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Summary. For a class of stationary independent increments processes we 
find a necessary and sufficient integral test on a function 0<h~]" for 
P[Rc~(x, x+h(x))=O i.o. xToo] - -1  and for e[Rtcs(x , x+h(x))=O i.o. x ; 0 ]  
= 1, for all t>0 ,  where R = r a n g e  of X, R t= range  of X up to epoch t. 

w 1. Introduction 

Let X =  {Xt, t>0}  be a process in R 1 with stationary independent increments 
(s.i.i.). When the time variable t is continuous one may always choose a version 
of the process which is strong Markov and has certain paths regularities such 
as right continuity. We assume this has been done and we also assume P[X o 
= 0 ]  = 1. 

Let us suppose further that X is transient, i.e., that [Xt]~ oo as t ~  o% a.s., 
then the range R of X, defined by 

R = { x :  Xt=x for some t>0},  

is a random set which may have holes or gaps in it. In this paper we study the 
structure of the large gaps far out in R for a certain subclass of such processes. 
More precisely let h be a positive increasing function (a standing assumption 
on h throughout) such that h(oo)= oo. Then in certain cases we determine the 
probability of the event 

[R~(x,x+h(x))=r i.o. as x too ] .  (1.1) 

Note that, unless X t ~ - o %  t~oo, Rn(x, x+h(x)) is certain to be non-empty 
i.o. as xToo and if h increases too fast R~(x, x+h(x)) may be non-empty for 
all x sufficiently large. Let us say that h is a large gap function if P{(1.1)}=I.  
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Inasmuch as the set 

R~=-{x: X~=x for some s< t}c~( -oo ,  oo) 

is a.s. bounded for each t <  or, [,1], p. 45, it follows from the Hewitt-Savage 0-1 
law, see Fristedt [-5], p. 253, that if h is not a large gap function, the probabili- 
ty of (1.1) is 0. In w we delimit the class of large gap functions for random 
walks (discrete time s.i.i, processes) which drift to + oo. We prove 

Theorem 1. Let {Xn; n>_0} be a random walk which drifts to + oo and let q be 
the tail of the increment distribution: q ( x ) = P [ X n - X  ._ 1 > x ]  for all n. Put re(x) 

-i - q(y)dy. Then h is a large gap function if and only if 
0 oo 

q o h(x) [1 - xq(x)/m(x)]/m(x) dx = oo. (1.2) 

(o denotes function composition.) Note that [-1-xq(x)/m(x)]/m(x) 
=(d/dx)(x/m(x)) at continuity points. See w for a reformulation in terms of the 
ascending ladder height distribution. 

In the continuous time case, we also study the problem of small gaps in the 
range. As before let 0<h~T but h ( 0 + ) = 0  and let R t be the range of X up to 
epoch t. For a class of subordinator like processes, we determine the probabili- 
ty of the event 

[,Rtc~(x,x+h(x))=O i.o. as x+0]. (1.3) 

Let us say h is a small gap function for the range if P {(1.3)} = 1 for all t < oo. 
Let v denote the Levy jump measure of X and suppose 

v { ( -  o% 0)} < v{(0, 1]} = or, (1.4) 

1 

xv{dx} < oo, (1.5) 
0 

Suppose also that X is a pure jump process (no Gaussian or linear drift 
components, a type B process in Fristedt [5]). In w 3 we prove 

Theorem 2. Under the above assumptions h is a small gap function if and only if 

7o h(x)[-1 -xF(x)/#(x)] /#(x)  dx = ov (1.6) 
O+ 

-i where F(y)=v{(y, oo)} and # ( x ) -  F(y)dy. I f  the integral in (1.6) converges then 
P{(1.3)} = 0 f o r  all t>0.  o 

Theorem 2 follows quickly from a result concerning the finiteness of a class 
of discontinuous additive functionals. See Theorem 3 in w 3. 

In w we apply Theorems 1 and 2 to compute the class of gap functions for 
some special processes. These include the stable subordinators and random 
walks with regularly varying right hand tail probabilities. 

