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Summary. Under suitable conditions the motion of a massive (Brownian) 
particle in a fluid is well described by a Langevin equation, i.e. an Orn- 
stein-Uhlenbeck process in which the influence of the fluid on the motion is 
taken into account by frictional and fluctuating forces. A mechanical model 
for such a description was previously given for the translational motion of 
a sphere in an ideal gas in the "Brownian limit". Here that description is 
extended to include also the rotational motion of a massive convex body. 
The only probabilistic assumptions concern the initial distribution of the 
gas; the time evolution of the convex body-ideal gas system is entirely 
deterministic. 

O. Introduction 

In E3] we considered the motion of a massive molecule, represented by a 
sphere of mass M, immersed in an ideal gas of light atoms treated as nonin- 
teracting point particles of mass m in the Brownian limit. This limit corre- 
sponds to m ~ 0 ,  while the density of the atoms increases like m -1/2 and their 

(spherically symmetric) velocity distribution is scaled like f , ~ ( v ) = m 3 / 2 f ( l ~ v  ). 
We proved that in this limit the motion of the molecule converges (in distribu- 
tion) to the Ornstein-Uhlenbeck process (OU process). Here we extend the 
results of [3] to the case where the molecule has a convex shape and an 
arbitrary distribution of mass. The motion of the molecule is now one of 
translation and rotation described respectively by the velocity V,, of its center 
of mass and its angular velocity W m. We show that in the Brownian limit the 
pair _Z,, =(V,,  W~) converges in distribution to _Z o - ( V  o, W o), a coupled dif- 
fusion process with linear drift (friction) coefficient and constant diffusion 
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coefficient, a generalized OU process. For technical reasons we restrict our- 
selves to molecules with smooth surfaces. The restriction to a convex shape 
however appears essential for the result. 

As expected our rigorous derivation leads to the same OU process as that 
obtained heuristically by making various Markovian assumptions on the in- 
teraction of a heavy molecule with light bath particles or other approxi- 
mations, cf. [2, 4, 6, 8]. The corresponding Fokker-Planck equation for the 
momentum and angular momentum 13 o and s in a space fixed coordinate 
system ~ may be found for special cases in for example [2]. 

The method used in [3] to establish convergence to the OU process 
employed a "good coupling" of an abstract Markov process (which converges 
to the desired OU process) and the true mechanical process: We constructed a 
simultaneous realization of the Markov process and the mechanical process 
with the property that the paths of the Markov process were close (in proba- 
bility) to the paths of the molecule as m--, 0. Here we use the same method and 
construct a good coupling of a Markov process 2 m=(_19, Win) which converges 
to Zo=(_Vo, Wo) , the appropriate generalized OU process, and the mechanical 
process _Z m- 

The model is described in Sect. 1. In Sect. 2 we state our main theorem and 
write down the Fokker-Planck equation for the variables -/-0, -L0. fn Sect. 3 we 
define the Markov process 2m, which converges in distribution to _Z o. In 
Sect.4 we construct a coupling of 2 m and _Z,~, and prove that it is a good 
coupling, thereby establishing the main results. 

1. The Mechanical Model 

We describe the ideal gas of atoms of mass m (the bath) by a Poisson field (f2, 
~ ,  Pro) built on (F, d(F), #~) [3] where F = I R 3 x  ~_3 denotes the one particle 
phase space, N(F) its Borel algebra and 

d#,~ = 2,~ fro(v) dq_ dr, 
with 

and 

_q,~lR 3, v=[~3 (1.1) 

2m=2m -1/2, 2 > 0  (1.2) 

fm(v)=rn3/2f(l~v); (1.3) 

f(v) dv is a (spherically symmetric) probability distribution. We assume that the 
velocity distribution has at least four moments i.e. 5 v~f(v) dr_ < 0o. 

For a Poisson field the number N B of particles with coordinates (_q,v) in 
B ~ ( F )  satisfies 

P,.({o) ~ f2 [ NB(co) = k}) = exp ( - #.,(B)) tG(B)k/k ! (1.4) 

where co represents a configuration of countably many atoms i.e. eo=(q_i,_v~)i~ ~. 
It follows [-9] that @A, the local a-algebra on A c F  (of events depending only 
upon the configuration in A) is independent of ~ whenever A and B are 
disjoint. 
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Into this bath of atoms we place the molecule (Me), a convex rigid body of 
mass M with mass distribution which need not be homogeneous. Me has 
translational as well as rotational degrees of freedom. Let Z denote a space 
fixed coordinate system and ~ the (body fixed, with origin at the center of 
mass) coordinate system along the principal axes of Me [5]. Let us denote by 
_X(X) a vector described in Z(Z). The orientation of Z with respect to r may 
be expressed by a rotation 0~S0(3), the three-dimensional rotation group, so 
that [5] 

- 2 : o s  (1.5) 

The motion of the molecule may be described in terms of the position 0 
and velocity _9 of its center of mass, its orientation 0 and its angular velocity W. 
In general the evolution of _9 and I~ will involve the orientation O(t). 

The motion may also be described in Z by Q, 0, V and W. The isotropy of 
the bath suggests that in the Browniian limit (cf. Theorem2.1) the evolution of 
the pair Z=(_V,W) will be autonomous, i.e. not involve the orientation 0. We 
therefore consider mainly the pair Z=(V,W)~IR 3 xlR 3 instead of the triple 2 
=(o,s ~)~so(3)  • ~ 3 • ~d. 

The evolution of the molecule-bath system is determined by free motion 
together with the interaction (given by elastic collisions) of the molecule with 
the atoms. The atoms do not interact with each other. We first describe the 
free motion. 

For_2 and 0 differentiable functions of time [5] 

d2 o 
and for ~ t -=  

- W x X .  ( 1 . 6 )  
dt 

With J=(J1,J2,J3) the angular momentum matrices (the generators of ro- 
tations about the coordinate axes) [11] 

~ =  _J) : 0(W. J). (1.7) (~ .  0 

Let I denote the moment of inertia tensor, which is diagonal in X. 

