4 Log4N, < oo a.s. 

From there the following result can be proved. 

Theorem 3. I f  {N,, n> 1} is defined by (4), then, on the same probability space 
(eventually extended), it is possible to define an i.i.d, sequence {co, ,n>l} of 
exponentially E(1) distributed random variables such that 

1'2{ 2 2 ~ 1  } = R e ] -  oo, + oo[ a.s. (14) Lim,~o n-  / Log iV , -~ i  5oi 

Corollary 1. I f  N(O, 1) denotes the standard normal distribution, then, as n ~  ~ ,  

and 

k ( 2 2n~ Rk  '~,N(0,1) 
2  L~ 2 

] / 2k{LogN~- ] /2n /k}  R k  ~, ~N(O, 1). 
2 

Proof. It follows directly from Theorem 3 and the central limit theorem. 

Proof of Theorem 2. Note first that (5) is a direct consequence of Theorem 3 

and of the law of the iterated logarithm applied to ~ co i. Next, we prove the 
following Lemma. i= 1 

Lemma 11. Almost surely as n Too, 

Log 2 N n = �89 Log n + �89 Log (2/k) + O (n- 1/2 Log n), 

Log s N,, = Log z n - L o g  2 + 0 (1/Log n), 

and, for any p > 4, 

Logp N, = Logp_ 1 n + O 1 [ I  Log; n . 
i j=2 

Proof It suffices to take the p-th iterated logarithm of both sides of (5). 

It is possible by Lemma 11 and Lemma7  to prove that, for any p>3 ,  
P ( s o n > 2 L o g 2 N , + L o g s N , + . . .  +(l+e)LogpN,  i .o.)=0 when e > 0  and 1 when 
e<0.  Finally, by Lemma 9, almost surely as nToo, 

k Nn+l-Nn =c% (1 + 0  ( L ~  (15) \ \ l /n f l 

This suffices to complete the proof of (6). 
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Let us now consider (15), and evaluate: 

(Log n ) 
L o g k + L o g ( N ~ + ~ - N ~ ) = L o g N ~ - L o g 2 N n + L o g c o n + O  \ ]/~ a . s .  

An easy deduction from Theorem 2 and Lemma 7 gives the following 
result. 

Theorem 4. I f  {N,, n > l }  is defined by (4), then, 

Lira Sup(Log 2 n)-I {Log(N,+ 1 - N , )  - 2 1 / ~  +�89 Log n} = 1 a.s., 
n o o  

and 
Lim Inf(Log 2 n)-i  {Log (N,+~ - N , ) -  2 ] / ~  + 3 2 Log n} = - 1 a.s. 

n o o  

Further expansions of the upper and of the lower class of N n + I - N  . may be 
deduced easily from Lemma 9, Lemma 7, and Theorem 2. It may be remarked 
here that theses classes differ from the classes of N,. 

3. Upper Bounds for the k-th Maximal Spacing 

We shall now give the proof of Theorem 1. Even though this proof follows 
closely the case of k = l ,  treated in [2], the extension from this case to an 
arbitrary k is not trivial and needs to be detailed. 

We first define the sequence {nz, 1__> 1} by nl=[exp(]/~/k)],  I=1, 2, ..., and 
put T~ = ~%. Next, we consider the random sequence defined by 

l(1) = Min {l> 1;L~, >L,~+ 1}, (16) 

l ( r )=Min{ l>l ( r -1 ) ;Ln  >L~+~}, r = 2 , 3 , . . . .  

Lemma 12. I f  {l(r), r > l }  is defined by (16), then {nz(r)+i , r > l }  is an increasing 
sequence of stopping times on {1I~, n > 1 } and if for 7" = 1, 2, ..., 0 r = co~(r)+ 1, then 
{0r, r >  1} is an i.i.d, sequence of exponentially E(1) distributed random variables. 

Proof. See [2], Lemma 4. 

