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On Wigner's Semicircle Law 
for the Eigenvalues of Random Matrices 

L. ARNOLD 

1. Introduction 

Wigner asked in [8] for the general conditions of validity for his so-called 
semicircle law for the distribution of eigenvalues of random matrices which is 
important in the statistical theory of energy levels of heavy atomic nuclei [-6, 7]. 
We discovered [2] that the semicircle law possesses the following completely 
deterministic version from which probabilistic applications can be derived 
relatively easily. 

Let A n =(a~j), 1 < i, j<n,  be the n th section of an infinite Hermitian matrix, 
{2~"~}1_<k<~ its eigenvalues and t~kS"(~)~sl_<k_<~ the corresponding (orthonormalized 
column-) eigenvectors. Let * -  V n --(an1, an2 , . . . ,  a ..... 1), put 

[ ( n -  l) t] 

X,,(t)=(n(n-1)) -~ • 112~u(kn-1)l 2, 0=~t_~l  ( l)  
k = l  

(bookkeeping function for the length of the projections of the new row v* of AN 
onto the eigenvectors of the preceding matrix A n 1), let finally 

F n (x) = n- 1 (number of 2j, "~ < x I/n, 1 =< k < n) (2) 

(empirical d.f. of the eigenvalues of A,/]fn). 

Theorem 1. (Deterministic version of the semicircle law, see [-2].) Suppose 
(i) lim(number of k<n with [akkl >] /n) /n=0,  

n 

(ii) l imX, ( t )=Ct (O<C <oQ, O<t< l). 
n 

Then 
F,, ~ W(., C) (n ~ ~) ,  (3) 

where W is absolutely continuous with density (semicircle]) 

W(X, C ) = { ~  Crc)-I(4C-x2)4 for  l x l < 2 ] ~ ,  
for j x l > 2 ] ~ .  

Suppose now that the matrix elements aij are real-valued random variables 
defined on a fixed probability space (f2, Y, P), being independent for i>j  and 
satisfying aij=aji a.s. Suppose further that the diagonal elements a,-~, i>  1, are 
identically distributed according to the d.f. G, and that the off-diagonal elements 
a~j, i>j, are also identically distributed with d.f. H having variance a 2. 
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What we are interested in is the asymptotic behavior of the sequence of 
stochastic processes defined by (2). We are aiming at a strong (convergence a.s.) 
and a weak (convergence in probability) form of the semicircle law (3) for (2). 

In an earlier paper [1], we proved by a completely different method that the 
weak form of (3) holds under the conditions ~ x 2 d G < ~ ,  ~ x 4 d H < ~  and 

x dH=O.  If, moreover, ~ x ~ dG < ~ and ~ x 6 d H <  ~ ,  then the strong form 
holds, choosing in both cases C = a 2. 

In this paper, we are able to eliminate any condition about G and the condition 
x dH =0  and to reduce the moment restrictions on H by 2. The method used 

consists in utilizing Theorem 1 by verifying the assumptions (i) and (ii). 

2. Stochastic Convergence of {X. (t)} 

Due to the independence of the aiSs, the vector v* and the eigenvectors of 
A,_ 1 are independent, too. This fact will be used without further mentioning. 

Lemma 1. We have 

lira X,(1) = C <  ~ in probability <:~ ~ X 2 dH < ~ .  
n 

I f  ~ x dH = 0 and a 2 < ~ ,  then C :  6 2 and 

lira X ,  (t) = a 2 t in probabili ty,  0 <- t <- 1. 
n 

Proo f  Since ,-1 
x o ( 1 ) = ( n ( n -  1))-~ Z 2 a k n ,  

k = l  

the first part of the lemma is essentially the weak law of large numbers (cf. Feller 
F3], p. 232). For the proof of the second assertion, put 

_ ~ak, for L ak, I < nl/-~L-- 1, 
ak"=~0 for lak,l> n]/n--1, 

l<k<<_n-1 .  Let X,(t) be the expression obtained from (1) by replacing a~, by 
8k,, 1 <<_k<n- 1. Clearly 

P FIX, ( t ) -  E~ ,  (01 > ~3 _-< P [IX, ( t ) -  E~o (t) l > ~] + P [X, (t) :4: X, (t)]. 

We are going to show that the right-hand side tends to 0. Indeed, 

n - - 1  

P [X,(t)+ R,(t)] < Z P Elak,I > l / n - l ]  - - ( n -  1) PEla~21 > nl/~-- 1] ~ 0, 
k = l  

since ~ P [[ alzl> ~/n] < ~ ,  which is the case iff a 2 < ~ .  By Chebyshev's inequality, 

P ElF. (t) - EXo (t) l > e] =< ~- ~ (E~o (0 2 - ( E ~ .  (t))z). 

The proof of the lemma will be completed if we know that EX,(t) ~ o_2 t and 
E~, (t) ~ ~ o "~ t ~. 
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We have 

where 

Using 

n- -1  

T, r,, = [ ( n -  1) t3, 
i = 1  

we obtain 

n- -1  n - -1  

Z E(r,j), 
i = 1  j = l  

[(n - 1) t] 
(n-- 1) ~,(n -- 1) t j=ri/t)= F, Uik . 

k = l  

E6i~87,=Ea{~=m2 (i=j),  = ( E a i , ) 2 = ~  2 (i=l=j), 

n-- i  n--1 ) 
EX.( t )=(n(n-1))  -~ [ ( n - 1 )  t ] ( ~ 2 - r ~ ) + N ~  2 2 E r i j .  (4) 

i = 1  j = l  / 

- -  0" 2 t By assumption, m 2 --, < oo and /~1  = o ( n - ~ - ) ,  the last statement following from 

IxlkdH<~176 ~ x d g = ~  S xdH=o(1)  (n~oo ,  k > l )  (5) 
Ixl_-<~ 

(see Arnold [1], p. 265). Putting this into (4) together with the trivial estimate 
1 2 2  EYe J] ~(l~-- 1) 2, we obtain EX,(t)-~ 0"2 t. 