I : O I O - '  (1.8) 

is the moment of inertia tensor in Z. For the free motion of the molecule and 
the atoms 

d~ d9 dL 
- ~ - = 0 ,  - - -  = 0  ( l . 9 )  

~ = 0 ,  dt dt 

where L = I . I ~  is the angular momentum. 
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and 

Using (1.6) we thus obtain from 0.9) 

d_v 
- W x v  

dt 

av_ 
= - W x V  

dt 

d W 
- I - ~ . ( w  • (I. w) ) .  

dt 

(1.10) 

(1.11) 

dO A 
Remark. In view of (1.7) and the fact that -~t  =_V=0_V, Q(t) and 0(t) may be 

obtained by integration once _V(t) and W(t) are given. 
We now describe the interaction through elastic collisions. Let 

do-= - d a n ,  In j=l  (1.12) 

be an (outward) directed surface element of Me and let r be the vector from 
the center of mass to the surface element do-. To describe the elastic collision 
between Me with velocity V and angular velocity W and an atom with velocity 
_v which takes place in do-, we write v, for the normal component 

v_,=v.nn (1.13) 

and v t for the tangential component: 

v=_vt+_v . (1.14) 
and similarly 

_V=~+ V,. (1.15) 

Using conservation of momentum, angular momentum and energy we then 
obtain for the post collision velocities _V + and _v + 

_v + =_vt, _V, + = ~ ,  (1.16) 

I - A  2 
_ _ _  _ _  s r ( 1 . 1 7 )  _v + 1 + A V , + A +  l_V~(r), 

2m 
v. + =L-~ (A + 1)M (-v"--v"~(-~))' (1.18) 

lW + = W + ~ 1  ((r x __n). I -  i) ((v, -Vd(_r)). _n_n) (1.19) 

where 
A = m ( M  -1 + ( r  •  �9 (L" • (1.20) 

and 
_VS(s = V+ W x r (1.21) 

is the velocity of the surface point r of Me. Moreover 
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Note that 

~+ 1 - A  , 2A 
v,; (,_-) = K C ~  v~ (~) + ) - 4 5  ~,,. (1.22) 

2m 
5V= _V + - V_ - M ( A  + 1) ~" - V2(r)) 

w =  w + - w = A - ~ I  ((,_- • ~). I -  ~)((v, -_v,~(~))._,). 

(1.23) 

The mechanical process Z_m,t=(_V,,,t,W,~,t), t~lR is defined as follows: At 
time t = 0  we place Me into the bath with configuration co~f2, at _QO with 
orientation 0 ~ and "velocity" _Zmo=_Z~176176 (We remove from co all 
atoms inside the region occupied by Me). Let zt be the time of the first 
collision of the molecule with an atom of co, i.e. up to time "c 1Me undergoes 
free motion, given by (I.11). Vm,~c , Wm,~; change according to (1.18), (1.19) to 
V 1 =_Vm,,~, W 1 = W~,~, and Me undergoes free motion (1.11) with the new initial 
data _V 1, W ~ until the next collision at %(co), etc. Each colliding atom changes 
its velocity according to (1.17) and then moves freely until it collides again 
with the molecule. 

We shall call a collision tangential if _V,~(r)=f_n. Since the molecule can 
rotate, the time evolution after a tangential collision might not be determined 
by the laws for elastic collisions. In the same way an infinite number of 
collisions in a finite amount of time or multiple collisions are problematical. It 
is only for those configurations coet2 and initial data of the molecule for which 
the molecule suffers only finitely many collisions in a finite amount of time 
and which do not lead to tangential or multiple collisions that the motion of 
the molecule is well defined. In the Appendix we show that the motion is well 
defined for (Pro x Lebesgue measure) almost every co and initial data for the 
molecule, i.e. for almost every Z ~ the mechanical process is well defined. 

Thus, we obtain Zm,.=Zm(_Z,~(t, co)=_Zm,t(CO)) as a right continuous process 
on (2. For any finite time interval J c l R  + let D(J) denote the space of right 
continuous functions y: J--+IR3xlR 3, equipped with the Skorohod topology 
[8]. We may represent _Z,, on (D(J), N(D(J)), v,,), where Vm denotes the measure 
induced by _Z,, on N(D(J)), the Borel algebra on D(J). 

2. The Result  

We use the following notation for the tensors describing the surface of the 
molecule. We consider only molecules whose surfaces are smooth (or more 
generally of bounded mean curvature). 

N=~dcrnN 

T=~d~rxnn ,  

K = ~ d ~ r x n r x n  

(2.1) 

(2.2) 

(2.3) 

where n~A=tensor product. 
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Furthermore we introduce the symmetric positive semidefinite 6 x 6 matrix 
(" *" = transpose) 

and we denote by N~ its symmetric positive semidefinite square root. 
Let 

j g . - l =  0 
I -  1 ; 1 = 3 x 3 unit matrix (2.5) 

and 
~,=�89 i=  1,...,4, v=(v~,v,,v=). (2.6) 

Theorem2.1. Let _Zo=(_Vo, Wo) denote the (generalized) Ornstein-Uhlenbeck- 
process given by the stochastic differential equation 

d Z o , , =  - - 1 . ( _ o , ,  " - - o , , ) ]  - ' 

+ 4 ] / ~  3 j y -  1 ~ , /2 .  d_Bt ' (2.7) 

where B r is the 6-dimensional standard Wiener process. Suppose that Z,,,o, m > O, 
and Z_o, o have the same absolutely continuous distribution p(dZ_). Then Z_ m 
converges in distribution to Z o as m~O.  (Z_ m ~ Z_o). [] 

Remarks. (i) _Z m ~ _Z o is equivalent to the statement that for any J the 
measures v m on D(J) induced by _Z m converge weakly to Vo, the measure 
induced by _Z0, as m ~ 0  [-1]. 

(ii) It is easily checked that the stationary distribution of Z o is the Maxwel- 
lian 

P~t(_Z) oc exp ( -  �89 (M_V2 +_W. I. _W)), fi =2q51/~b3. 

(iii) From Theorem 2.1 it follows that on/)(J),  the space of right continuous 
functions 2: J --* S0(3) x I(  3 x I(  3, 

2m =(o~,_~,~) g 20 =(Oo, Oo_Vo, Oo_Wo), (2.8) 

~(V_r.,__Wm) = (0~, Om V_.., Om W~) 

is continuous [1]. 
It is now a routine matter of stochastic calculus [10] to write down the 

Fokker-Planck equation for the transition probability density of the process 
(Oo,M?o,l~o)=(Oo,Po,Lo), p(o,~ L_, tl0~176176 

St 42q~1 d_~ " ( s ' - p M -  1 +'i'*~-1 ~ )  

1~ ^ ~ 0 ^ O ,~ ~. ~ (2.9) 

since the mapping 
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c~ 8 
Here ~ C = . ~ . ~ . . C  u. N, . . .  denote the matrices N, ... described in Z (cf. (1.9)). 

