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Summary. Let {a;; T 20} be a non-decreasing function of T with 0<a,<T
and let {W(t); t =0} be a Wiener process. The limit functions of the processes

L ()= (Wt+xar)—W() (0=x=s1)
where 0<t<T—a;, T>0 and
Br=(a(log Taz* +loglog T))~*

are characterized. In the case ay=T Strassen’s law is obtained as a special
case.

1. Introduction

Let ¥ < C(0, 1) be the Strassen’s class of absolutely continuous functions defined
on (0, 1) that is to say the absolutely continuous function S(x) (0=x<1)

1
belongs to & if and only if | (S'(x))*dx < 1. Further let {W(x); x20} = {W(x, »);
¢

weQ, x=0} be a Wiener process (here Q is the underlying probability space).
Finally for any A < C(0, 1) and £>0 denote U(4, ¢) be the e¢-neighbourhood of 4
in C(0, 1) metrics, that is a continuous function a(x) is an element of U(4, ¢) if
there exists an a(x)e 4 such that sup |a(x)—a(x)|Ze.

0

=x=1

Then the celebrated Strassen’s functional law of iterated logarithm can be
formulated as follows:

Theorem A (Strassen, 1964). Put

W(xT)

* P M A
W)= 5 T loglog T)F

(0<x<1).

Then for almost all we 2 and for all £>0 there exists a T,=T,(w, ¢} such that
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WHEX) eU(Z, e

if T=T,. Further for any s=s(x)e &, ¢>0 and for almost all w e Q there exists a
T="T(w,e¢,s) such that

sup |V (x)—s(x)| <e.
0=x£1

The meaning of this Theorem is the following:

a) for any T big enough the process W¥(x) can be approximated by a
suitable element of &,

b) any s(x)e & will be approximated by W;*(x) for a suitable T.

This Theorem clearly implies:

Consequence A. For any ¢>0 and for almost all weQ there exists a T,
=T, (e, ®) such that if

W(Dz(1—e)(2Tloglog T)*  for some T=T,
then

2loglogT
sup W(t)—t(—ogTo—g*

0<t<T

)7{ <262 Tloglog T)*,

Consequence A tells us that if W{z) “wants” to be as big in point T as it can
be at all then it has to increase in (0, T) nearly linearly (that is to say it has to
minimize the used energy).

A related question is: How big can the increment of a Wiener process be in
an interval of size a;<T if we observe the process in [0, T]. Introducing the
following notations:

Wix+4x)—Wx)=V(x; Ax)=V(x; 4x, w),

Br=Qa,(log Taz!+loglog T))~%,

an answer to the above question is:
Theorem B (Csérgd-Révész, 1978, 1979). Let 0<a; =T be a function of T =0
satisfying the following conditions:

(i) ar is non-decreasing,

(i) Taz' is non-decreasing.

Then we have

limsup sup BrV(t;ap)=1 as.

T-ow 0ZtST-—ar

If we also assume that

log Taz! .

as T— o0
loglog T

(iif)

then we also have
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lim sup BrV(t;ap=1 as.
T—-o 0Zt<T—-ar
This Theorem clearly implies

Consequence B. For almost all weQ and for all £>0 there exists a T,=Ty(e, w)
such that for all T =T, there is a corresponding 0=t=t(w, ¢, T) < T—a, such that

V(t;ap)z(1—2) b5t ~(1—e)(2ay log Taz ')t (1)
provided that ar. satisfies conditions (i), (i), (i)

Knowing Consequence A we can pose the following question: does in-
equality (1) imply that W(x) is increasing nearly linearly in (¢, t+a;)? The
answer to this question is positive in the same sense as in the case of Con-
sequence A, and we also can formulate the following more general result.

Theorem 1. For all we Q define the set Vi(w)< C(0,1) as follows:
Vi(w)={I (x,w): 0=Zt<T —ag}

where

Lr(x,0) =1 1()=BrV(t;xar)  (0=x=1; 0=t=T—ay).
Then for almost all weQ and for all >0 there exists a Ty=Ty(w, &) such that

U(Vi(w), ey & 2
and
U(S, &) Vy(w) )

if T=T, provided that a, satisfies conditions (i), (i), (iii).

