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Summary. Let {at; T>=O} be a non-decreasing function of T with 0 < a t <  T 
and let {W(t); t>0}  be a Wiener process. The limit functions of the processes 

Ft, T(X)=fiT(W(t+xar)--W(t))  ( 0 < x < l )  

where O<tN T - a T ,  T>O and 

fir = ( 2 ar(l~ Tar 1 +log  log T)) -~ 

are characterized. In the case a r = T Strassen's law is obtained as a special 
case. 

1. Introduction 

Let 5 ~ c C(0, 1) be the Strassen's class of absolutely continuous functions defined 
on (0, 1) that is to say the absolutely continuous function S(x) ( 0 < x < l )  

1 

belongs to Y if and only if ~ (S'(x)) 2 d x < 1. Further let { W(x); x > 0} = { W(x, co); 
o 

co ~ s2, x > 0} be a Wiener process (here f2 is the underlying probability space). 
Finally for any A ~ C(0, 1) and e > 0 denote U(A, e) be the e-neighbourhood of A 
in C(0, 1) metrics, that is a continuous function c~(x) is an element of U(A, e) if 
there exists an a(x)~A such that sup [e(x)-a(x)]<e. 

O_<x<l 
Then the celebrated Strassen's functional law of iterated logarithm can be 

formulated as follows: 

Theorem A (Strassen, 1964). Put 

W(x T) 
W~(x )=(2T log logT)  ~ (0<x=<l).  

Then for almost all co ~ (2 and for all ~ > 0 there exists a T o = To(co , ~) such that 
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W~(x) e u(a ~ e) 

i f  T > T o. Further for  any s = s(x)~ 5 ~, e > 0 and for  almost all co ~ f2 there exists a 
T = T(co, e, s) such that 

sup IW~(x)-s(x)L<e. 
0_<x_<l 

The meaning of this Theorem is the following: 
a) for any T big enough the process W*(x )  can be approximated by a 

suitable element of ~ ,  
b) any s ( x ) e ~  will be approximated by Wi.*(x ) for a suitable T. 
This Theorem clearly implies: 

Consequence A. For any e>0  and for  almost all co~f2 there exists a T O 
= To(e, co) such that i f  

W ( 7 ) > ( 1 - e ) ( 2  T l o g l o g  T) ~ for  some T >  T o 

then 

02P<_T W ( t ) - - t  (2 -1~176  T )  ~ <2e(2TloglogT)~.  

Consequence A tells us that if W(t) "wants" to be as big in point T as it can 
be at all then it has to increase in (0, T) nearly linearly (that is to say it has to 
minimize the used energy). 

A related question is: How big can the increment of a Wiener process be in 
an interval of size a r < T if we observe the process in [0, 7]. Introducing the 
following notations: 

W(x + Ax) -  W(x)= V(x; Ax)= V(x; Ax, co), 

f i T  ~- (2 aT(lOg Ta T 1 + log log T))- }, 

an answer to the above question is: 

Theorem B (Csgrg6-R6v6sz, 1978, 1979). Let  O < a r  <=T be a function of  T>=O 
satisfying the following conditions: 

(i) a T is non-decreasing, 

(ii) Ta r 1 is non-decreasing. 

Then we have 

lira sup sup fir V(t; at)  = 1 a.s. 
T ~  O<--t<--T--aT 

I f  we also assume that 

log Ta T 1 
(iii) ~ oe as T--+ oo 

log log T 

then we also have 
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lim sup f i t  V(t; aT) = 1 a.s. 
T~ao O<=t<T--aT 

This Theorem clearly implies 

Consequence B. For almost all coEf2 and for  all ~>0 there exists a To:-To(~ , co) 
such that for  all T>= T o there is a corresponding 0=<t=t(co, ~, T)<= T - a  T such that 

V(t; aT) ~ (1 --Qflr  1 ~(1 --e)(2a r log Ta T 1)~ (1) 

provided that a T satisfies conditions (i), (ii), (iii). 

Knowing Consequence A we can pose the following question: does in- 
equality (1) imply that W(x)  is increasing nearly linearly in (t, t + a r ) ?  The 
answer to this question is positive in the same sense as in the case of Con- 
sequence A, and we also can formulate the following more general result. 

Theorem 1. For all co~f2 define the set VT(co)c C(O, 1) as follows: 

VT(co ) = {Ft, T(X, co): O<_t<_ T- -aT}  

wh ere  

Ft, T(X, co)=Ft, T (X)=f lTV( t ; xaT)  ( 0 < x < l ;  O<t<_T--aw).  

Then for  almost all co e Y2 and for  all e >0 there exists a T o = To(co, 5) such that 

u(v~(co), 5)-  J (2) 

and 

U(a e, ~)~ V~(co) (3) 

i f  T > T o provided that a T satisfies conditions (i), (ii), (iii). 