The Fokker-Planck equation (2.9) has been given for example in [2]. Setting 
M = c ~ ,  but keeping I finite in (2.7) describes the situation in which the 
molecule is fixed at one body point about which it may rotate freely. The 
corresponding FP equation for p(O,~,tlO~ ~ may be obtained from (2.9) by 
omitting all terms involving P. This rotational Brownian Motion has been 
considered for example in [4, 6, 8]. 

The proof of Theorem2.1 is similar to the proof of Theorem2.1 in [-3]. We 
begin by constructing in the next section a family of abstract Markov pro- 
cesses 2,, for which we establish _2,~ & Z 0. 

3. The Markov Approximation 

Lemma3.1. Suppose that at time t the molecule has coordinates @,O,_V,W) and 
is surrounded by a bath of atoms having the Poisson distribution described in 
(1.1)-(1.4). The probability pm(dt, dv, dG Z_) for the collision with the molecule of 
an atom with velocity v6dv in a surface element da_ during the time interval It, t 
+ dt] is given by 

pm(dt, da_, dr_, Z_) = "~m d ~  - -  VS(r)) + d t  fro(v) dE (3.1) 

where ( G -  VS(r))+ = m a x ( v , -  V,*(r), 0) and 

s 8 ~ _ G =_G._n, Vs (r)=_Vs (D-n. [] (3.2) 

Proof For the occurrence of the collision, an atom with velocity vedv has to 
be in a volume element da(v,-Vs (_r))+ dtdv, whose measure in view of (1.4) is 
given by (3.1). [] 

Setting 
N,,(Z_) = ~ da ~ (v, - V~(r))+ f~(v) dv (3.3) 

we obtain a "collision" probability 

gm(G v, _Z) dv da = N,. (Z_)- l(v, - VS(r)) + f~(v) dv da. (3.4) 
Let 

_vG(_0 =_vm,, +_w~,, x ~- (3.5) 

and let S denote the surface of the molecule. We introduce 

- -  s r G,, t -sup I_V~,t(_) I. (3.6) 
r~S 

Let c m be an increasing function of m-~ with % + oo as m--+ 0. With 

7~,, = 2,,(Z) = 2~ rain [Nm(_Z), sup N~(Z)] (3.7) 
~ c ~  

we define a modified "collision" probability 

p~( dt, d_a, d_v,_Z) = J.,. gin(r_, v_, Z) dv dt dG (3.8) 
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Definition 3.1. Let -Zm be the flow-jump Markov process on the probability 
space (~,~,/sm) defined by the flow given by the free motion (1.11) and jumps, 
determined by the collision Eqs. (1.16)-(1.19), which occur with frequency given 
by the "collision" rates 

Rm(L v,_Z) = 2m g~(_r, v, _Z), (3.9) 

i.e. Z changes in a collision according to (1.16)-(1.19), and in between two 
collisions according to the free motion described in (1.11). [] 

Theorem3.1. Suppose Z~,o, m>0, and Z o, o have the distribution p(dZ_). Then 
2_m Z_o. [] 
Proof Just as in [3] it suffices to establish the strong convergence of the 
generator [7] A(m) of 2 m to the generator A of Z o in sup-norm I1" ]1: 

lim [IA(m)h-Ah]l =0 (3.10) 
m--*0 

for h~C~,  a core for A. (C~ is the set of infinitely differentiable functions of 
compact support on IR6). The restriction of A to C~ (again denoted by A) may 
be easily deduced from (2,7) [10]: 

where 

W x V  
• v, (3.11) 

Let us denote by _~(L_v) the change in Z due to a collision with an atom with 
velocity v at r_eS as given by (1.23). Then 

(ffl(m)h)(Z~ - (I-  W x V @ "htZ~ 
+2m(Z_~176176176 , (3.12) 

on C~. Let _Z(_Z ~ t) denote the solution of the equations of free motion, (1.11). 
(3.12) follows from the observation that for the expecta t ion/~)( . )  correspond- 
ing to the process _Z,, starting at Z ~ 

/~'(h(Zm,t)) = ex p { - i d t '  2m(Z(Z ~ t'))} h(Z(Z ~ t)) 

�9 i~(Z_(Z ~ t '))~Sdadvgm(r,v,Z(Z ~ t')) 

�9 exp { - i  dt" 2~(Z_(_Z(Z~ 

�9 h(Z(Z(Z ~ t') +_~ (v, r), t - t')) + O(t 2) 
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= 1 - j a t '  i . ( _ z ( z  ~ t')) h ( Z ( Z  ~ t)) 
0 

t 
t -  0 ! + j dt ; . ~ ( _ z ( z ,  t )) j j  do- d v gm(_r, r, Z ( Z  ~ t')) 

0 

. h(Z(Z(Z_ ~ , t') + 6 (~  ~_), t - t ')) + o ( t  2) 

since Z m is bounded. 
To establish (3.10) is now a routine computation. Using 

V,~(r) =_Z. e,, (3.13) 

2m 
z = 6 (~, _v) = A ~  (~" - V&O)_e. �9 ~ -  ~ (3. ~ 4) 

and (2.4), the computations are essentially the same as in Sect. 4 of [3] and are 
left to the reader. 

4. The Coupling 

In order to simplify the equations of this section we set M = I ,  2 =  1 and we 
normalize the surface, ~ dc~ = 1. Furthermore we fix d = [-0, T l, T < oo. 

Definition 4.1. Let Xm,t, -Y,~,r, ted  have the same state space, equipped with a 
norm ]'l. A good coupling of X~ and _Y~ is a joint realization X;, of._X m and Y~ 
of Y~, on a probability space (_~_, Y, P,,), such that for all e > 0 

lira/Sm({eS~f2 ]supl._X~(t,ch)-Y'(t,cS)l>z})=0. [] (4,1) 
m ~ O  t~J 

Theorem 2.1 follows [lJ  from the following 

Theorem4.1. There exists a good coupling of Z_,,, and Z_ m. [] 

Proof We first construct for each k > 0 a coupling ~' ' �9 (Z,,,_Z~), we later prove that 
from this family of couplings a good coupling can be extracted. (We suppress 
the dependence of 2 "  and _Z" on k.) 