Our motivation for writing this paper comes from a remarkable result of 
Pruitt and Taylor [7] which describes the large gaps in the range of the 
asymmetric Cauchy process. Unfortunately but not surprisingly our methods 
fail completely for this process. We discuss their result and its relations to our 
work in the last section. 
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w 2. Proof of Theorem 1 

Let X = { X . , n > O }  be a random walk starting at 0: X0=0,  X . = ~ 1 + ~ 2 + . . .  
+~_., n > l ,  where ~1,~2,-.-, are i.i.d, random variables. We assume that X 
drifts to + oo ; 

P [ l im  X . =  + oo] =1. (2.1) 
n ~ o o  

(This of course does not preclude negative values.) Let {Sn, n >0} be the (strict) 
ascending ladder height renewal process given by 

S ,=Xr . ,  n=0,  1, 2, ... 
where To=0 , 

Tn=min{k :Xk>Xr .  1}, n > l .  

Let V be the common distribution of the independent variables {S, -Sn_I ,  
n>  1} and G the renewal measure; 

n = 0  n = 0  

V"* = n-fold convolution of V. 

Lemma 1. Suppose 0<h~]" on (0, oo). Then 

P[S,+I>h(S,)+S . i.o. nTc~]--O or 1 
according as 

Vo h(y) G {dy} < c~ or = oo, (2.2) 

where V(x) = 1 - V(x)= V {(x, oo)}. 

Proof Let I7,,, = S, - S,_ 1, Bo = f2 and 

B.=[S.+I>h(S.)+S.]=[Y.+I>h(S.)] ,  n>l .  

Then B. B.+ m c B ,  a[Y,+m+ 1 > h(Y,+ 2 + ' "  + Y,+ m)] so 

P(BnB.+,,)<P(B,)P(Bm 1), n>l ,  m > l  

Consequently if Z ,  = 1Bo + . . .  + 1Bn , 

2 EZ. <= C1EZ.+ C2(EZn) 2, n~  l, 

for some finite positive constants C1, C 2. It follows from a generalized Borel 
Cantelli 1emma, [6], that P[ l im sup Z.  = oo] = P[B. i.o.] > 0 if and only if 

l i m E Z =  ~ P[Yn+~>h(S.)] 
;'1 n = O  

= ~ f oh(x)G{dx}=oo. 
0 

Since P[B, i.o.] is either 0 or 1 anyway, the lemma follows. 
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Remark 1. The probabilities P[-Y,+ 1 > h(S,)] may also be computed thus: 

P[Yn+ I >h(Sn)]=P[Sn <h- I(Y.+ O] 

= ~ V"*(h- ~(y)-)  V{dy}. 
0 

Using the fact 

G(z)= ~' V"*(z)xA(z)=z / i  (2.3) 

for all z>0 ,  see Erickson [2], p. 377, (X means that the ratio of both sides is 
bounded away from 0 and oe), we obtain the 

Corollary. The integral (2.2) converges or diverges according as 

o o  

S A o h-l(y) V{dy} converges or diverges. (2.4) 

Remark 2. Note also that since A(.) is a continuous function the conclusion of 
Lemma 1 and the Corollary remains valid when > is replaced with >.  Mo- 
reover since A (cx)xA (x), again Erickson [2], it follows that for c > 0  

P[Sn+ 1 > hc(Sn) +S ,  i.o.] =P[Sn+ 1 >h(Sn)+S, i.o.'l 

where hc(x ) = h(ex). 

Proof of Theorem I. Since the T, are stopping times for X and since X has 
stationary independent increments, the process X' = {X j+ r,+l -- Sn+ 1, J > 0}, n 
fixed, is a probabilistic replica of X independent of {X 0, X 1, ..., XT.+I, T,+ 1}. 
Let us put 

Mn+ l=inf{Xj+ r,+l-Sn+ l;j>=o} <= O. 

Then 6 - P [ M n + I = 0  ] does not depend on n and by (2.1) and Feller [3], 
chapters 12 and 18, 

6 = P IX,  > 0 for all n] 
GO 

Put Bn = [Sn+ a > h(S,) + Sn] as in Lemma 1, then [Mn+ 1 = 0] is independent of 
B1, ..., Bn and an elementary calculation gives 

P[Bn~(Mn+ 1 =-0) for some n>m] > ~ P[B~...  B~_ 1Bn~(Mn+ ~ =0)] 
n = m  

=~ FIB;,.. .  B~_~ B,] = ~ f  B, . 
n ~ m  tl  

Hence, letting m--+ co, we get 

P[Sn+ I > h(Sn)+ S n i.o.] 

