A Generalization of Strassen's Functional Law of Iterated Logarithm

P. Révész

Mathematical Institute of the Hungarian Academy of Sciences,
Reáltanoda n. 13-15, Budapest V, Hungary
Dedicated to Professor Leopold Schmetterer on his $60^{\text {th }}$ birthday

Summary. Let $\left\{a_{T} ; T \geqq 0\right\}$ be a non-decreasing function of T with $0<a_{T} \leqq T$ and let $\{W(t) ; t \geqq 0\}$ be a Wiener process. The limit functions of the processes

$$
\Gamma_{t, T}(x)=\beta_{T}\left(W\left(t+x a_{T}\right)-W(t)\right) \quad(0 \leqq x \leqq 1)
$$

where $0 \leqq t \leqq T-a_{T}, T>0$ and

$$
\beta_{T}=\left(2 a_{T}\left(\log T a_{T}^{-1}+\log \log T\right)\right)^{-\frac{1}{2}}
$$

are characterized. In the case $a_{T}=T$ Strassen's law is obtained as a special case.

1. Introduction

Let $\mathscr{G} \subset C(0,1)$ be the Strassen's class of absolutely continuous functions defined on $(0,1)$ that is to say the absolutely continuous function $S(x)(0 \leqq x \leqq 1)$ belongs to \mathscr{S} if and only if $\int_{0}^{1}\left(S^{\prime}(x)\right)^{2} d x \leqq 1$. Further let $\{W(x) ; x \geqq 0\}=\{W(x, \omega)$; $\omega \in \Omega, x \geqq 0\}$ be a Wiener process (here Ω is the underlying probability space). Finally for any $A \subset C(0,1)$ and $\varepsilon>0$ denote $U(A, \varepsilon)$ be the ε-neighbourhood of A in $C(0,1)$ metrics, that is a continuous function $\alpha(x)$ is an element of $U(A, \varepsilon)$ if there exists an $a(x) \in A$ such that $\sup _{0 \leqq x \leqq 1}|\alpha(x)-a(x)| \leqq \varepsilon$.

Then the celebrated Strassen's functional law of iterated logarithm can be formulated as follows:

Theorem A (Strassen, 1964). Put

$$
W_{T}^{*}(x)=\frac{W(x T)}{(2 T \log \log T)^{\frac{T}{2}}} \quad(0 \leqq x \leqq 1) .
$$

Then for almost all $\omega \in \Omega$ and for all $\varepsilon>0$ there exists a $T_{0}=T_{0}(\omega, \varepsilon)$ such that

$$
W_{T}^{*}(x) \in U(\mathscr{S}, \varepsilon)
$$

if $T \geqq T_{0}$. Further for any $s=s(x) \in \mathscr{S}, \varepsilon>0$ and for almost all $\omega \in \Omega$ there exists a $T=T(\omega, \varepsilon, s)$ such that

$$
\sup _{0 \leqq x \leqq 1}\left|W_{T}^{*}(x)-s(x)\right|<\varepsilon
$$

The meaning of this Theorem is the following:
a) for any T big enough the process $W_{T}^{*}(x)$ can be approximated by a suitable element of \mathscr{P},
b) any $s(x) \in \mathscr{S}$ will be approximated by $W_{T}^{*}(x)$ for a suitable T.

This Theorem clearly implies:
Consequence A. For any $\varepsilon>0$ and for almost all $\omega \in \Omega$ there exists a T_{0} $=T_{0}(\varepsilon, \omega)$ such that if

$$
W(T) \geqq(1-\varepsilon)(2 T \log \log T)^{\frac{1}{2}} \quad \text { for some } T \geqq T_{0}
$$

then

$$
\sup _{0 \leqq t \leqq T}\left|W(t)-t\left(\frac{2 \log \log T}{T}\right)^{\frac{1}{2}}\right| \leqq 2 \varepsilon(2 T \log \log T)^{\frac{1}{2}}
$$

Consequence A tells us that if $W(t)$ "wants" to be as big in point T as it can be at all then it has to increase in $(0, T)$ nearly linearly (that is to say it has to minimize the used energy).