On the meaning of this Theorem let us mention that it says that:

(a) for all T big enough and for all s(x)e.% there exists a 0<t<T such that
I} +(x) (0=£x=1) will approximate the given s(x),

(b) for all T big enough and for every 0<t<T—a; the function I] 7(x)
(0=x=1) can be approximated by a suitable element s(x)e .

We have to emphasize that in Theorem 1 we assumed all the conditions (i),
(i1), (iii). If we only assume conditions (i) and (ii) then we get a weaker result
which contains Theorem A in case a,=T.

Theorem 2. Assume that a; satisfies conditions (i) and (ii). Then for almost all
weQ and for all >0 there exists a T,=Ty(e, w) such that

Vi(w)c U(Z, ¢) (3%)

if TzT,. Further for any s=s(x)e %, ¢>0 and for almost all w e Q there exist a
T=T(w,s)and a 0<t=t(e, w, )= T—ay such that

sup I p(x)—s(x)| =e. %)

0=x=
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Remark. The important difference between Theorems 1 and 2 is the fact that in
Theorem 1 we stated that for every T big enough and for every s(x)e.& there
exists a 0<t<T—a; such that I; (x) approximates the given s(x) while in
Theorem 2 we only stated that for every s(x)e & there exists a T (in fact there
exist infinitely many T but not all T are suvitable as in Theorem 1) and a 0<t<T
—ay such that I, ;(x) approximates the given s(x).

In other words if a; is small (condition (iii) holds true), then for every T (big
enough) the random functions I ;(x) will approximate every element of & as t
runs over the interval [0, T—a;]. However if a; is large then for any fixed T the
random functions I, (x) (0t <T—a,) will approximate some elements of &
but not all of them; all of them will be approximated when T is also allowed to
vary. (An analogue of Theorem 2 was also given in Chan, Cs6rgd, Révész, 1978).

2. Some Lemmas
Lemma 1. Let m be a given integer, A, 1,, ..., A,, be real numbers with Z M=m
and define i1

gh(t)=gh(t; j'1’ 125 (RN )"m)

Then there exists a universal constant C such that

P{ sup |%,(t)|zubt}<Cmh tue "
h

0<ts1—
for every O0<h<1, u>1.
The proof of this Lemma is based on

Slepian’s Lemma (Slepian, 1962). Let %4(t) and %*(t) be Gaussian processes
(possessing continuous sample functions ). Suppose that these are standardized so
that ET(t)=ET*(t)=0, ET*(t)y=E(T'*(t))*=1 and write p(t,s) and p*(t,s) for
their covariance functions. Suppose that for some T>0 we have p(t, s)Z p*(t,s)
when 0<t, s<T. Then

P{OSUPTIF(t)Iéu}zp{osupTIT*(t)léu}

st= St
for all u>0.
Proof of Lemma 1. Put
Gx(t)=m*(W(t+h/m)— W (1)) =%,(t; m%,0,0,...,0).
Then the Slepian’s lemma implies that
P{sup |%,(t; 7y, 4z,..., Ay)| Zuh?}

0=ts1

<P{ sup |%3()|zuht).
h

0t~
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The covariance function p*(t, s) of 4}(t) is

=

1
h

if |t—s|<h,

p*(t, s)=
0 otherwise.

Hence applying the result of Qualls and Watanabe (1972, Theorem 2.1) for the
Gaussian process %/ (t) we get our Lemma 1.

Lemma 2. Let m be a given positive integer, i, 1y, ..., I, be a sequence of real

numbers with m Y, u?=1. Then
=1

=

% (z+(i—1)ﬁ; @)
m m

{
<
8
2

lim inf max ——
T 0t<T-aT 1<ism| (2a;logTaz?y? '

(4)

provided that a; satisfies conditions (i), (ii), (iii).

Proof. In fact the following stronger relations will be proved

. , ar a
v (jar+G-0; %)

lim min max

———;|=0 as.
Tow 0Sjs[TaFl—1] 1Sism (2arplogTaz Iy '

As a first step let us evaluate the probability

(&)

m

_P— "<
QaylogTaz ) 1 |=°

In case u>0 we have
p2P {(u—s) (2aylog Taz Y <W (%) < (u-g) (24, log Ta;lﬁ}

2
>-(2aylogTaz?)* exp{~ (,u—%) m logTa;l}

o) m

and hence
pzexp{—- (1—2) u?mlog Ta;l} Q)

if ¢ is small enough and T is big enough. One can similarly see that (5) holds
true for u<0.
This implies

V((i—n“—?;f‘l)

m m

P = |Se2(ap T
S | e Tog Tan 1 M|=8( 2@
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if & is small enough and T is big enough. Hence we have
ar a
v (iama(i— _T._z)
| (jar+i-125%
P min max — ;| =€

TINE =
ogjsiTari—111sism| (2aglogTagr ) !