> P[Mn+ ~ =0, Sn+ ~ > h(Sn) + S, i.o.] 

> 6P[Sn+ 1 >h(Sn)+ S, i.o.]. 
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Since both probabilities are 0 or 1 by the Hewitt-Savage 0-1 law, it follows 
that both are simultaneously 0 or simultaneously 1. 

Now suppose the integrals in (2.2) or in (2.4) diverge. Then, by Lemma 1 
and the preceding, w.p. 1 (with probability 1 = a.s.) infinitely many of the events 

IS,+ 1 > S, + h(S,), M,+ l =0] 

occur. Plainly, in view of the definitions of S,, M,+ 2, this says that w.p. 1 the 
walk X never lands in (S,, S,+h(S,)) for infinitely many n. In other words, (1.1) 
has probability 1. 

Now let us suppose P{(1.1)}=I. Since R '={x :  S,=x for some n>O}cR, 
we have 

P[R'c~(x, x+h(x))=O i.o. x ]'oo] = 1, 

and there exists random variables X ~ < X~ <. . .  1" oo such that 

p[s,~(X o, o o k]=l. X k +h(Xk) ) for all n, 

Put pk=max {n: S,<X~ Then a.s. 

So~+t-Sp~>h(X~ k=  1, 2, ..., 

i.e., P[S,+~ >h(Sn)+S n i.o.] = 1. Thus by Lemma 1, the integrals in (2.2) and 
(2.4) diverge. 

To complete the proof of Theorem 1, we show that the integrals in (1.2) 
and (2.2) are equivalent, i.e., that they diverge or converge together. First we 
note the inequalities 

q(x)<V(x)<q(x)E(T1), x>0 ,  (2.5) 

which we prove below. Recall that q(x)=P[r ]. Next we note that 
E(T1)< oo since the walk drifts to + ~ .  (See Feller, p. 610.) From these facts 

we see that the integral in (2.2) is equivalent to the integral ~ q oh(x)G{dx}. 
o:3 

An integration by parts shows this to be equivalent to S G(x)d(-qoh(x)). 
/ : c  

by x / i  V(y) dy, as in (2.3), then estimating 1? with (2.5) and Replacing G(x) 
~ v  

integrating by parts once again, we arrive at the integral in (1.2). Note that 
x/m(x) is a nondecreasing function since m is concave, consequently the in- 
tegrand in (1.2) is nonnegative as it should be. 

Proof of (2.5). The left side of (2.5) is obvious from a consideration of the first 
step of the walk. Fix x > 0 and define random integers 

Qn= #{k:  Sk> X + Sk_l, k <=n}, 

Rn= =~{j: Xj> x 4-Xj_ I , j~  Tn}. 

The strong law of large numbers implies that as n~oo ,  QJn~V(x), 
RJT,~q(x), and T,/n~E(T1). On the other hand Q,__<R, for each n because 
for any k, Sk=XT(k~>X~ for any i<Tk+ ~. These four facts yield the right side 
of (2.5). 
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w 3. Proof of Theorem 2 

Our first goal is a criterion for the finiteness of a class of discontinuous 
additive functionals of a process X. We confine our attention to the case that 
X is a subordinator without a deterministic linear part but one can easily 
generalize the result. 

Let X be an s.i.i, process on (~2, ~,  P) with the usual path regularity such 
that for 2, t >= 0 

Ee-~X~=exp ( - t  i (1-e-;~x) v{dx} ) , (3.1) 

where v, the Levy measure, satisfies 

co 

min (1, x) v{dx} < o% (3.2) 
0 

v{(o, 1)} = ~ .  (3.3) 

We may suppose, without loss of generality, that X is of function space type 
[1], p. 24. Thus 0 t is the usual shift. Also we write px[.] ,  EX[.] for P [ ' IX0  
=x] ,  E[.  I X o = x  ] and p, E for po, E o. From (3.1) and (3.2) one may show that 
P [X t > 0 for all t > 0] = 1. 

Let us write 
~(x) = v {(x, oo)}, 

A s = A (s) = Xs - X s_ = X~ + - X s . 

