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Let K be a convex body with interior points in d-dimensional Euclidean space 
IR e, and let xl, . . . ,x N be random points in K, independently and uniformly 
distributed. For  any real function (p which is defined on the set of convex 
polytopes in IRd, we denote by EN(Cp ) the expectation of (p(conv{x 1 . . . . .  x~-}), 
provided it exists, where conv denotes the convex hull. For  d = 2  and under 
additional assumptions on K, R6nyi and Sulanke [43, [5] have studied the 
asymptotic behaviour, as N ~ oo, of EN(cp) for various functions ~o. In particular, 
for sufficiently smooth K they proved that 

EN(L)=L(K)-F 12 1/3SKK4/3ds @ o ( m -  1), (1) 

EN(F ) = F ( K ) - F  122/B 10 - I  J~: K 1/3 ds + O(N-1), (2) 

where L is the perimeter and F the area, and K > 0 denotes the curvature of 8K. 
For  further results on convex hulls of random points, the reader is referred to 

the surveys and references given in Santal6 [6], pp. 22-33, and Baddeley [1], 
Chap. 2. 

Extensions of (1) or (2) to higher dimensions, with L and F replaced by 
surface area and volume, respectively, are unknown, except for the case where K 
is a ball (Wieacker [8]). The object of this note is to extend (1) to d>2,  with the 
perimeter replaced by the mean width b. 

The mean width of a convex body K in IRa is, up to a constant factor, one of 
the Minkowski quermassintegrals W o . . . . .  W e of K. These can be defined as the 
coefficients in the Steiner polynomial 

V(K~)= ~ (di)~iWi, 
i=0 

where V(K~) is the volume of the parallel body K~ of K at distance e (see 
Bonnesen-Fenchel [2], p. 49). In particular, W o is the volume and dW 1 the 
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surface area of K, and 2 fie i We_ 1 = ~ is the mean width of K (rid denotes the 
volume of the d-dimensional unit ball). If b(u) denotes the width of K in 
direction u (a unit vector), that is, the distance between the two supporting 
hyperplanes of K orthogonal to u, then b is the mean value of b(u) over all 
directions u (see Bonnesen-Fenchel [2], p. 50 and p. 63). For  d = 3  and suf- 
ficiently smooth K, the mean width is a constant multiple of the so-called 
integral mean curvature. For  d=2,  ~zb is equal to the perimeter L; hence the 
following theorem is a natural generalization of (1). 

Theorem. I f  K is a convex body in IR d with a boundary of class C a and of positive 
Gauss-Kronecker curvature to, then 

~N(6) 
2 2 2 (d-]-l~d+~ ( 2 ) d + 2  (~) d+l :3 

=b(K)  d(d+l)fla \~d_l/  I" ~ 1  OKS /s dS +O(N d+l), (3) 

where V is the volume of K, dS denotes the surface area element, and fli is the 
volume of the i-dimensional unit ball. 

We remark that for d =2  the proof which follows is simpler than that given 
by R6nyi-Sulanke. This simplification, which opens the way to a higher dimen- 
sional generalization, is achieved by utilizing an observation of Efron [3] 
(formula (4.2)). 

Proof of the Theorem. Let U denote the unit sphere of IR d. In the following, 
hyperplanes H of IR d are to be parametrized by u~U, t~lR via 

H = { x ~ I R  d" (x,  u) =t}, 

where ( . ,  ") denotes the scalar product of IR d. If for a convex body A in IRe we 
define 

t )=J ' l ,  if A ~ { x E l R e : ( x , u ) = t } 4 : 0  
f (A ,  U, 

0 otherwise, 

then the mean width of A can be written as 

b(A) = ~ ~ f (A ,  u, t) dt dco(u), 
U 

where co denotes the rotation invariant probability measure on U. 
The distribution v of a uniform random point in K is defined by 

v (B) = 2 (K (~ B)/V 

for Borel sets B c lR d, where )~ denotes Lebesgue measure in IR d. Therefore we 
have 
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eN(6) 6(conv {x, . . . .  , xN})dv(xl). . ,  dv(xN) 

=j" ... j" j" ~ f(conv{x~ . . . .  ,xu} , u, t) dtdco(u)dv(x 0 ... dv(xN) 
U - - co  

= 5 ~ [5... ~f(conv{x 1 .... ,xN} , u, t)dv(x 0 ... dv(xN) ] dtdog(u), (4) 
U - m  

where the application of Fubini's theorem is easily justified. 
Suppose that the hyperplane H={xe iRa :  (x, u ) = t }  intersects K and that 

the two parts of K into which K is divided by H have volumes v (=v(u, t)) and V 
- v ,  respectively, where v <= V/2. Further, let 

h(u) =max  {(x, u)" x e K }  for ueg .  