A related question is: How big can the increment of a Wiener process be in an interval of size $a_{T}<T$ if we observe the process in [$0, T$]. Introducing the following notations:

$$
\begin{aligned}
& W(x+\Delta x)-W(x)=V(x ; \Delta x)=V(x ; \Delta x, \omega) \\
& \beta_{T}=\left(2 a_{T}\left(\log T a_{T}^{-1}+\log \log T\right)\right)^{-\frac{1}{2}}
\end{aligned}
$$

an answer to the above question is:
Theorem B (Csörgő-Révész, 1978, 1979). Let $0<a_{T} \leqq T$ be a function of $T \geqq 0$ satisfying the following conditions:
(i) a_{T} is non-decreasing,
(ii) $T a_{T}^{-1}$ is non-decreasing.

Then we have

$$
\limsup _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T-a_{T}} \beta_{T} V\left(t ; a_{T}\right)=1 \quad \text { a.s. }
$$

If we also assume that
(iii) $\frac{\log T a_{T}^{-1}}{\log \log T} \rightarrow \infty \quad$ as $T \rightarrow \infty$
then we also have

$$
\lim _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T-a_{T}} \beta_{T} V\left(t ; a_{T}\right)=1 \quad \text { a.s. }
$$

This Theorem clearly implies
Consequence B. For almost all $\omega \in \Omega$ and for all $\varepsilon>0$ there exists a $T_{0}=T_{0}(\varepsilon, \omega)$ such that for all $T \geqq T_{0}$ there is a corresponding $0 \leqq t=t(\omega, \varepsilon, T) \leqq T-a_{T}$ such that

$$
\begin{equation*}
V\left(t ; a_{T}\right) \geqq(1-\varepsilon) \beta_{T}^{-1} \approx(1-\varepsilon)\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

provided that a_{T} satisfies conditions (i), (ii), (iii).
Knowing Consequence A we can pose the following question: does inequality (1) imply that $W(x)$ is increasing nearly linearly in $\left(t, t+a_{T}\right)$? The answer to this question is positive in the same sense as in the case of Consequence A, and we also can formulate the following more general result.

Theorem 1. For all $\omega \in \Omega$ define the set $V_{T}(\omega) \subset C(0,1)$ as follows:

$$
V_{T}(\omega)=\left\{\Gamma_{t, T}(x, \omega): 0 \leqq t \leqq T-a_{T}\right\}
$$

where

$$
\Gamma_{t, x}(x, \omega)=\Gamma_{t, T}(x)=\beta_{T} V\left(t ; x a_{T}\right) \quad\left(0 \leqq x \leqq 1 ; 0 \leqq t \leqq T-a_{T}\right)
$$

Then for almost all $\omega \in \Omega$ and for all $\varepsilon>0$ there exists a $T_{0}=T_{0}(\omega, \varepsilon)$ such that

$$
\begin{equation*}
U\left(V_{T}(\omega), \varepsilon\right) \supset \mathscr{S} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
U(\mathscr{S}, \varepsilon) \supset V_{T}(\omega) \tag{3}
\end{equation*}
$$

if $T \geqq T_{0}$ provided that a_{T} satisfies conditions (i), (ii), (iii).
On the meaning of this Theorem let us mention that it says that:
(a) for all T big enough and for all $s(x) \in \mathscr{P}$ there exists a $0<t<T$ such that $\Gamma_{t, T}(x)(0 \leqq x \leqq 1)$ will approximate the given $s(x)$,
(b) for all T big enough and for every $0<t<T-a_{T}$ the function $\Gamma_{t, T}(x)$ $(0 \leqq x \leqq 1)$ can be approximated by a suitable element $s(x) \in \mathscr{S}$.

We have to emphasize that in Theorem 1 we assumed all the conditions (i), (ii), (iii). If we only assume conditions (i) and (ii) then we get a weaker result which contains Theorem A in case $a_{T}=T$.