Recall that (3.3) implies As>O for (countably) infinitely many s in [t, t+6 ]  for 
every t > 0  and 6>0. Moreover 

X,=  ~ A~eT (3.4) 
O<_s<_t 

and the random variable ~(t, e)=the number of jumps >e  up to epoch t is 
Poisson with mean tg(0. 

Let r be a real Borel function on [0, oo) x [0, oo) subject to one or more of 
the following 

01) O >0, O is bounded and O(0, x )=0  for all x>0 .  

~2) r holds and for each fixed x, y~--@(x, y) is non-increasing. 

~3) r holds and for each y > 0  and every t > 0  

p[- ~ O(Ar, y ) < o o ] = l .  (3.5) 
O < r < t  

Remark 3. If (3.5) holds for one t = t  o and 01) holds, then (3.5) holds for every 
t>0.  To see this note that for t o < t < 2 t  o, 

P[ ~, O(Ar, Y ) < ~ 1 7 6  ~ O(Ar~ Y)<~176 
0=<r=<t 0 - < r < - t - - t o  

=Epx(t~ Z O(A , , y )<oo]=P[  ~ O(As, y)< oo3 = 1 
O < s < t - t o  O <-s<-t-to 

by, respectively, (3.5)to, Markov property, independent increments, (3.5)to. 
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Remark 4. 03) is satisfied if x~--*r y) is non-decreasing for each y > 0  and 

7(x)dxO(x,y)<oo for all y>0 .  (3.6) 
o+ 

In particular 01) -03  ) are satisfied by the function 

0(x, y)= 1 for x>h(y)  

= 0  for x<h(y)  

where 0<h~l", h (0+)=0 .  (To see that (3.6) and x~-*r y) non-decreasing give 
03), note that the process Yt= ~ 0(As, y), t>0 ,  if finite is a non-decreasing 

0_<s_< t  

s.i.i, process. As such its Levy measure v r satisfies (3.2). Conversely, if v r 
satisfies (3.2), then Y is finite. An intergration by parts and a change of 
variables shows that (3.2) is equivalent t o (3.6). Note 9-v(z)=~-~ O; -1 
=inverse to x~--*O(x, y).) 

Put 0~(x, y )=0(x ,  y)I(~, oo)(x) and define 

At= Z O(As, X~-) 
O < s < _ t  

At(el= F, O (As, Xs_). 
O < s < t  

Note that for e>0,  At(e)< oo a.s. and that both A t and At(e ) are (discontinuous) 
additive functionals: 

At+s=At+AsoOt a.s., s, t>0.  (3.7) 

On the event [Ato < oo] A is right continuous on [0, to). 

Lemma 2. Suppose 01) holds. Then for each t as s+O, Ar(e)/'A t (finite or not) 
a.s., and EAt(e)/~EAt (finite or not). I f  EAto< OO, the convergence is uniform 
(a.s. in the first limit) on [0, to]. 

Proof Clearly 0 < 0 j " 0  so both limits are consequences of the Monotone 
convergence theorem. The uniform convergences follow from 

IAt-At(e)[<lAto-Ato(e)l<Ato, t<=to, on [Ato< oo ]. 

Let us now define the continuous additive functionals (if finite) 

t oo 

S O(x, X3v{dx}ds 
0 0 

t oo 

Bt(e) = y y O(x, Xs) v{dx} ds. 
0 

Of c o u r s e  B t may not be finite but Bt(e ) is finite a.s. for e>O under 01). 

Lemma 3. Suppose 01) hold. Then for each t, ~ > 0 

EAt(e ) =EBt(e ) < ~ ,  (3.8) 

E(At(e)-B,(e)) 2 <mEAt(e), re=sup 0, (3.9) 

EAt=EB ~ finite or not. (3.10) 
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Proof Let re=sup 0 < ~ ,  then At(e ) <=m@(t, e) and Bt(e ) <=mtg(e) a.s. So EBt(e ) 
and EAt(e ) are both bounded by mtT(e)<o�9 Our process X satisfies assump- 
tions (A.1) and (A.2) of Watanabe [8], p. 68. (To establish (A.2ii) use 

lim (l/t) P [X t > e] = V(e) 
t ~ 0 +  

at continuity points of ~, cf. Fristedt [4], p. 32). It follows therefore from 
Theorem 4.2 of [8], p. 68, that (n*, t) is the Levy system for X (the death time 
= oo a.s. in our case) where 

n*(x, E ) = v { g - x } .  