On the meaning of this Theorem let us mention that it says that: 

(a) for all T big enough and for all s(x) e ~ there exists a 0 < t < T such that 
Ft. T(X) (0 < X <= 1) will approximate the given s(x), 

(b) for all T big enough and for every 0 < t < T - a  r the function Ft, T(X ) 
(0=<x < 1) can be approximated by a suitable element s(x)~ ~,<P. 

We have to emphasize that in Theorem 1 we assumed all the conditions (i), 
(ii), (iii). If we only assume conditions (i) and (ii) then we get a weaker result 
which contains Theorem A in case a T = T. 

Theorem 2. Assume that a T satisfies conditions (i) and (ii). Then for  almost all 
co~f2 and for  all e>0  there exists a T o = To(5, co) such that 

v~(co) ~ u(o~, ~) (3*) 

i f  T >  T o. Further for  any s = s ( x ) c S z ,  e>0  and for  almost all co~f2 there exist a 
T = T(5, co, s) and a 0 <_ t = t(e, co, s) < T -  a T such that 

sup IF,, r ( x ) -  s(x)[ < ~. (2*) 
O_<x_<l 
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Remark. The important difference between Theorems 1 and 2 is the fact that in 
Theorem 1 we stated that for every T big enough and for every s (x )~5  ~ there 
exists a O<_t<_T-a T such that Ft, T(X ) approximates the given s(x) while in 
Theorem 2 we only stated that for every s(x)~ 5O there exists a T (in fact there 
exist infinitely many T but not all T are suitable as in Theorem 1) and a 0 <_ t _< T 
- a  T such that Ft, r(x) approximates the given s(x). 

In other words if a r is small (condition (iii) holds true), then for every T (big 
enough) the random functions Ft, r(X ) will approximate every element of 5 ~ as t 
runs over the interval [0, T--aT]. However if a r is large then for any fixed T the 
random functions Ft,T(X ) (O<t<_T--aT) will approximate some elements of 5 ~ 
but not all of them; all of them will be approximated when T is also allowed to 
vary. (An analogue of Theorem 2 was also given in Chan, Cs6rgti, R6v&z, 1978). 

2. Some Lemmas 

Lemma 1. Let m be a given integer, 21, )~2, ..., 2m be real numbers with ~ )~ =m 
and define i= 1 

% ( 0  = ~h(t; 21,2Z, . . . ,  2,.) 

= i ~ 1 2 i ( W ( t + i h ) - w ( t + ( i - 1 )  h ) )  . 

Then there exists a universal constant C such that 

> ~ = lue-U} P{ sup I~h(t)l=uh } < C m h -  
O~t~- l - -h  

for every 0 < h < 1, u > 1. 

The proof of this Lemma is based on 

Slepian's Lemma (Slepian, 1962). Let fq(t) and fq*(t) be Gaussian processes 
(possessing continuous sample functions). Suppose that these are standardized so 
that EF(t)=EF*(t)=O, EFZ(t)=E(F*(t ) )2=I and write p(t,s) and p*(t,s) for 
their covariance functions. Suppose that for some T > 0  we have p(t, s )~p*(t ,s )  
when 0 < t, s < T. Then 

P{ sup IF( t ) l<u}>P{ sup Ir*(t)l<u} 
O < t < T  O<t<=T 

for all u > O. 

Proof of Lemma 1. Put 

~q*(t) =m~(W(t  +h/m) - W(t))= fqh(t; ~ m-,O,O, ...,0). 

Then the Slepian's lemma implies that 

P{ sup [~qh(t; / ~ t , 2 2  . . . .  ,2, . ) l>uh ~} 
O__<t=<l 

=<P{ sup Ic5~(t)l>uhi}. 
O<=t<=l--h 
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The covariance function p*(t, s) of ~*(t) is 

[t-sl 
1 - - -  if [t-sl<h, 

p*(t, s)= h 
0 otherwise. 

Hence applying the result of Qualls and Watanabe (1972, Theorem 2.1) for the 
Gaussian process ~*(t) we get our Lemma 1. 

Lemma 2. Let m be a given positive integer, #1,#2, ...,#m be a sequence of real 
m 

numbers with m ~ #~ = 1. Then 
i = l  

V t + ( i -  1 ) - - ;  
m 

lim inf max 
r~o~ 0-<t_-<r-~r l<_i<_m (2arlogTa r )7 

provided that a r satisfies conditions (i), (ii), (iii). 

#i = 0 a.s. (4) 

Proof. In fact the following stronger relations will be proved 

lim min max 
T + m  O<i<[Ta-l=_=_ T -- 1] l<--i<--m_ _ 

V ( j a r + ( i - 1 ) ~ ;  ~ )  [ 

(2 a T log Ta T ~)~ - #i 

As a first step let us evaluate the probability 

p = r {  (2ar -~O~-r l )~  # <g . 

In case # > 0 we have 

= 0  a.s. 

and hence 

if 8 is small enough and T is big enough. One can similarly see that (5) holds 
true for p < 0. 