Theorem 2. Assume that a_{T} satisfies conditions (i) and (ii). Then for almost all $\omega \in \Omega$ and for all $\varepsilon>0$ there exists a $T_{0}=T_{0}(\varepsilon, \omega)$ such that

$$
\begin{equation*}
V_{T}(\omega) \subset U(\mathscr{P}, \varepsilon) \tag{*}
\end{equation*}
$$

if $T \geqq T_{0}$. Further for any $s=s(x) \in \mathscr{S}, \varepsilon>0$ and for almost all $\omega \in \Omega$ there exist a $T=T(\varepsilon, \omega, s)$ and $a 0 \leqq t=t(\varepsilon, \omega, s) \leqq T-a_{T}$ such that

$$
\begin{equation*}
\sup _{0 \leqq x \leqq 1}\left|\Gamma_{t, T}(x)-s(x)\right| \leqq \varepsilon \tag{*}
\end{equation*}
$$

Remark. The important difference between Theorems 1 and 2 is the fact that in Theorem 1 we stated that for every T big enough and for every $s(x) \in \mathscr{S}$ there exists a $0 \leqq t \leqq T-a_{T}$ such that $\Gamma_{t, T}(x)$ approximates the given $s(x)$ while in Theorem 2 we only stated that for every $s(x) \in \mathscr{S}$ there exists a T (in fact there exist infinitely many T but not all T are suitable as in Theorem 1) and a $0 \leqq t \leqq T$ $-a_{T}$ such that $\Gamma_{t, T}(x)$ approximates the given $s(x)$.

In other words if a_{T} is small (condition (iii) holds true), then for every T (big enough) the random functions $\Gamma_{t, T}(x)$ will approximate every element of \mathscr{S} as t runs over the interval $\left[0, T-a_{T}\right]$. However if a_{T} is large then for any fixed T the random functions $\Gamma_{t, T}(x)\left(0 \leqq t \leqq T-a_{T}\right)$ will approximate some elements of \mathscr{S} but not all of them; all of them will be approximated when T is also allowed to vary. (An analogue of Theorem 2 was also given in Chan, Csörgö, Révész, 1978).

2. Some Lemmas

Lemma 1. Let m be a given integer, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ be real numbers with $\sum_{i=1}^{m} \lambda_{i}^{2}=m$
and define

$$
\begin{aligned}
\mathscr{G}_{h}(t) & =\mathscr{G}_{h}\left(t ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \\
& =\sum_{i=1}^{m} \lambda_{i}\left(W\left(t+i \frac{h}{m}\right)-W\left(t+(i-1) \frac{h}{m}\right)\right) .
\end{aligned}
$$

Then there exists a universal constant C such that

$$
P\left\{\sup _{0 \leqq t \leqq 1-h}\left|\mathscr{G}_{h}(t)\right| \geqq u h^{\frac{1}{2}}\right\} \leqq C m h^{-1} u e^{-u \frac{2}{2}}
$$

for every $0<h<1, u>1$.
The proof of this Lemma is based on
Slepian's Lemma (Slepian, 1962). Let $\mathscr{G}(t)$ and $\mathscr{G}^{*}(t)$ be Gaussian processes (possessing continuous sample functions). Suppose that these are standardized so that $E \Gamma(t)=E \Gamma^{*}(t)=0, E \Gamma^{2}(t)=E\left(\Gamma^{*}(t)\right)^{2}=1$ and write $\rho(t, s)$ and $\rho^{*}(t, s)$ for their covariance functions. Suppose that for some $T>0$ we have $\rho(t, s) \geqq \rho^{*}(t, s)$ when $0 \leqq t, s \leqq T$. Then

$$
P\left\{\sup _{0 \leqq t \leqq T}|\Gamma(t)| \leqq u\right\} \geqq P\left\{\sup _{0 \leqq t \leqq T}\left|\Gamma^{*}(t)\right| \leqq u\right\}
$$

for all $u>0$.
Proof of Lemma 1. Put

$$
\mathscr{G}_{h}^{*}(t)=m^{\frac{1}{2}}(W(t+h / m)-W(t))=\mathscr{G}_{h}\left(t ; m^{\frac{1}{2}}, 0,0, \ldots, 0\right) .
$$