If we write f(x, y)=O~(y-x, x), then f>O, f(x, x)=0  for all x, by 01, and 

At(e)= ~ f(X~_,X~). 
O < s < = t  

Theorem 3.1 and other calculations on p. 63 of [8] imply 

t 

EAt(e ) =E ~ f(X~, y) n*(Xs, dy) ds=EBt(e ) 
0 

which gives us (3.8). The inequality (3.9) follows from formula (3.11) in [8], 
p. 63. Finally, (3.10) follows from (3.8), Lemma 2 and Monotone convergence. 

Lemma 4. Suppose 02) hold and for some t, e o >0, EAt(eo)=ao >0. Then 

lim sup (EA t(e))2/EAff (e) > 0. (3.11) 
~ 0 +  

Proof First we estimate EBtZ(e). Put 

W(y)-  O(x, y) v{dx}. 

Then we have 
t t 

EBtZ(e)=2S S E[W(X~) W(Xr)] dr ds (3.12) 
0 s 

t t 

=2~ ~E[W(X~I E x(') W(Xr_~)] dr ds 
0 s  

t t 

<2~ ~ [EW(Xs) ] [EW(Xr_J1 dr ds 
0 s 

< 2(EB t (el) z = 2 (EA r (a)) 2. 

The first inequality in (3.12) comes from 02) (and P[X(s)>0J = 1) as follows 

E [ W(X~) E x(~) W(Xr_ ~)] = E [ W(X~) E W(X~_~ + y) ly: x ( J  
c~ 

=EW(Xs)E ~ 0(x, Xr_~+y)v{dx}l,=x(s) 
g 

<=EW(Xs) Ew(x~_3. 
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From (3.12) and (3.9) we get 

EA 2 (e) < mEAt(e ) + 2EAt(e ) Bt(e ) 
<= mEA t (~) + 23/2 (EA 2 (e))1/2 (EAt (e)). 

Or, if we let R 2 =(EAt(e))2/EA2(e), then 

(R~-l-2~)2<m(EAt(e))-l+2<=maol+2, e<=eo, 

and (3.11) follows easily. 

Theorem 3. Suppose 01)-~3)  hold. Then either (a) PlA t<  oo]--1 for all t< oo or 
else (b) P[At= oo] = 1 for all t>0 .  Alternative (a) obtains if and only if EA 1 < oo 
and alternative (b) obtains if and only if EA 1 = oo. 

Proof 1 ~ From r r and the fact that P [ X t > 0 ] = I  for any t > 0  (by (3.8) 
and (3.4)), we get for 0 < t 1 < t 2 

P[ 
t l  <s<=t2 

>--P[ 2 q'(A,,X(tO)<~ 
tl < s ~ t 2  

=EP[  ~ O(A~, y)<  o�9 xt~ ) 
O<s~t2--tl 

--~1. 

Since At2=A,I+ ~ 0(As, Xs_ ), we find that 
tl <s<=t2 

P[At<oo]=P[A~<oo]=P[A~<oo  for all r<oo] ,  

for any s, t>0 .  But the events [At<oo] ,  t>0 ,  are nested and [ A t < o o ] ~  t 
=a(Xs, s<t). Hence for any t 

P[At<oo]= lim P [A~<oo ]=O  or 1 
s ~ O +  

by Blumenthal's 0-1 law. Thus one of (a) or (b) must hold. 
2 ~ Suppose E A ~ < ~ .  Then EAt=EBt<oo for all t > 0  by (3.7), (3.10), de- 

finition of B t and #/2). Consequently (a) must hold. 
3 ~ Suppose EAl=oo.  By Lemma 2 it follows that EAa(e)>0 for all e > 0  

sufficiently small. Hence, by Lemma 4 and Kochen-Stone, [6], we have with 
positive probability (=  c~ say) 

lim sup A I (~) /EA I (8 ) ~ 1. 
~ o +  

But then, by Lemma 2, 

A i = lim A 1 (e) > (lim sup A 1 (e)/EA 1 (e)) (lim inf EA 1 (e)) 
s ~ O +  e ~ 0 +  ~ 0 +  

= 0 0  
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w.p. ~ > 0. But then e = 1 and (b) holds by the first part of the proof. (Note that 
this also shows that EA~=oo if and only if EAt=oo for all t>0.) This 
completes the proof of Theorem 3. 

