Zeitschrift fiir

Z. Wahrscheinlichkeitstheorie verw. Gebiete Wahrscheinlichkeitstheorie
52, 69 —73 (1980) und verwandte Gebiete

© by Springer-Verlag 1980

Random Polytopes in a Convex Body

Rolf Schneider and John André Wieacker

Mathematisches Institut der Universitdt, D-7800 Freiburg i. Br,, Federal Republic of Germany

Let K be a convex body with interior points in d-dimensional Euclidean space
RY and let x,,...,xy be random points in K, independently and uniformly
distributed. For any real function ¢ which is defined on the set of convex
polytopes in RY, we denote by Ey(p) the expectation of ¢(conv{x,,...,xy}),
provided it exists, where conv denotes the convex hull. For d=2 and under
additional assumptions on K, Rényi and Sulanke [4], [S] have studied the
asymptotic behaviour, as N — oo, of E(¢) for various functions ¢. In particular,
for sufficiently smooth K they proved that

~2/3

Ex(L)=L(K)—T @) 12*1/3; K43 ds (FZO> +ON-Y), (1)
~2/3

Ey(F)=F(K)—T @) 122310~ 1 6[ K13 ds (FZQ) +ON-Y), )

where L is the perimeter and F the area, and x>0 denotes the curvature of dK.

For further results on convex hulls of random points, the reader is referred to
the surveys and references given in Santaldé [6], pp. 22-33, and Baddeley [1],
Chap. 2. ’

Extensions of (1) or (2) to higher dimensions, with L and F replaced by
surface area and volume, respectively, are unknown, except for the case where K
is a ball (Wieacker [8]). The object of this note is to extend (1) to d>2, with the
perimeter replaced by the mean width b.

The mean width of a convex body K in IR? is, up to a constant factor, one of
the Minkowski quermassintegrals W, ..., W, of K. These can be defined as the
coefficients in the Steiner polynomial

vy=3 (§) e,

where V(K,) is the volume of the parallel body K, of K at distance ¢ (see
Bonnesen-Fenchel [2], p.49). In particular, W, is the volume and dW, the
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surface area of K, and 28;' W, ,=b is the mean width of K (B, denotes the
volume of the d-dimensional unit ball). If b(u) denotes the width of K in
direction u (a unit vector), that is, the distance between the two supporting
hyperplanes of K orthogonal to u, then b is the mean value of b(u) over all
directions u (see Bonnesen-Fenchel [2], p.50 and p.63). For d=3 and suf-
ficiently smooth K, the mean width is a constant multiple of the so-called
integral mean curvature. For d=2, nb is equal to the perimeter L; hence the
following theorem is a natural generalization of (1).

Theorem. If K is a convex body in R? with a boundary of class C* and of positive
Gauss-Kronecker curvature x, then

Ey(b)
) d+2 —_ 3

50 s (T (2 ) (e () o

where V is the volume of K, dS denotes the surface area element, and B, is the
volume of the i-dimensional unit ball.

2

We remark that for d =2 the proof which follows is simpler than that given
by Rényi-Sulanke. This simplification, which opens the way to a higher dimen-
sional generalization, is achieved by utilizing an observation of Efron [3]
(formula (4.2)).

Proof of the Theorem. Let U denote the unit sphere of R In the following,
hyperplanes H of R are to be parametrized by ueU, t€lR via
H={xeR: {x,u)>=t},

where (-, *> denotes the scalar product of R?. If for a convex body 4 in R? we
define

1, if An{xeR?: {x,u)>=t}+0
A, u, t)= .
fld,u {0 otherwise,
then the mean width of A can be written as
bA)=] | f(4,u1)dtdo,

U —

where o denotes the rotation invariant probability measure on U.
The distribution v of a uniform random point in K is defined by

v(B)=A(K NB)/V

for Borel sets B—R? where 4 denotes Lebesgue measure in R?% Therefore we
have
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Ey(b)={...[b(conv {x,, ...,xy})dv(x,)... dv(xy)

={..[f of Sfleonv{x,,...,xy}, u, £) dtdo(w)dv(x,) ... dv(xy)

U -
®

={ [ [f...{f(conv{x,,...,xy}, u, 6)dv(x,) ... dv(xy)] dtdo(w), (4)
U -

where the application of Fubini’s theorem is easily justified.