S(1—(ap T~ -o4ier' = U<exp{ —(Taz 'y}

Let T,=n then by condition (iii):

Y exp{—(Ta; ¥} <oo
=1

n

and by the Borel-Cantelli Lemma we get (4) for T=T,. The general case (the
case of arbitrary T) follows simply from this special case.

Lemma 3. Let m be a given positive integer, A,,2,,..., 4, be real numbers with
m

Y A} =m. Then

i=1

limsup sup f|9, (64,4, ..., 4,)IS1 as.

T-»w O0Z2t=T-ar
provided a, satisfies conditions (i), (ii).

Proof. By Lemma 1 we have

P{ sup B;19,,(0z(1+8)?}

0Zt=T-ar
SCmTa;'(1+eE Brlartexp{—(1+e)logTaz ' +loglogT)}
<Cm(1+e)*(2(logTaz ! +loglog T)): (a, T~ 1) (log T) =1 +9.

Put T, =0*(@ >1). Then we get

limsup  sup ﬁTk|€éaTk(t)|§1 a.s.

k— oo 0§1§Tk—a7~k

Now, let T,T<T,,,. Then

sup  frl%,, (0= sup Br, |gark+,(t)|
0st=T-ar 0=t=Tik+1—aTy
+ 24 sup sup  Bp, [V(;u)l.

i=1 O02tE2Tk+1—ar,,; 02usar, ,  —ar,

Since by condition (ii) the inequality a;, ., —a;, (@ —1)a;, holds true,
choosing @ near enough to one and applying Theorem B we get Lemma 3.

Lemma 4. Let m be a given positive integer, Uy, iy, ..., U, be a sequence of real
m
numbers with my u? =1. Suppose also that ar. satisfies conditions (i), (ii). Then

i=1

liminf inf max =0 as. (6)

T-ow O0£t=T—ar 1Zi<m

ﬁTV(t+(i—1)91;5’1) —u
m m
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Proof. Put

lima,T-'=p

T— o0

and assume at first that p <1. Then we can define the sequence {T;; k=1,2,...}
by T, =1 and

Tiyi—ar,,, =1

Instead of (6) the following stronger relation will be proved

lim inf max

T—ow 1Zism

ﬁTH,V(m(i—l)%;“—Tn—;u)—uif:o as. )

Along the line of the proof of Lemma 2 we get

P< max
1<igm

;< aTk+1 )1 6/4'
Ty qlogTy

Our conditions imply that

o 1-g4
( aTk+1 ) =00
k=1 Tk+110ng+1

m

Br...V (T +({—1) Tn’;ﬂ,%)—ui’éa}

which proves (7).
We have not yet covered the case p=1. Let us mention that in this case our
conditions (i), (if) imply that a;=T and (6) follow from Theorem A.

3. Proof of Theorem 1

Proof of (2). Let s(x)e& be given. Then by Lemma 2 for any fixed integer m we
have

V(t-l—( 12z, “T) 1
lim inf max m (s (i> -8 (:——>) =0 a.s.
T—o0 0SIST—ar 1<igm (2aTlOgTaT hE m m

Now, (2) follows from Theorem B, choosing a large enough m.

Proof of (3). Let C(m, p) be the sphere of radius p around the origin of R™ that is
X=(X1, X5, X, )EC(m, p) if |x]|=(x]+x3+...+x2)2<p. Then Lemma 3 im-
plies that for all >0, m=1,2,... and for almost all weQ there exists a Ty
=Ty (e, m, w) such that the vector

V(t;gz) V(t+aT aT) V(H-m—laT;gz)
m m m m

(aylogTaz')*’ (2azlogTa; V)’ (aplogTar')*
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belongs to C(m,(1+¢)?) for all 0<t<T~a, if T2T, Now,(3) follows again
from Theorem B.

4. Proof of Theorem 2

Proof of (3%) is the same as that of (3).
Proof of (2*) is the same as that of (2) applying Lemma 4 instead of Lemma 2.
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