Proof of Theorem 2. Suppose first that X is as in Theorem 3. Put 

O(x, y)= 1 for x>h(y) 

=0 for x<h(y). (3.14) 
Clearly 

P[Rtc~(x, x+h(x))=O i.o. x$0] -, 
\ 

= P [  ~ O(As, Xs_)=~ - 
O < s < t  

As noted in Remark 4, this ~ satisfies 01)-03). Applying Theorem 3 and (3.10) 
we see that h is a small gap function if and only if 

1 co 1 

E S ~ tp(x, Xs) v{dx} ds =Ey go h(Xs) ds = oo. (3.15) 
0 0 0 

Writing H 1 for the truncated "renewal" measure 

1 

Hl(Y ) = H  I{[O,y]}=~ P[X<=y] ds, 
0 

and noting that for 6 > 0 

go h(y) H 1 {dy} < g o h(6) ~ P [Xs > 61 ds < 0% 
0 

we find that (3.15) is equivalent to 

6 

~o h(y)HI {dy} = oo (3.16) 
0 

for any 0<6<00 .  
Now consider the general case of Theorem 2. We may write X = X  (+) 

- X  (-) where X(+) ( -X  (-)) is the sum-of-positive(negative)-jumps process. Un- 
der (1.4) there are only finitely many negative jumps in [0, t] for any t. Hence 
if n is this (random) number of negative jumps then 

n 

R, = kU=o (R 2 + Yk) 

where the R + coincide locally with independent copies of the range of X (+) 
near 0, and Yl, ..., Yn are random points (the values of X at the negative jump 
epochs). In particular + (+) R o =Rs(X ) where s=min{t ,  al}, o-l=min{r: Ar<0 }. 
Under (1.4)-(1.5) X does not hit points, so P[O~Rk+Y k for some 1 <k<_n] =0. 
These facts and right continuity of X make plain that 

P[etc~(x , x +h(x))=~ i.o. x$0] 

=P[Rg ~(x, x +h(x))=O i.o. x,~0] 

=1 
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if and only if h is a small gap for the range of X (+~ (a fact that was intuitively 
obvious from the start). Note that the Levy measure for X ~+) is just rico, ~o~. 

We now return to the case that v{(-oo,  0)} =0. To finish up it suffices to 
show that (3.16) and (1.6) are equivalent. Clearly (3.16) is equivalent to 

Hi(y)  d~o h(y) = - 00. 
O +  

(Integrate by parts.) But, as we establish below, 

Hl(y)xy//2(y), y-+O+. (3.17) 

This estimate and another integration by parts shows that (3.16) and (1.6) are 
indeed equivalent. Let F~(x)=P[Xs<X], U,.a= Z Fa"*= ~ F~a (* denotes con- 

n ~  n~r 
volution). If we integrate the identity U~a*(1-F~)= 1-F(r+l)a we get 

Y 

M(~+ 1)a(Y) = ~ (1/c~)ma(y - x )  V a {dx}, (3.18) 
0 

x 

where r=r(cS)=greatest integer in 1/6, Va= a U~a } and Ms(X)= ~ (1-F,(z)) dz. We 
1 0 

now let a--+0 in (3.18). First, since V a approximates ~ F, ds, we have 
0 

Va(x)-+ Ha(x ) 

at points of continuity. Next, for all y > 0, 

Mo.+I)a(Y)-+Ma(Y) 

by continuity of F s in s. Finally Fristedt [4J, Theorem 4, p. 32, (set h(x)=x 
there), shows that 

z 

(l/a) Ma(z)--, S ~(x) dx =/2(z), 
0 

and, since each Ma is nondecreasing and/2 is continuous, this limit is uniform 
on each bounded z-interval. From (3.18) and these limits we get 

Y 

Ml(y)=S/2(y--x)Hl{dx}, y>0.  (3.19) 
0 

But # is a concave nondecreasing function, so, as in Erickson [2], Lemma 1, 
we get from (3.19) 

M~ (y)//2 (y) < HI  (y) _-< 2M1 (y)//2(y) 

for all y>0 .  Since M,(y )~yP[X  1 >0] as y---~0, (3.17) follows. 