This implies 

V ((i-1) ar ; log TaT ,) } 
P ,max<i<=m ~i <=~ >=(aTT-*) *-el4 
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if e is small enough and T is big enough. Hence we have 

P . min max 
[ O<=J<=[TaTI-1] l<=i<=m (2aTlogTarl)~ #i >=~ 

< (1 -- (a T T -  1)1 -~/4){T~1- 11 < exp { -- (Ta r 1)~/4}. 

Let T, = n then by condition (iii): 

~ e x p { - ( T a  r 1)~/4} < oo 
n = l  

and by the Borel-Cantelli Lemma we get (4) for T =  T,. The general case (the 
case of arbitrary T) follows simply from this special case. 

Lemma 3. Let m be a given positive integer, )~1,2z .. . .  ,2 m be real numbers with 

~ 22 =m. Then 
i = 1  

l imsup sup /~r lN,~( t ;21 ,2a , . . . ,2 , , ) l< l  a.s. 
T~oo  O<_t<--T--aT 

provided a r satisfies conditions (i), (ii). 

Proof. By Lemma 1 we have 

P{ sup f l T l ~ ( t ) l > ( l + e )  ~} 
O~t<-- T - - a T  

= - ~ exp { - (1 + e)(log Ta r 1 + log log T)} < C m T a ~  1(1 + e)~ fir 1 aT 

< C m(1 + e)~-(2(log TaT 1 + log log T)) ~ (a T T -  1)~(log T)-(1 + ~). 

Put T k = O k (O > 1). Then we get 

lira sup sup fiT~ [~,~(t)[ < 1 a.s. 
k~oo O<=t<=Tk--aTk 

Now, let Tk<T<Tk+ r Then 

sup fir I~q~(t)[ < sup firk I(r 
O <t <__ T - - a T  O <=t<= Tk + l --aTk + 1 

+ ~ 2 i sup sup flr~ IV(t; u)l. 
i = 1  O<=t~--Tk+l--aTk+l O<--U<aT-- -- k + l - - a T / ~  

Since by condition (ii) the inequality a r~+ - -a r< (O - -1 )a r~  holds true, 
choosing O near enough to one and applying Theorem B we get Lemma 3. 

Lemma 4. Let m be a given positive integer, #1,#2 . . . . .  #m be a sequence of real 
m 

numbers with m ~ #2 = 1. Suppose also that a r satisfies conditions (i), (ii). Then 
i = 1  

( . ) a _ ~ a ~ )  l iminf  inf max f lrV t+(z- -1  ; --#i = 0  a.s. (6) 
T~o~ O<=t<=T--aT l<=i<=m 
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Proof Put 

lim aT T-  1 =p 
T~o~ 

and assume at first that p < 1. Then we can define the sequence {Tk; k =  1,2, ...} 
by T 1 = 1 and 

r k +  1 - - a T k  + ~ = rk"  

Instead of (6) the 

lim inf max fir~+ 
T ~ o o  l <i<=m 

Along the line of 

following stronger relation will be proved 

a.s.  V (Tk +(i--1) aTk+ l"ark+ l ) --gi =0  (7) 
m ' m 

the proof of Lemma 2 we get 

PImaxu<=~<=m flT~+~V(Tk+(i--1)aT~+~;ar~+~) - # ~ r n  m <e} 

1 - ~/4 

i 1OgTk+l 

Our conditions imply that 

aTk+ t 
k=l r k + l l o g r k + l  = o c  

which proves (7). 
We have not yet covered the case p = 1. Let us mention that in this case our 

conditions (i), (ii) imply that a r = T and (6) follow from Theorem A. 

3. Proof of Theorem 1 

Proof of (2). Let s(x)~5 ~ be given. Then by Lemma 2 for any fixed integer m we 
have 

max i lim inf \ - s T ~  O<-t<-T-~ z<=i~=,, (2aTlOgTa(l) ~ s ~ =0 a.s. 

Now, (2) follows from Theorem B, choosing a large enough m. 

Proof of (3). Let C(m, p) be the sphere of radius p around the origin of R "~ that is 
x=(xl,  x2,...,xm)~C(m,p) if IFx[I = ( x 2 + x 2 + . . .  +x2)~<=p. Then Lemma 3 im- 
plies that for all e>0,  r e = l , 2 , . . ,  and for almost all co~2 there exists a T o 
= To(e, m, co) such that the vector 

/ V( t ;~ f )  / aT aTk / rn-1 . a rk '  
[ \ m /  

\i2a~]Ugrar~)+'(Ya~-~ ~''''' [~a~ogTrar7 / 
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belongs to C(m,( l+e)  ~-) for all O<_t<_T-a  T i f T ~ T  o. 
f rom T h e o r e m  B. 

P, R6v6sz 

Now,  (3) fol lows aga in  

4. Proof of Theorem 2 

Proof of (3*) is the s ame  as tha t  of  (3). 

Proof of (2*) is the  s ame  as tha t  of  (2) a p p l y i n g  L e m m a  4 ins t ead  of  L e m m a  2. 
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