We will call an atom in a collision "slow" if its precollision velocity _v 
satisfies ]_v,l<k , and "fast" if [v,l>k. From now on we assume m so small that 
c m > k (c.f. Eq, (3.7)). 

Remark 4.1. In establishing Theorem4.1 we shall use the fact that the surface of 
the molecule is convex, This insures that in the mechanical process _Z,~ until 
~m,t__>k ((3,6)) no "fast" atom could have collided earlier. (This may be seen by 
tracing the paths of the atom and the molecule from the collision on back- 
wards in time. Note that the atom is then moving away from the tangent plane 
through the collision point on the surface of Me with a speed > k). Hence, by 
the "strong Markov property" for the Poisson field [10], until ~m,t>k the fast 
atoms with which the molecule collides are all "Poisson distributed", so that 
the collisions between Me and fast atoms are governed by the rates (3.9). (Note 
that 2~=m-1/2Nm(Z) for ~ < k < % . )  



436 D. Diirr et al. 

We denote by Ma the "Markov molecule" whose motion defines the 
realization _2~, of the Markov process 2 m. We use _Z(_Z') as the generic variable 
for Me(Ma). Me and Ma have the same initial conditions. Given a con- 
figuration coef2 and thus the motion _Zm.t(C0 ) of Me, we specify the correspond- 
ing motion of Ma in two steps: 

(i) We observe the motion of Me. When, and only when, Me undergoes a 
collision with a fast atom (fast collision), with velocity v at r, Ma also "under- 
goes a collision" with the same v,r, i.e. it changes its velocity and angular 
velocity according to (1.16), (1.18) and (1.19). Ma also "suffers collisions" from 

~t slow atoms according to the rates Rm(r,_v,Z), ]v,[<k. (Between collisions Me 
undergoes free motion.) 

Let v=inf{t>01~,n,t>k}. Note that after time z collisions with Me by fast 
atoms are no longer governed by the rates R m and that even for t < z, it is not 
in general true that Rm(r, v, " _ _Z) = Rm(r, _v, _Z ), since slow atoms will cause Z and 
Z' to differ. 

(ii) To obtain a process with the correct rates R,,(r,v,_Z') we modify (i) by 
either ignoring some fast collisions (so that they produce no effect on Ma) or 
adding some fast "extra collisions", depending on whether Rm(r,_v,_Z') is less 
than or greater than R~(r, v,_Z), j_v,I > k. 

a) The probability that a fast collision of (i) counts is 

) Nt ) -, . {R~(r,v,Z) 
Pm(r~v,Z,Z)=mm \Rm(r~_v,Z), 1 for t < z  (4.2) 

and is 0 for t>__z. 
b) The rate for the occurrence of these extra collisions is (v,__> k) 

RmO;,v_,Z,Z_)=max(R,,(r~v,~')-Rm(r~v,Z), 0) (4.3) 

for t < z  and is R~(r,v,Z") for t>~. 
Thus we obtain a Markov process Z'" which is a realization of ~m- Let 

((2, ~, Pro) be a probability s_pace on which the coupling (Z~,, Z m)" of Z~ and _Z,, 
is realized. (We may take ~2 to be a product space ~ =  f2 x H, where H governs 
the purely stochastic effects, i.e. ignored collisions and extra collisions. A 
realization Z~. of Z,, is defined on ~ in the obvious way: Z',,(cS)=Z;,(o),h) 
=Zm(co), for c5=(co, h)e~. To simplify the notation we write Z~ instead of Z~,.) 

For n > 0 we set (1" I = Euclidean norm on N 6) 

a ,  = {_x~D(J)Isup Ix(t)] < n}. (4.4) 
t 6 J  

Let ~7~ denote the measure induced by 2~, (or 2m) on D(J), i.e. for BeN(D(J)), 
P~({c~f21Zm(co)sB})=%(B). Theorem 3.1 implies [1] that 

lira sup ~m(G,) < Vo (G,), (4.5) 
m~0 

where G, denotes the complement of G,, and v o the measure induced by Z 0. 
Let 

am=((SE~l ", sup I Zm,~(m)[ < n}. (4.6) 
t ~ J  
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Lemma 4.1. For any n > 0 and t o > 0 there exists a k = k(n) such that if 

�9 - -  m ~t llmPm(G . m{ sup JZ_Zm,t-Zm, tl~e})=O 
m ~ O  O < t ~ t o  

for all e > O, then 

(4.7) 

by (4.5). Since 

But 

Applying Lemma 4.1 repeatedly until T is surpassed yields 

lim/5,,(G~c~{ sup - '  [z, . , , -Z~., l_-> ~}) = 0. 
m~O O<t<=T 

lim supP,~({ sup - '  [Z,., ,-Z,.. ,I_-> e}) 
m~O O<t<=T 

< l i m s u p -  m ", P~(6, c~({ sup ]Zm, t -Zm,t l>e})  
m~O O<t<=T 

+ lira sup Pm(G"j) = lira sup ~7~ (G,) < vo(G,) 
m ~ 0  r n ~ O  

lim vo(G,) = 0 (4.10) 
n ~ o o  

it follows easily from (4.9) that we obtain a good coupling by allowing k to 
vary appropriately with m. 

(4.10) states that an explosion (i.e. the process runs out to infinity in finite 
time) of the (generalized) OU process is impossible. Since the free motion part 
of the drift in (2.7) is not Lipschitz the usual theorems for the global exis- 
tence of a solution of a stochastic differential equation cannot be used di- 
rectly to establish (4.10). But a simple transformation of variables 
Zo ~ (0o, 0o_Vo, 0o I. Wo) = (0o, ~ ,  ~o) (using for example the Ito-formula) yields 
stochastic differential equations with Lipschitz coefficients for d_P o and d/_~o; in 
(2.9) we have given the corresponding F.P.E. Thus the global existence and 
uniqueness of the solution of (2.7) follows from the global existence and 
uniqueness of the process (0o,/~,Lo). It is also possible to establish (4.10) 
directly by applying an explosion test to (2.7) [10]. 