Lemma 13. With the hypothesis of Lemma 12, 

el/k 
Lira l(r)/r- a.s. 

r~ e 1/k - -  1 

Proof. See [2], Lemma 5. 

Following exactly the proof in [2], it can be seen that Theorem 1 will be 
proved for an arbitrary k>  1 if the following Lemma is true. 

Lemma 14. For any j > 4  and c>0,  

Lim 1 ~1 - -  I ( n z K ~ - L o g n l > - c  Logjnl)= 1 a.s., 
N~ N l= 

where I(A) denotes the indicator function of the event A. 
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To see that  it is indeed the case, it can be verified that  then, as in [-2] 
L e m m a  8 and L e m m a  10, there exists a.s. an infinite set of  indices n such that:  

n K  n > Log n - c Logj  n, (17) 

and hence, since L n > kKn,  that  

n L  n ~ k Log n - c k Logj  n, 

and such that  there exists an m > n with L m = L  n and K m = Kn, satisfying: 

( ~ - )  L o g  n > �88 Log2  n + Log3 n + . .. + L o g j  n), (18) 

by an inequali ty analogous  to (8). 
It  follows from (17) and (18) that  

m K m > L o g m + ~ ( 2 L o g 2 m + L o g 3 m + . . . + L o g j _ l m ) + ( 1 - c ) L o g j m + o ( 1 ) ,  

proving  Theo rem 1. 
An impor tan t  point  of  this p roof  is to note that  any index n where K ,  

decreases is also an index where L n decreases. Hence,  if L ,  =Lm,  we must  have 
K ,  - - K  m. 

We shall not  repeat  here the steps detailed in [-2], which are, after the 
preceding remarks,  identical in the case k = l  and k > l .  It  remains  only to 
prove  L e m m a  14. 

To  do so, we shall use the following evaluat ion given by Devroye  [-4], 
L e m m a  3.2: 

L e m m a  15. I f  an~O and an L o g n ~ o e  as n ~ o ~ ,  then, 

P ( n K n / L o g  n - 1 < - a,) ~ n (k- 1).. exp ( -  na")/(k - 1)!. (19) 

If  we put  an=(c  L o g j n ) / L o g n ,  we obta in  that  

P ( n K  n < Log n - c Log s n) ~ (1/(k - 1)!) exp ( - exp (a, Log n) + ( k -  1) a n Log n)) 

= (1/(k - 1)!) exp ( -  (Log j_ 1 n) c + c(k  - 1) Logj  n). 

Let  r h = I ( n ~ K n , - L o g  n~ < - c Logj  nz). By the preceding evaluation,  

E(rh) ~ (1/(k - 1)!) exp ( -  (Log s_ 2 2 1 / ~ )  c + c(k  - 1) Log j_ 1 2 ] / ~ ) - - , 0  as I--* ~ .  

1 . 
The L e m m a  14 will be p roved  if we prove  that  Lira ~ ~ (t h - E ( t h ) ) = 0 ,  or 

n l = l  
1 N 

equivalently (see [,12]), if ~ n = ~  ~ ql, if there exists an a >  1 such that  
/ = 1  

N N 

D z ( ~ . ~ ) <  o% where D 2 ( ~ u ) = N  -2 2 2 (E(~ith)-E(r/ i)E(rh))  �9 
n = l  i = I  / = i  
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Let us now put c >  1, j > 4 ,  bi= [-//(Log i)1+~], where e>0 ,  

N i+bi N N 

AN = N - 2  ~. ~, C~ rh), and BN = N - 2  ~ 2 Cov(r/i, rh). 
i = 4  l=i - -b i  i = 4  l = i + b i +  1 

Clearly E( th)=o((Logj_3/ ) -2) ,  l~oQ, and, as in [--2], (26), it follows that  A N 
= O ( ( L o g N ) - l - ~ ( L o g i _ a N )  -2) as N--,oe. Consequent ly  if a > 0 ,  then 