Remark 5. Clearly one may add a drift term bt to the right hand side of (3.4) 
and still obtain the conclusion of Theorem 3 provided b > 0. By the same token 
Theorem 2 also remains valid when a nonnegative linear drift is added to X. 
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w Examples 

(a) To Theorem 1. Though h be a gap function 2h need not be. In Remark 2 in 
w we showed that if h(x) is a gap function then so is hc(x)=h(cx ) for any c>0.  
In view of this one might suppose that ch (x) is also a gap function. This is 
obviously true for c < 1 but for c > 1 it is not as the following example shows. 

Let II1, Yz, ... be nonnegative i.i.d, with P [ Y i > x ] = q ( x ) = e  -x, x >0 ,  and X 
the random walk with X n = Y I + Y 2 + . . . + Y n .  Then xq(x)/m(x)=xe-X/(1 
- e  -x) --0, x ~ 0% and from Theorem 1 we see that h is a large gap function if 
and only if 

exp ( - h ( x ) ) d x  = oo. 

For example h(x )=logx  is a gap function but 2 logx is not. 
In spite of this example we can prove the 

Proposition. Assume the set up of Sect. 2. I f  h is a convex gap function then ch is 
a gap function for any c>0.  

Proof. It suffices to prove this in case c=2.  But h convex implies h -1 is 
concave. We may suppose h - l ( 0 )>0 ,  then h- l ( x )<2h-a (x /2 ) ,  and it follows 

that ~JAoh-~(x /2)V{dx}=oo by (2.4). But the inverse of x~-~2h(x) is 

x ~ h-  1 (x/2). 

(b) To Theorem 1. Finite mean. Suppose the ~i (notation as in w have a finite 
mean. Then, since X ,  ~ + 0% E~i > O, and (1 -xq(x)/m(x))/m(x) ~ 1 / E ~  < oo. 
Hence h is a gap function if and only if 

~ q o h(x) dx = oo. 

In particular h(x)= cx cannot be a gap function for any c> O. 

(e) To Theorem 1. Regularly varying Tails. Let F stand for the distribution of 
the ~, = X , - X , _  ~ in Theorem 1. We will suppose that 

P [ ~ , > x ] = l - f ( x ) = q ( x ) = x - ~ L ( x ) ,  x > 0 ,  (4.1) 

j Ixl/m(ixl)F{dx}<oo, ~j }x lF{dx}=oo,  (4.2) 
- -  0 0  m O O  

where L is slowly varying and 0_<~<1. According to Erickson [2], (4.2) 
implies that X drifts to + oo. From properties of regularly varying functions, 
see [3], we have xq(x ) /m(x )~ l -o~ ,  as x ~ o o .  Hence, for ~+0,  h is a gap 
function for the range of X if and only if 

o o  

j h(x)-~L o h(x)/m(x) dx = oo. (4.3) 

Hence h(x )=x  a is a large gap function when f l < l  and not when f l> l .  Now 
suppose that L(x) is asymptotically a finite positive constant as is the case for 
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stable random walks. Suppose further that c~+0 and e4=l. Then we have 
m(x)Xx 1-~ and (4.3) reduces to 

(x/h(x)) ~ x -  1 dx = oo. (4.4) 

For  example h(x)=x(logx) 1/~ is a gap function (but not when ~= 1). 

(d) To Theorem 2. Stable subordinators. Suppose X in Theorem 2 satisfies 

Ee-ZXt=e -tc'~, t>O, 2>0.  

For X not to be degenerate we must have O<a  < 1. Then v, the Levy measure, 
is given by 

v{dx}=C2x-~-X dx, x>O, 

and v{( -oo ,  0)} =0. The constant C 1 is irrelevant so we may as well choose it 
so that C 2 =~. Integrating gives 

V-(X) = X -~, f l (X)=xl-~/( l  --0:) 
and 

[1 - x ~ ( x ) / ~ ( x ) ] / ~ ( x )  = c,(1 - . )  x 1-~.  