(4.9) 

lim - " " Pm(G,~{ sup IZm,t-Zm, t J>e})=0 (4.8) 
m~O O<-t<to+u 

for all e > O, where 

u = rain [(16 n(1 +1o 1 l~ -1, (40 ~b1(1 + ro)(1 +rolol)) -~, T - t o ] ,  

l~ is the maximum (minimum) of the principal moments of inertia of Me, and 
r o=max]r]. [] 

r~s 

(Here (Z ' ,  Z~) is the coupling constructed using k.) 

Remark�9 Theorem4.1 follows from Lemma4.1: Since __2~,(0)=Zm(0), the hy- 
pothesis (4.7) of Lemma4.1 is fulfilled for to=0, and we obtain that for all e > 0  

�9 - -  1?l ~ t  hmP,,(G, ~{  sup t Z~ , t -Z~ , t l>e} )=0 .  
rn~O O<t<-to+u 
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Proof of Lemma4.1. Fix n, s > 0  and t o and introduce the Stopping time 

tin= lnf {t[ [Z,,,t- Z,~,t [ > ~}. 
t > O  

Since - '  _ , ]2",~, _ Z_,~,t and Z,, t are right continuous -Z,,,,&[ ks.  Observe that 

{ sup [-Z~,t-Zm,t[>=s}={t*<=to +u} 
O<--t<-tO+U 

={t~<=to+U , Z,, t * - Z ~  t*~ =e} 

and that 

(4.11) 

12',,,s-Z~,,[ < s , s<t*. (4.12) 

We choose k=k(n)>_8n(1 +to). Then on G'~, G~<k/8. By virtue of (4.12) we 
obtain that on G~ for e<n  

SUl~ I_Zm,tl<2 n; su~(m,t<k/4. (4.13) 
t<tm 

We have using (1.17) and (4.13) that on G~" during [0, t*] a fast atom (}_v,}>k) 
which collides with Me bounces off with Iv+l>k/4 for m small enough 
(A<1/10), and therefore cannot recollide with the molecule during this in- 
terval. 

Remark4.2. From this observation and Remark4.1 it follows that on G," during 
[0, t,~] the only atoms with which Me can recollide are slow atoms, both for 
the original collisions and for recollisions. 

Thus for a S ~  we have for * t m > t o 

~ r  ~ * - -  r �9 - t ~: , I_z~(o--_Z.~(tm)f- IF-- (__X~O)--__Xm ('1)+Y (tin) --y,.(t,.) 
i~  (4.14) 

+ Y x_'~(i)- F. x,.(i)+g'.(O--u~(t~) + g;~(to)-Z_,~(to)l, 
icE" ieE 

where _Ym(O(Yj,(t)) denotes the change in _Z~(_2~) during the time interval [to, t] 
produced by collisions with slow atoms; X,,(i)(X~,(i)) denotes the change in 

~ t  Z~(_Z=) due to a collision with an atom having index i from E(E'), an index set 
for extra collisions for Me(Ma) within [to, t*] (where the fast collisions which 
don't count for Ma are indexed by E) or B, an index set for fast atoms which 

:g t ' *  collide with both Me and Ma within [to, t*]. Finally _bm(t,,)(F,~(tm) ) denotes the 
change in " * z.,(z~) due to the free motion within [to, t J .  With 

( l )  _ ' * t *  K~ - f  (t,.)-_F( ~)1, 

K~ ) = ~, IX" (i)l + ~ IX,,(i)l, 
iEE' i~E 

K}2 ) = Y, Ix_" (O-X.,(OI 
ieB 

and 

~ -  ' *  lYm(tm)l, K~. --lY;,(tm)l + * 



A Mechanical Model for the Brownian Motion of a Convex Body 439 

we obtain from (4.14) that 

~ r  , , {tZm (t,~)- Z,~(t,,j[ =~} 
4- 

~ ,--,~K(J~ => e/5} v {[a,,(to)-a,~(to)[ > ~/5} w {t . . . .  to}, 
j = l  

and (4.8) holds if 

lim - P~(G, c~ {t* < t o + u} c~ {K,'~ ) > ~/5}) = 0, 
m ~ 0  

since 

j =  1,2,3,4, 

and 

�9 - -  m hm Pm(G~ c~ ~'  > {IZm(to) - Z . , ( t o ) l  = 8/5}) = 0 
m ~ O  

lira - * P~({t~<=to})=O 
m ~ O  

(4.15) 

by hypothesis (4.7) 
We now establish (4.15). All the estimates we do are for eSeG m, k > S n ( 1  

+to) , e < n  and m small enough so that  A <  1/10. 

j = l .  In view of (1.11) and (1.23) 

K~) (c5) < to ~ I -~  �9 (--I--VV2,-- , s(cS) x I .  _ITf,~, ~ (eS))- I -~ . (_l_W,n_ , s(eS)xI. __Win, ~ (o5))7/ds 

< S [ l ~ ' x  -_v'-w'• • V - W x  V[+l l -X(~ '  •  •  
to 

+l I - I  . (W x I .  W ' -  W x I .  W)I] ds, (4.16) 

where W = W~',s(c0), etc. 
Using (4.12) and I_l~'t <n,  I V[<2n ,  I W j < 2 n  one obtains from (4.16) that 

tm 
( i )  - : K,~ (69)< S 3gn ( t  + ( I o  1 1 ~  + ( I o  i IO)} <8/5 

to 

for u<(16n(1  + I o  ~ I~ -1 
Thus 

lim - " * < Pm(G, ~ { t~ = t o + u} c~ { K ~  ) >__ 8/5}) = 0. 
m ~ O  

j=2.  For  the change a_Z of Z due to a collision with a fast a tom we have in 
view of (1.23) 

[b_Z[ < 4  m I_v.l(1 +to Io  ~), (4.17) 

where I V'(r)] <k<]_v ] has been used. 
In view of (4.2) and (4.3) the rate for the occurrence of extra collisions 

including the "ex t ra  collisions" for Me is (Iv.I _-> k) 

R,.,(_r, _v,_Z, _Z) = IR,. (_r, _v, Z ) -  Rm(r,_v,_Z)] 
----- '~trt ~ s '  s /) iv~ (r)-  v,~ (r)lf,~(), 