Then the Slepian's lemma implies that

$$
\begin{aligned}
& P\left\{\sup _{0 \leqq t \leqq 1}\left|\mathscr{G}_{h}\left(t ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right| \geqq u h^{\frac{1}{2}}\right\} \\
& \quad \leqq P\left\{\sup _{0 \leqq t \leqq 1-h}\left|\mathscr{G}_{h}^{*}(t)\right| \geqq u h^{\frac{1}{2}}\right\} .
\end{aligned}
$$

The covariance function $\rho^{*}(t, s)$ of $\mathscr{G}_{h}^{*}(t)$ is

$$
\rho^{*}(t, s)= \begin{cases}1-\frac{|t-s|}{h} & \text { if }|t-s| \leqq h \\ 0 & \text { otherwise }\end{cases}
$$

Hence applying the result of Qualls and Watanabe (1972, Theorem 2.1) for the Gaussian process $\mathscr{G}_{h}^{*}(t)$ we get our Lemma 1.

Lemma 2. Let m be a given positive integer, $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$ be a sequence of real numbers with $m \sum_{i=1}^{m} \mu_{i}^{2}=1$. Then

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \inf _{0 \leqq t \leqq T-a T} \max _{1 \leqq i \leqq m}\left|\frac{V\left(t+(i-1) \frac{a_{T}}{m} ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}-\mu_{i}\right|=0 \quad \text { a.s. } \tag{4}
\end{equation*}
$$

provided that a_{T} satisfies conditions (i), (ii), (iii).
Proof. In fact the following stronger relations will be proved

$$
\lim _{T \rightarrow \infty} \min _{0 \leqq j \leqq\left[T a_{\bar{T}^{1}}-1\right]} \max _{1 \leqq i \leqq m}\left|\frac{V\left(j a_{T}+(i-1) \frac{a_{T}}{m} ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}-\mu_{i}\right|=0 \quad \text { a.s. }
$$

As a first step let us evaluate the probability

$$
p=P\left\{\left|\frac{W\left(\frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}-\mu\right| \leqq \varepsilon\right\} .
$$

In case $\mu>0$ we have

$$
\begin{aligned}
p & \geqq P\left\{(\mu-\varepsilon)\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}} \leqq W\left(\frac{a_{T}}{m}\right) \leqq\left(\mu-\frac{\varepsilon}{2}\right)\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}\right\} \\
& \geqq \frac{\varepsilon}{2}\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}} \exp \left\{-\left(\mu-\frac{\varepsilon}{2}\right)^{2} m \log T a_{T}^{-1}\right\}
\end{aligned}
$$

and hence

$$
\begin{equation*}
p \geqq \exp \left\{-\left(1-\frac{\varepsilon}{4}\right) \mu^{2} m \log T a_{T}^{-1}\right\} \tag{5}
\end{equation*}
$$

if ε is small enough and T is big enough. One can similarly see that (5) holds true for $\mu<0$.

This implies

$$
P\left\{\max _{1 \leqq i \leqq m}\left|\frac{V\left((i-1) \frac{a_{T}}{m} ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}-\mu_{i}\right| \leqq \varepsilon\right\} \geqq\left(a_{T} T^{-1}\right)^{1-\varepsilon / 4}
$$

if ε is small enough and T is big enough. Hence we have

$$
\begin{gathered}
P\left\{\min _{0 \leqq j \leqq\left[T \bar{a}^{1}-1\right]} \max _{1 \leqq i \leqq m}\left|\frac{V\left(j a_{T}+(i-1) \frac{a_{T}}{m} ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}-\mu_{i}\right| \geqq \varepsilon\right\} \\
\leqq\left(1-\left(a_{T} T^{-1}\right)^{1-\varepsilon / 4}\right)^{\left[T a \bar{T}^{1}-1\right]} \leqq \exp \left\{-\left(T a_{T}^{-1}\right)^{\varepsilon / 4}\right\}
\end{gathered}
$$

Let $T_{n}=n$ then by condition (iii):

$$
\sum_{n=1}^{\infty} \exp \left\{-\left(T a_{T}^{-1}\right)^{s / 4}\right\}<\infty
$$

and by the Borel-Cantelli Lemma we get (4) for $T=T_{n}$. The general case (the case of arbitrary T) follows simply from this special case.