So h is a small gap function for the range if and only if 

(x/h(x)) ~ x-1 dx = oo. 
o+ 

Note the similarity with (4.4). In particular h(x)=x a is a small gap if and only 
if fl=> 1; h(x)=x I logx[ a is small gap if and only if f i< 1/~. 

w 5. The Pruitt-Taylor Theorem 

There are transient s.i.i, processes on ( - 0 %  oo) which jump across the origin 
infinitely often on their way to infinity: 

P [ l im [Xt[ = 0% lim infX t = - 0% lim sup X t = + oo] = 1. (5.1) 
t ~  oo t ~  oo t ~  oO 

These processes are quite wild. The range of such a process may have large 
holes far out to the left vastly different from those far out to the right. Let us 
say that he1" is a right (large) gap function if P{(1.1)}=I and a left gap 
function if P{(1.1)} = 1 when X is replaced by - X .  In our proof of Theorem 1 
we used in an essential way the fact that there is positive probability that X 
will never hit ( -  0% 0) on [X 0 > 0]. Our proof fails completely when X satisfies 
(5.1) and one needs an entirely different approach. 

A special but very important class of processes satisfying (5.1) are the (not 
completely) asymmetric Cauchy process: the s.i.i, process X is asymmetric 
Cauchy if logEe ixt~ -tIO](l +ifl sign(O) log[O[) where fl~(-2/rc, 2/~), f14=O. 
Let I,=(n, n+h(n)) (or ( - n - h ( n ) ,  - n )  if we are considering left gaps) and A, 
=[-X never hits In]. By making very intricate precise asymptotic estimates of 
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P(A~) and P(A~Am), using general potential theory, W.E. Pruitt and S.J. Taylor 
[7] proved a remarkable result concerning the gaps in the range of X. Trans- 
lated into our terminology it reads 

Theorem (Pruitt-Taylor, 1977). Let X be an asymmetric Cauchy process with 
0<f i<2 /n .  

(a) Let h>0,  and x --, h(x)/x~ T. Then h is a right large gap function iff 

co 

(h(x) logx) -1 d x =  oo. (5.2) 

(b) Let h > 0  and x~--,x +h(x)~ T. Then h is a left large gap function iff 

y(log x/log (x + h(x))) p/tl-o)(x log x)- dx = oo. (5.3) 1 

In (5.3) p =(2-~/~)/(2+~p). 
It is interesting that one may show that (5.2) is necessary with very little 

effort as follows. Consider the a.f. 

A,= T ,  ~(A~,X~_) 
O<s<=t 

where, as in the proof of Theorem 2, O(x, y)= 1 if x>h(y),  O(x, y ) = 0  otherwise. 
Let us suppose h (0+)>0 .  Then, as in Lemma 3, 

t 

EAt:  ~ S ~~ h(X s) as 
o 

: S ~o h(y) Ft{dy } 
o 

t 

which is finite if h(O+)>O. Here Ft{dy}=~P[Xs~dy]ds .  But for h to be a 
o 

right large gap function one must clearly have At--~A~=oo a,s. as t--~oo. 
Hence 

~o h(y) Fco {d y} = oo. (5.4) 

But if X is the asymmetric Cauchy process ~ o h(y) = C 1/h(y), 
Fco {dy}x (C2/ logy  ) d y as y--* Go. (See [7], p. 114.) Substituting these formulas 
into (5.4) yields (5.2). Unfortunately the analagous argument for the left side 
does not yield (5.3). 

Acknowledgement. I want to thank W.E. Pruitt who pointed out the simple inequalities (2.5) which 
enable one to get rid of the ladder height distribution in (2.2). 

Note. In this paper x means  the ratio of two quantities is bounded away from 0 and oo, and 
means  that the ratio goes to 1. 

Note  Added in Proof 

Let X be a symmetric stable process on the line of index c~ < 1. Philip Griffin, University of 
Washington,  has obtained the following: An increasing function h is a right (or left) large gap 
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o o  

function for X if and only if ~ (x/h(x))~/2x-ldx= oo. It follows that, contrary to what one might 
expect, the gap functions in this case are larger than the gap functions in the case of an increasing 
stable process of the same index. See (4.4). A complete discussion will appear elsewhere. 
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