We have f (conv {xl, . . . ,  xN}, u, t) = 1 if and only if not all of the points x l , . . . ,  x N 
lie on one side of H, hence the integral in brackets in (4) is equal to 

if - h ( - u ) < t < h ( u ) ,  and equal to 0 otherwise. Thus we get 

EN(b)=b(K)_2  ! h i  ) v N 

Following R6nyi-Sulanke we observe that 

~ dt&o(u)=O(2 -N) (6) 
U 0 

and, writing w(u, tl)" = v(u, h (u) -  ~l), that 

h}u) (1 v\N c (1  q-0((1--g) N) (7) 

if c >  0 (small) is given and e > 0  and the origin of IR a are chosen such that 
w/V >e for c < ~1 <h(u). C/early such a choice is possible independent of u. 

For given unit vector u, let y~OK be the point at which K has u as exterior 
normal vector (y is unique because we assume x>0).  We choose c > 0  (inde- 
pendent of u, which is clearly possible) so small that every boundary point x of 
K lying in a hyperplane 

Hu,, : {ze]Ra: <z, u> = h(u) - ~I} 

with 0 < q < c  can be represented in the form x = y + h - f ( u ) u  with <h, u>=0,  
where f is a real C 3 function defined in a convex neighbourhood of 0 in the 
linear subspace L parallel to the tangent plane H., o. For given t/e]0, c] let h'eL 
be a point at which the function 

h~--* f (h) 1 d- ~ hj - ~  ~ Ji~(O)h, (h~L) 
i , j = l  
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attains its maximum, say b(t/), under the condition f (h)=t/ .  Here h 1 . . . . .  he-1 are 
cartesian coordinates of h, and f~j=cq2f/c~hiOhj. In the following, cl, c2,... 
denote positive constants which can be chosen independent of u. It follows from 
Taylor's theorem that 

b(rl)<c a ilh'll 3. (8) 

The eigenvalues of the matrix (f~j(0))f,5~ are the principal curvatures ki(i 
= 1 .... , d -  1) of ~K at y and hence have a positive lower bound c 2. We have 

d 1 

fij(O)h'ih}>=c2 ilh'kl 2, 
i , j ~ l  

hence 

1 d - 1  
, , > 2 t / = f ( h ' ) > ~  , , ~ f~ j (O)h ,h ; -b ( r l )=c  2 i]h'H2-c~ ilh'il3 >c3 ][h'il , (9) 

provided that c has been chosen sufficiently small. Inequalities (8) and (9) 
together yield 

b(q) < c 4 r/3/2. (10) 

By the definition of b(r/), every point h~L with f(h)=r/sat isf ies 

~ 1  d - 1  

rl - b(tl) = 2 ,, ~ ~ f~j(O) h i hj <= r 1 q- b(tl). 

Defining the (d-1)-dimensional ellipsoids 

1 d -1  
E + = { y + h - r l u : h E L  and ~ ~ f~j(O)hlhj=rl+b(rl) } 

i , j = l  

we deduce that E _ c K ~ H u , , c E  +. Hence the (d-1)-dimensional volume 
2 d ~(KcaH.,,) of the intersection K c~H.,,~ lies between the (d-1)-volumes of 
these ellipsoids, which have semi-axes ~ ~ ) ) ~ i  (i = 1,..., d -1 ) .  This yields 

d 1 
2d ~(Kc~H,.,)=fid l tC-Uz(2r])~(lq-qO(t/))  

with J@(tl)l~-C5t] 1/2, and hence 

q 
w = ! 2  d I (Kc~H, .o ) .  rid-1 d+l _ ap = ~ - ~  ~c- 1/2 (2 ~ )~ - (1  + qo t (t/)) 

with I qo l(t/)] <_ c6 ~/1/2. Now from (5), (6), (7), assuming ~ < 1/2, we get 

EN(b ) = b ( K ) -  2 ~ ddco(u) + 0((1 - e)N) 
U 
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where 

d+l 

o ( d + l ) V  ~ 2 (1--~o1(/~)) dr/. 

H e r e  w e  s u b s t i t u t e  

d+I 
~+ 1 2 ~ - -  fla- t K- 1/2 

t = N a q 2 with a - 
(d + 1) V 

t o  g e t  

J= ;(aN) d+~ te+ldt 
0 

1 

with z = a c  2 and  < c  7 . We assume, as we may,  tha t  r < l .  

Deve lop ing  the in t eg rand  by  the b inomia l  t heo rem and using 

~i(1-N)NUdt=F(o:+I)+O(N), 

which  m a y  be  p r o v e d  by an  o b v i o u s  m o d i f i c a t i o n  o f  the  a r g u m e n t  g iven  in 

W h i t t a k e r - W a t s o n  [7] ,  p. 242, we o b t a i n  

N o w  we in tegra te  over  U, equiva len t ly  over  OK using dco=~dS/dfid, thus 
comple t ing  the p r o o f  of  (3). 
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