440 D. Diirr et al. 

since sup ~_m,~ < k/4, 
t < t m  

using (3.9) with (3.4). By virtue of (3.13), (4.12) and (2.4) 

[ ~ f  (_r) - Vs (r)[ = ]e.-(_Z'-_Z)[ < e(1 + to) (4.18) 

for t < t*, 
As in [3] we introduce the Poisson field Y,, on the (t,_v) space determined 

by the rates (l_v,[ > k) 

r _ -U2 Rm(e, r, v ) - m  e(l +ro)fm(v) (4.19) 

which majorizes R~. 
Let (v(1),...,v (m) represent the "extra collisions" during [t o, t o +u]  arising 

from Ym. Then using (4.17) and the fact that the process Ym, governed by the 
rates (4.19), may be obtained from the process of actual extra collisions by 
adding some more "collisions" (see the proof of Eq. (5.18) in [3]), 

~ ( G .  ~ n {t* _<_ to +u} ~ {K~__> ~/5}) 
(4.20) 

<Pr ( ~ 4mlv~~ +r~176 

where PY denotes the probability corresponding to Ym. With Y Em(" ) as the 
corresponding expectation we have using (4.19) and (2.6) 

N 

E~ ( ~  4 m [ _ v : ~  -~-F'0 10 1)] <4m(1 +roIo')Um-le(1 +ro)O 1 <e/10 
\ i=1  ! 

since u<(40(1 + ro)(1 +roloX) ~b0 -1 
N 

Let J~ 2 Iv~.~)l and - r . = J~=Em(Jm) , then the r.h.s, of (4.20) can be estimated 
i = l  

as follows: 

P~(4 m(1 +roIoZ)J~>-_e/5)<P~(J~>2Y~)=P~(J~-Y~>=Y~). 
(4.15) now follows using Ceby~ev's inequality exactly as in [3]. 

j=3. By virtue of (3.13) and (3.14) and the definition of _2~, we have that for 
ieB (_v,(i)=normal velocity of atom i) 

, 2m 
LX~(i) --X~ (i)! = A ~ I  I-e"" ~ -  l(v"(i) -Z_'.e, - v,(i) +Z_. e,)l 

2m 
- A  + 1 le,. ~- l (_2 ' -_Z)-e , [  

<2me(1 + to)(1 + r  0 lol),  

where we have used (4.12), (2.4), and (2.5). Hence 

K~)__< 2me(1 + ro)(1 +roIo~)iV'(u) (4.21) 

where N,~(u) is the number of collisions involving Ma within [t o, t o + u]. 
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Consider the Poisson process with rate (density) 2m-1 q}l and let Nd(n) be 
the number of points in [0,u] for this process. On G~, the "total rate" 
~,, < 2 m - 1  4,  since F('] <k. Therefore, using (4.21), we have that 

P.,(~. ~ (t* __< (3~_ 5 to + u} ~ {Kin --  ~/ }) 
< Prob(2 m e(1 + to)(1 + r  o I o l ) N f ( u ) > e / 5 )  

= Prob (N~(u) > { 10 m(1 + to)(1 + r 01 o 1)} - 1) (4.22) 

< Prob (N2(u) > 2E(Ne~(u))) 

Prob (N~(u) - E(N,P,(u)) > P < v u -1 = = E(N.~ (u))) = E(N.~ ( ) )  

for u<=(4OOl( l+ro)( l+rolot ) )  -~, by Cebygev's inequality, yielding (4,15) for j 
~ 3 .  

j = 4 ,  To establish (4.15) for j = 4  we estimate the total change in the velocity of 
a slow atom due to collisions with Me within * [to, tm]. This is the only estimate 
we cannot give for a general convex body. We assume that the surface of Me 
has bounded mean curvature. From this it follows that there exists a number 
c > 0  such that for every point p on the surface S of Me there is a sphere of 
radius c tangent to S at p and entirely contained inside Me. 

Consider a slow atom with speed v(0) at t=0.  Let 

b-= max(v(0), 3 k) 

and let A denote the volume of Me. In the following we show that the speed 
v(t) of the slow atom during [0, t*] is bounded by 

v(t) < ~ = g e I~a, (4.23) 

where K > 0 is an appropriate constant. 
We first consider a collision between Me and a slow atom with I v,]>k. 

With 
p_+ ,v 

cos A �9 = -- 
U+V 

we can estimate 
A v = v  + - v < l v  + -_v] < 2 v A O ,  (4.24) 

where we have used that by virtue of (1.16)and (1 .17 ) ( (<~)v+=v~ ,  and 
\ l /  

v , > v  + > - v , - k > - 2 k  if v ,>0  and 0>v  + > - k  if v,<0. 
Note that A~ is also the angle between the _v+-plane and the v-plane. We 

denote by A(A~b) the volume of the piece of Me which is in between the _v +- 
plane and the v-plane at the moment of the collision. As long as v + >k, no 
piece of the surface of Me which is below (in (-_v +) direction) the v+-plane at 
the moment of collision can be involved in a future collision with this atom 
since sup(__<k/4 and each recollision increases the part of Me which is pre- 

cluded from future recollisions. Suppose that in the ith collision between the 
atom (with velocity v~) and Me, Iv~,tl >k;  then 

A q~ < K' A(A r (4.25) 



442 D. Dtirr et al. 

where K ' > 0  is an appropriate constant involving the radius c. Combining 
(4.25) and (4.24) yields (K =2K' )  

v +-vi=vi+ 1-vi=_Avi<=KviA(A~i). (4.26) 

Suppose that the speeds of the slow atom in a sequence of successive 
collisions with Me during [0, t*J satisfy vi>2k , j+  1 <=i<j+N, and that vj<2k 
if j>0 .  Let g~=vj+~ and J'~=Ac~j+~. Note that after the first collision of this 
sequence the _v+-plane (which we think of as being attached to the atom) 
moves in direction of _v~- with speed v~>k through Me (~<k/4, t<t*) and 
enlarges the surface (and hence the piece of volume) of Me which is precluded 
from future collisions until the atomic collides again, adding A(A~2) to this 
piece of volume, etc. Thus 

N 
A(~'(/)i) =< A. (4.27) 

i=1 

(4.26) and (4.27) yield the upper bound (4.23) for the speed a slow atom can 
attain from collisions with Me within [0, * �9 tm]. From (4.25) we obtain 

and 

so that 

i.e., 

A ~i 
In 5i+ 1.--ln ~:i<_--<_KA(A~i) 

/:i 

In ~ - in vN < A VN < KA(J"~N ) 
t~ N 

~+ N - 1  

In ~ -  = ~ (in ~ + 1 - in ~) + in g~ - in vN < KA, 
/)1 i=1 

(4.28) 

The last inequality in (4.28) follows from the fact that if j = 0  vl =v(0) and ifjq= 
0 Iv+ ] <k  (since otherwise no further recollisions can occur). This establishes 
(4.23). 