Lemma 3. Let m be a given positive integer, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ be real numbers with $\sum_{i=1}^{m} \lambda_{i}^{2}=m$. Then

$$
\limsup _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T-a_{T}} \beta_{T}\left|\mathscr{G}_{a_{T}}\left(t ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)\right| \leqq 1 \quad \text { a.s. }
$$

provided a_{T} satisfies conditions (i), (ii).
Proof. By Lemma 1 we have

$$
\begin{aligned}
P\{ & \left.\sup _{0 \leqq \leq T-a_{T}} \beta_{T}\left|\mathscr{G}_{a_{T}}(t)\right| \geqq(1+\varepsilon)^{\frac{1}{2}}\right\} \\
& \leqq C m T a_{T}^{-1}(1+\varepsilon)^{\frac{1}{2}} \beta_{T}^{-1} a_{T}^{-\frac{1}{2}} \exp \left\{-(1+\varepsilon)\left(\log T a_{T}^{-1}+\log \log T\right)\right\} \\
& \leqq C m(1+\varepsilon)^{\frac{1}{2}}\left(2\left(\log T a_{T}^{-1}+\log \log T\right)\right)^{\frac{1}{2}}\left(a_{T} T^{-1}\right)^{\varepsilon}(\log T)^{-(1+\varepsilon)}
\end{aligned}
$$

Put $T_{k}=\Theta^{k}(\Theta>1)$. Then we get

$$
\limsup _{k \rightarrow \infty} \sup _{0 \leqq t \leqq r_{k}-a_{T_{k}}} \beta_{T_{k}}\left|\mathscr{G}_{a_{T_{k}}}(t)\right| \leqq 1 \quad \text { a.s. }
$$

Now, let $T_{k} \leqq T<T_{k+1}$. Then

$$
\begin{aligned}
& \sup _{0 \leqq t \leqq T-a_{T}} \beta_{T}\left|\mathscr{G}_{a_{T}}(t)\right| \leqq \sup _{0 \leqq t \leqq T_{k+1}-a_{T_{k+1}}} \beta_{T_{k}}\left|\mathscr{G}_{a_{T_{k+1}}}(t)\right| \\
& \quad+\sum_{i=1}^{m} \lambda_{i} \sup _{0 \leqq r \leqq T_{k+1}-a_{T_{k+1}}} \sup _{0 \leqq u \leqq a_{T_{k+1}-a_{T_{k}}}} \beta_{T_{k}}|V(t ; u)| .
\end{aligned}
$$

Since by condition (ii) the inequality $a_{T_{k+1}}-a_{T_{k}} \leqq(\Theta-1) a_{T_{k}}$ holds true, choosing Θ near enough to one and applying Theorem B we get Lemma 3.
Lemma 4. Let m be a given positive integer, $\mu_{1}, \mu_{2}, \ldots, \mu_{m}$ be a sequence of real numbers with $m \sum_{i=1}^{m} \mu_{i}^{2}=1$. Suppose also that a_{T} satisfies conditions (i), (ii). Then

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \inf _{0 \leqq t \leqq T-a_{T}} \max _{1 \leqq i \leqq m}\left|\beta_{T} V\left(t+(i-1) \frac{a_{T}}{m} ; \frac{a_{T}}{m}\right)-\mu_{i}\right|=0 \quad \text { a.s. } \tag{6}
\end{equation*}
$$

Proof. Put

$$
\lim _{T \rightarrow \infty} a_{T} T^{-1}=\rho
$$

and assume at first that $\rho<1$. Then we can define the sequence $\left\{T_{k} ; k=1,2, \ldots\right\}$ by $T_{1}=1$ and

$$
T_{k+1}-a_{T_{k+1}}=T_{k} .
$$

Instead of (6) the following stronger relation will be proved

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \max _{1 \leqq i \leq m}\left|\beta_{T_{k+1}} V\left(T_{k}+(i-1) \frac{a_{T_{k+1}}}{m} ; \frac{a_{T_{k+1}}}{m}\right)-\mu_{i}\right|=0 \quad \text { a.s. } \tag{7}
\end{equation*}
$$