Suppose that the hyperplane H = {xeR?: {x, u) =t} intersects K and that
the two parts of K into which K is divided by H have volumes v (=v(y, t)) and V
—v, respectively, where v < V/2. Further, let

h(y)=max {{x, uy: xeK} for ueU.

We have f(conv{x,,...,xy}, 4, t)=1 if and only if not all of the points x,,...,xy
lie on one side of H, hence the integral in brackets in (4) is equal to

-3

if —h(—u)<t=<h(u), and equal to 0 otherwise. Thus we get

_ _ h(u) v N v N
EyB)=BK)-2] | [(a) +(1——)]dtdw(u). 5)
g oo L\V vV
Following Rényi-Sulanke we observe that
h{u) v N
I () ardow=0e ©
U o

and, writing w(u, n): =v(u, h(u)—7), that

hz) (1 —%)N dt:j(; (1 —%)N dn+0((1—¢)") ™)

if ¢>0 (small) is given and £>0 and the origin of IR are chosen such that
w/V 2¢ for ¢Sy =< h(u). Clearly such a choice is possible independent of u.

For given unit vector 4, let yedK be the point at which K has u as exterior
normal vector (y is unique because we assume x>0). We choose ¢>0 (inde-
pendent of u, which is clearly possible) so small that every boundary point x of
K lying in a hyperplane

H, ,={zeR*: (z,uy =h(u)—n}

with 0=<#=<c can be represented in the form x=y+h— f(u)u with <h, ud> =0,
where f is a real C? function defined in a convex neighbourhood of 0 in the
linear subspace L parallel to the tangent plane H, ,. For given #€]0, c] let K'eL
be a point at which the function

ho|f0)=3 T fOhh|  (heL)

iy j=
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attains its maximum, say b(x), under the condition f(h)=#. Here hy,...,h,_, are
cartesian coordinates of h, and f;=0%f/0h;0h;. In the following, c,,c,,...
denote positive constants which can be chosen independent of u. It follows from
Taylor’s theorem that

bn)=c, [H]°. (®)

The ecigenvalues of the matrix (f;;(0){5., are the principal curvatures k;(i
=1,...,d—1) of 6K at y and hence have a positive lower bound ¢,. We have

d—1
D (UL = 4o
i,j=1
hence
n= f(h)>~ Z F O il —b(m Z e, | W||)> =y [H] =y |12, )

1]1

provided that ¢ has been chosen sufficiently small. Inequalities (8) and (9)
together yield

b(m)<c, 2 (10)

By the definition of b(x), every point heL with f(h)=g# satisfies

n—- b(n)< Z £ h by < +b(n):

i,j=1
Defining the (d —1)-dimensional ellipsoids

d-1

1
E,={y+h—nu:hel and 5 3 [;(0)hh;=nLbn)}

111

we deduce that E_<KnH, K <E, . Hence the (d—1)-dimensional volume
4a_1(KnH, ) of the intersection KN H, , lies between the (d —1)-volumes of

these ellipsoids, which have semi-axes 1/ 2(n £b(n))/k; (i=1,...,d—1). This yields

d—1
4g_1(KnH, ,,):ﬁdf 1K 12 2n) 2 (I+em)
with |@ ()] £ c5n''?, and hence
ﬁd 1
+1

n d+1
w={1,_(KnH, pdp=1—1 k7220 (Lo, ()
(0]

with [@, ()= cgn''?. Now from (5), (6), (7), assuming ¢ <1/2, we get
Ey(B)=P(K) =2 | Jdo() + 0(1 )
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where

Here we substitute

d+ 1

a+1 272 B, k2
t:N [ e N —
an 2 with a @)V
to get
2 _2 N ey [\ =
J: N T R P . a+1
FEa LA [(1 N) N‘”(N)] L

. d+1
with t=ac 2 and

t t\d+1
] (ﬁ)‘gg (ﬁ>d+1. We assume, as we may, that t<1.

Developing the integrand by the binomial theorem and using

f (1—%)N “dt=I(a+1)+0 (%7)

which may be proved by an obvious modification of the argument given in
Whittaker-Watson [ 7], p. 242, we obtain

sy 2 [r (2 o (v 7))

Now we integrate over U, equivalently over 0K using dw=xdS/df, thus
completing the proof of (3).
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