Next we estimate the change in _Z due to one slow atom during [to, tm]. Let 
i=  1,..., N label the collisions of the slow atom with Me within [to, t*]. In the 
ith collision the velocity of the atom changes by A_v i and 

so that 

But 

_Vii + -_Vii= -mAy_ i 

i=~l_V/+- V/ ~wl i=~1 A/) i . (4.29) 

N 
/)(tNm) --/')(tO) = E A~i ~- zJ-Ufree (4.30) 

i=1 
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where A_Ffree denotes the change in _v due to the free motion. By (1.10), (4.23) 
and the fact that on G~ during [to, t.*] IW] <2n,  

& 
14 v_f~ool <-_ S dt I_W x _v(t)f __< 2 n u 

t o  

and we obtain from (4.29) using (4.30) and (4.23) 

N 

~=l_Vi+-~ <m(2nu+ 2)~=Kvm~. (4.31) 

To estimate the change in the angular velocity of Me due to collisions with 
the slow atom we use the conservation of angular momentum. Let R(t) be the 
position vector of the atom, from the origin of I7, described in X and let 

q(t) = R(t) - Q(t) (4.32) 

be the position of the atom with respect to Z. (We may assume that Q(to)=0. ) 
Let 

/ = m q  x _v. (4.33) 

Then with A/~ = change o f / i n  the i-th collision 

i~= l W~ + - W~ = ~-_11- ~ " Ali < I~ ~ ~= ~ Al~ (4.34) 

and as before we estimate 

I~ Ali]< J/(t*)] + ]/(to)] + ]All,eel. (4.35) 
i 

Using (4.32) and (4.23) and the fact that on G~, during [to, t*] ]VI <2n, 

I ! ( t * ) l - m  * x * * * - JR(G) v_(G)-Q_(tm)x_v(G)j 

<m~(ro + 2nu+ 2nu)=m~(ro+4nu ), (4.36) 
since 

IR_(t*) * - x v(t~)l- IRN x_v~l. 
Similarly 

I/(to) I =m IR(to) x _v(t0) I <m F(r 0 + 2n u). (4.37) 

To estimate A /_rree observe that in view of (l.6) (d_[=0)  

d d 

\at  - - ] f r e e  d r  - -  - - -  - -  

=m(-W_ x(Rxv)-Vxv+Wx(Qxv_)) 

IAlr~eel<mgu(2n(2nU+ro)+ 2n+4n2u) 
(4.38) 

=m{(2nuro + 2nu+ 8n2u2). 

and thus 
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We thus obtain from (4.34) and (4.35) 

N -W~ i~=lWi+ < I o l m ~ ( 2 r o + 2 n u r o + 8 n u + 8 n 2 u 2 ) = K w m ~ .  (4.39) 

Combining (4.31) with (4.39) we obtain 

N 

i~=1Z + - Z ,  G m ~(K v + Kw) = rn ~ K z. (4.40) 

To estimate I_Y(t*)l we have to sum the r.h.s, of (4.40) over the distinct slow 
atoms which hit Me during * .. [to, t J .  Let g~, i=  1, .,N,,, be the values of v for 
the distinct slow atoms which first collide with Me during [0, T] at times when 
I_Zl <2n  (so that ~<k/4). Then 

N r , ,  

I-Y(t*)l <=mKz ~ vi. (4.41) 
i = 1  

Note that in the Z'-process slow atoms don't recollide. Therefore the 
change in _Z' due to a collision with a slow atom with velocity _v is by (3.14) 
(~'<=k/S) 

1_2 '+ -_2'1 <=m3k(1 + ro Io  ~) = m K ~  

and hence 
! , t t I_Y (t,,)l < m K z N,~, (4.42) 

where N~, denotes the number of slow atoms which collide with Ma during 
[0, T] in which L_2'[<n (so that ( '<k/8). 

Since we are counting only collisions with slow atoms for which ~ < k, ~'< k -, 
we obtain from (3.1) that the rates for these collisions, both for Z m and _Zm, are 
less than 

R~(v)=m-1/22kf~(v), (Iv, I <k). (4.43) 

Just as before we obtain for (4.15), using (4.41) and (4.42), 

- -  m Pm(G, c~ {t* <= t o + u} c~ {K~ )__> e/S}) 

< P~(m(K z ~ F~+K'~N')>e/5) (4.44) 
i = 1  

where E~(.) denotes the expectation for the process governed by the rates 
(4.43) and ~(i), i=1  . . . . .  Nd, , are the values of F for the "collisions" in this 
process during [0, T]. Clearly E~(N~) = 2 m-  1/2 k T and using (4.23) 

E ~ ~(i) <=2m-1/2kT Vfm(v)dv_+3k e KA 
i -  k 

/ kV~ ) 
=2m-lkTI S ~vf (v )  dv+m+l /23k  eKa" 

\ - k l / N  N 2 

Therefore taking m ~ 0 in (4.44) yields (4.15) for j = 4. 
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Appendix 

The mechanical process _Z,,, Q__,,, 0 m has been defined only for those con- 
figurations coeO and initial values _Zm(0), Qm(0), Om(O ) which in any finite time 
interval give rise to at most finitely many collisions none of which are tangen- 
tial (_l/2(_r)=_v,) or multiple collisions. Let B denote the set of configurations co 
and initial values Zm(0), Q,,(0), 0~(0) which give rise to bad events: tangential, 
multiple or infinitely many collisions in a finite amount of time. 