Along the line of the proof of Lemma 2 we get

$$
\begin{aligned}
& P\left\{\max _{1 \leqq i \leqq m}\left|\beta_{T_{k+1}} V\left(T_{k}+(i-1) \frac{a_{T_{k+1}}}{m} ; \frac{a_{T_{k+1}}}{m}\right)-\mu_{i}\right| \leqq \varepsilon\right\} \\
& \quad \geqq\left(\frac{a_{T_{k+1}}}{T_{k+1} \log T_{k+1}}\right)^{1-\varepsilon / 4} .
\end{aligned}
$$

Our conditions imply that

$$
\sum_{k=1}^{\infty}\left(\frac{a_{T_{k+1}}}{T_{k+1} \log T_{k+1}}\right)^{1-\varepsilon / 4}=\infty
$$

which proves (7).
We have not yet covered the case $\rho=1$. Let us mention that in this case our conditions (i), (ii) imply that $a_{T}=T$ and (6) follow from Theorem A.

3. Proof of Theorem 1

Proof of (2). Let $s(x) \in \mathscr{S}$ be given. Then by Lemma 2 for any fixed integer m we have

$$
\lim _{T \rightarrow \infty} \inf _{0 \leqq r \leqq T-a_{T}} \max _{1 \leqq i \leqq m}\left|\frac{V\left(t+(i-1) \frac{a_{T}}{m} ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}-\left(s\left(\frac{i}{m}\right)-s\left(\frac{i-1}{m}\right)\right)\right|=0 \quad \text { a.s. }
$$

Now, (2) follows from Theorem B, choosing a large enough m.
Proof of (3). Let $C(m, \rho)$ be the sphere of radius ρ around the origin of R^{m} that is $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in C(m, \rho)$ if $\|x\|=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}\right)^{\frac{1}{2}} \leqq \rho$. Then Lemma 3 implies that for all $\varepsilon>0, m=1,2, \ldots$ and for almost all $\omega \in \Omega$ there exists a T_{0} $=T_{0}(\varepsilon, m, \omega)$ such that the vector

$$
\left(\frac{V\left(t ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}, \frac{V\left(t+\frac{a_{T}}{m} ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}, \ldots, \frac{V\left(t+\frac{m-1}{m} a_{T} ; \frac{a_{T}}{m}\right)}{\left(2 a_{T} \log T a_{T}^{-1}\right)^{\frac{1}{2}}}\right)
$$

belongs to $C\left(m,(1+\varepsilon)^{\frac{1}{2}}\right)$ for all $0 \leqq t \leqq T-a_{T}$ if $T \geqq T_{0}$. Now, (3) follows again from Theorem B.

4. Proof of Theorem 2

Proof of $\left(3^{*}\right)$ is the same as that of (3).
Proof of $\left(2^{*}\right)$ is the same as that of (2) applying Lemma 4 instead of Lemma 2.

References

Csörgö, M., Révész, P.: How big are the increments of a Wiener process? Ann. Probability 7, (1979)

Csörgö, M., Révész, P.: How big are the increments of a multiparameter Wiener process? Z. Wahrscheinlichkeitstheorie verw. Gebiete 42, 1-12 (1978)
Qualls, P., Watanabe, H.: Asymptotic properties of Gaussian processes. Ann. Math. Statist. 43, 580596 (1972)
Slepian, P.: The one-sided barrier problem for Gaussian noise. Bell. System Tech. J. 41, 463-501 (1962)

Chan, A.H.C., Csörgö, M., Révész, P.: Strassen type limit points for moving averages of a Wiener process. The Canad. J. Statist. 6, 57-75 (1978)
Strassen, V.: An invariance principle for the law of iterated logarithm. Z. Wahrscheinlichkeitstheorie verw. Gebiete 3, 211-226 (1964)

Received January 18, 1979; in revised form August 12, 1979