E A[a~ 1< 0(3. 
n > l  

Following [-2], it suffices to prove that  ~ BLa, 1 < oo. To  do so, we have to 
n > l  

evaluate E(rhth) when I>i+bz.  By a similar p roof  as in [2], we obtain the 
following upper  bound  for B N : 

N N 

BN <--N- 2 ~ 2 E(r l i ) {P(nzK. , - .~<L~ L~ (20) 
i = 4  l = i + b i +  l 

Next, it follows likewise from [2] that 

ni(Log nt)/n t < ni(Log ni+b~)/ni+bl 
, = q = e x p ( - b i ( 1  +o(1  ~ 0  as i--*oo. 

Hence, we get 

P (n t K.~ _ .~ < Log n I - c Logj nz) = P ((n t - hi) K., _., < Log (n~ - ni) - c Logj n z + 0 (c'i)). 

N N 

Finally we get from (20) Bu <=N -2 ~ ~ E(rh)Ti , where 
i = 4  l = i + b i +  1 

7i = {P ((nz - hi) K,~ _n, < Log (n z - ni) - c Logj n z + 0 (c'i)) - P (n I K,, < Log n I 
- c Logj n / )} .  

Following the bounds given in Devroye [-4] (3.3) and L e m m a  3.1, if L', is 
the k-th largest of n independent  identically distributed random variables with 
exponential  density and whose sum is T,, then 

P (L'. < (1 - a - b) Log n) - P (T. < n (1 - b)) < P (nK./Log n < 1 - a) 

<- P(En <( l - a  + b) Log n) + P(T .>  n( l + b)), (21) 

and for n large enough, 

P (1T. - n[ > b n) < 2 exp ( - n b 2/4). 

Let  us take now in (21) a = a .  and b = n  -~/4. It follows that 

P( lT , -n[>bn)<2exp( - -J / /~ /4 ) .  Next,  P(L'~<x)=j~.= ( 1 - e - ~ y  Je -j~. 

Put  for j = 0  . . . .  ,k, C ~ ( x ) = ( ~ ) ( 1 - e - ~ ) " - J e  -j~. W e g e t ,  f o r a n y e > 0 a s n - - + o e ,  

C ~ ( ( I - a  _+b)Log n)=jl~ (1 + O  (ln))exp(--n~T-b+O(n~-l)+j(a-T-b) Log n). 
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If now a=a.~c(Logjn)/Logn, it follows that for any 0>0,  

C~ ((1 - a +__ b) Log n) = n j~ exp ( - n ~) (1 + o (n o - 1/4)). 

Hence, 
k-1  

P(nK./Logn< 1 - a ) =  ~ nJaexp(-na)(1 +0(n~ 
j=o  

From there it follows as in [2] (27) that 

N N 
BN<N -2 ~ ~ E(~li)E(~h)o(n~-~/~)=O(N-~). 

i=4 l= i+bi+l  

Hence ~ B[a. 1 < oe and the proof of Theorem 1 is complete, 
n=l  

References 

1. Deheuvels, P.: The strong approximation of extremal processes. Z. Wahrscheinlichkeitstheorie 
verw. Gebiete 58, 1-6 (1981) 

2. Deheuvels, P.: Strong limiting bounds for maximal uniform spacings. Ann. Probability. 10, 
1058-1065 (1982) 

3. Deheuvels, P.: Strong approximation in extreme value theory and applications. Coll. Math. Soc. 
Janos Bolyai, Vol. 36. Limit theorems in Probability and Statistics, P. R6v&z edit. Amsterdam: 
North Holland 1982 

4. Devroye, L.: Laws of the iterated logarithm for order statistics of uniform spacings. Ann. 
Probability. 9, 860-867 (1981) 

5. Devroye, L.: A Log Log law for maximal uniform spacings. Ann. Probability. 10, 863-868 (1982) 

Received June 20, 1982; in revised form September 14, 1982 