Proposition A.1. Let 2 denote the Lebesgue measure a on the state space F of 
(Z_~,, Q m,, Ore, t) and P,~ x 2 the product measure on (2 x F. Then for any m > 0  

Pm x 2(B)=0. [] 

Proof We may restrict ourselves to "finite" systems consisting of a molecule 
undergoing elastic collisions with finitely many atoms (see e.g. Appendix in 
[3]). Proposition A.1 is a consequence of 

Proposition A.2. For a finite system the set of bath configurations and initial 
values Z_(O), Q Q(O), 0(0) which give rise to bad events has Lebesgue measure 
zero. [] 

Let B N denote the set of bath configurations and initial values Z(O), Q(O), 
0(0), in the finite system consisting of N atoms and the molecule, which give 
rise to bad events. 
Let A ~ IR 3 be a finite cube and let BN(A , E) denote the subset of B N in which 

Q(0)~A and the energy M V 2 + W , I . W +  i my 2 2 of the system is less than 
or equal to E. Clearly = 

B N = ~J BN(A, E) 
A,E 

and Proposition A.2 will follow from 

PropositionA.3. For any A, E, BN(A, E) has Lebesgue measure zero. [] 

The proof of Proposition A.3 follows from a series of Lemmas. It suffices to 
consider the evolution of the system in the time interval [0, 1]. Fix A and E. 
Then there exists a cube A=A(A,E)  such that no atom which collides with the 
molecule can ever be outside of/1.  We may assume that all N atoms interact 
with the molecule, since the Lebesgue measure of the set of configurations in 
BN(A , E) for which exactly K < N of the atoms collide with the molecule is zero 
if BK(A , E) has Lebesgue measure zero. Let us consider a system S consisting of 
N atoms and the molecule in the box A with periodic boundary conditions 
and let BN(S ) denote the set of initial values which give rise to bad events in 
this system. Then 

BN(A, E) ~ BN(S ) 

since on BN(A ,E) the motion of the molecule and the atoms in the finite 
system and system S are identical. 

1 i.e., d)~=dZ_d_QdO, where dO is the unit Haar measure on SO(3) 
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Let ~ denote the time of the first bad event. If this event involves infinitely 
many collisions in a finite amount of time, ~ is the limit of the increasing 
sequence Zk of collision times, z = lim rk" Note that ~ depends on the initial 

k~oo 
configuration. Until time z the evolution of the system S is well defined. For 
t<z ,  let ~b t denote the mapping from the initial values of the phase space 
coordinates to the values at time t. Let 2 s be the Lebesgue measure on S. The 
evolution q5 t: {t < ~} ~ ~b t {t <'c} preserves 2 s. 

Lemma A.1. Consider a system consisting of one atom and the molecule. Suppose 
that zk is an increasing sequence of times of collisions between the atom and the 
molecule with lim Zk = Z < 1. Then 

k--* oo 

lim [_v, ('Ok) - -  _Vn s (r(~k) I = 0, 
k~oo 

where V2(r(Zk) ) is the normal velocity of the surface point r(Zk) at which the 
collision at time z k takes place. [] 

Proof We note (see Eq. (1.22)) that in a collision 

I _v . -Y f ( r ) l  = I_v. + - Y.~+(r)l,  

i.e. a collision does not change the relative normal velocity. If I_v,-_V2(r)l >e  >0  
in a collision, a time 6(0 >0 must elapse before the next collision. 

Lemma A.2. The Lebesgue measure of the set B I (A, E) is zero for any A, E. [] 

Proof. By LemmaA.1 we only have to consider tangential collisions. Let 7 > 0  
be the time of the first tangential collision. 

For  0 < t < ? ,  let _d(t) denote the vector from the atom to the nearest surface 
point _r(t) of Me. By _v,(t)(_V~(_r(t))) we denote the projection of v(t)(_VS(_r(t))) on 
_d(t). We split the time interval [0, 1] into p left open intervals As, j = 0 ,  . . , , p - 1 ,  
of length lip. Let FjcB~(A,E) denote the set of initial values qo,_vo, Q0,_zo, 0 0 
which lead to a first tangential collision in A s. The event that a tangential 

p--1 
collision occurs is then included in ~) Fj and hence it is enough to show that 

j = o  

Since 

2s(~) = o (1 /1 ) ) .  (A.1) 

Csi.(r~) ~ r0 

(A.1) follows by conservation of Lebesgue measure from 

�9 ; ~ s ( r o ) = O ( W p ) .  ( 1 2 )  

To obtain this we note that _d(t) is a piecewise differentiable function with 
(where the derivative exists) 

sup I_d'(t)l < C1 < oo, (n.3) 
0 =<t<,~ 
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where C a is an appropriate constant, and similarly 

sup rl_v(t)-VS(r(t))l'l < C2< (Do 
0<t<~ 

(Note that in a collision G(t)-_V~(_r(t)) just reverses direction (Eq. (1.22.)) 
Thus on F 0 

0 =_d('~)=d(0) + ~ d'(t) dt 
o 

so that 

Similarly, 

so that 

Id(O)l ~ Cx/p. 

S ~ _ _  S o = G(~)-Y~ (~(~))1- l~.(o)-Yn (r (0))1 

+ ~ t v . ( t ) -  V:(r(t))[' dt 
o 

(A.4) 

(A.5) 

I_vn(0)-_V~ (r(0))[ < C2/p. (A.6) 

Since the phase space of the system is bounded (A.2) follows from (A.5) and 
(A.6). 

Similarly one obtains (using just (A.3) for several atoms) 

LemmaA.3. For any A,E, the set M ~ B N ( A  ,E) of initial values leading to a 
multiple collision has Lebesgue measure zero. [] 

Proposition A.3 follows now by induction. Let r  1). The evolution 
is well defined up to time L We want to show that r  1 almost surely. We 
take as the induction hypothesis that for a system with N - 1  atoms r  1 a.s. 
By Lemma A.2 we have that for N = 1, r = 1 a.s. 

For  N atoms we have either (i) r  a.s., or (ii) all atoms are on the 
molecule at time L Otherwise there exists an s > 0 such that during the interval 
[ r 1 6 2  at most N - 1  atoms collide with the molecule. Denote this event by 
B(s). For t k an enumeration of the rationals, let B k denote the event that r  t k 
and at most N - 1  atoms collide with the molecule during [tk, r Clearly B(s) 

U Bk and B k (and hence B(s)) is by the induction hypothesis and the in- 
k 

variance of Lebesgue measure incompatible almost surely with r  1. But (ii) is 
excluded almost surely by Lemma A.3. 
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