For estimating 
n--i  n-- i  

E X  n ( t )  2 = ( n  ( n  - -  1 ) ) - 1  2 "'" E E (ai,n ai2n ai3 n ai4 n) E (Fil i2 Fi3 i4) 
i 1 = 1  i 4 = 1  

we have to consider seven different cases of index degeneracy. Using again 
--21 - -  - -  1 

ml = o (n ), rn 2 ~ 0"2 and in addition m 3 = o (n ") and m4 = o (n), which follows from 

~ l x l k d H < o o ~ n  (k-~'/2 ~ txl"dH=o(1) ( r > k + l )  (6) 

(see Arnold [1], p. 264), we arrive at 

q.e.d. EX"(t)2 =ar t2 + o(1), 

3. Almost Sure Convergence of {X.(t)} 

A much more delicate truncation technique has to be applied in order to obtain 

Lemma 2. We have 

lim X,(1)= C <  oo a.s.<=>~x4dH<oo. 
n 

I f  ~ x dH = 0 and ~ x 4 dH < o% then C = a 2 and 

lim X , ( t ) = a  a t a.s., 0_<t_<l. 
n 

Proof 1. According to Lemma 1, there is a chance for a.s. convergence of 
{X,(1)} only if 0-2< ~ .  The prospective limit C must be equal to a 2. Obviously, 

n- -1  

X , ( 1 ) ~ a 2  a . s . < = > S , _ l : ( n _ l ) - i  ~ 2 (ak, - o -2) --, 0 a.s. 
k=l 
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Since {S,,} is a sequence of independent random variables, the Borel-Cantelli 
lemma yields 

S~Oa.s.<=>yP[[S~[>~]<oo for all e > 0 .  

By a theorem of Heyde and Rohatgi [4] (Theorem 2) this is equivalent to 

~nP[la~2-0"2l>n]<oo and ~ (x2-0"2)dH--,O. 
Ixl<~ 

The second condition is fulfilled since a2<  oo, and the first one is equivalent to 
E a42 = ~ X r dH = m4 < 0% according to the relation 

E IXl ('+ lIr <~ 00 ~ 2 n'P [kX[ >/71/'] < OO (7) 

(see [4], p. 74). This proves the first part of the lemma. 

2. Suppose now m4 < oo, m~ = ~ x dH = 0, m e -- o_2. We are going to prove that 

y P[IX,(t)-0"ztl>e]<oo for all ~>0,  

which is sufficient for X~(t)-~a2t a.s. This time, our truncation level for %,,  
1 < k < n -  1, wi l l  be 

~. = ( n -  1) '/2, 

where the appropriate choice of ~ ( 0 ,  1] will result from the proof. By (5) and (6), 
/T/1 ~- O(n-37 /2 ) ,  /~2 --+0"2, m3 --+/~3 7--y X 3 dH, m4 --'m4, and ~tr=o(n  v(v'2-21) (r > 5), 
which we have to apply for r =  5, 6, 7, and 8. Finally, for the rq's introduced in 
Section 2, we have to take into account that 

and 

n--1 n--1 

2 Lruf<�88 (p>2),  j~=lru <l/n~2, 
j = l  
j~i  j4:i 

n--1 n--1 
Z Zr~=[(n-1)  t] �9 

i=1 j = l  

3. Consider the following events (in O): 

A1. = [I a~.l> 1/7 nl/n- 1/2 for at least one k =< n -  1], 

A2,, = [-I ak~l > ( n - 1 )  v/2 for at least two k < n -  1], 

A3,=[ISk,(t)l >l f a  l /n/4 for at least one k < n - 1 ] ,  

where for 1 _< k_< n - 1 

and 

n--1 
ai. rik(t), 

i = l  
i~k 

A 4 ,  = [ I R a ( t ) -  a 2 tl > ~ /2 ] ,  

On = A1, w A2" ~ A3n ~ A~, 

B,, = [ I X ,  (t) - a2 tl > e l .  
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We have 

4 

and therefore P(B,) < P(f2,) < ~ P(Ai,), whence 
i=1  

4 

E P(B,) <= E E P(A,,) �9 
n i = l  n 

We complete the proof of the lemma by showing that the four series on the 
right-hand side of the last inequality converge. 

thus 

4. Convergence of ~ P(A1,): We have 

P(A1, ) = (n-  l) P [la12 ]> lf~ n ~ -  1/23, 

Z P(A~,) < E n P [[ a,, 1 > Ire I/n/2].  
n n 

By (7), the last series is finite iff m4 < oo. 

5. Convergence of F, P(A2,): We have 

n--1 n--1 

A2,=  Q) Q) []ainl>(n-1) ~'/2 and laj,l>(n-1)e/2], 
i=l j=l 

i#: j  

therefore (independence !) 

P(A2,)<(n- l) 2(P [ l a l z l > ( n -  1)v/2]) 2. 

Since m4< 0% n27p[la12]>n "1/2] --+0, thus 

( n P [ l a a z l  > r /7 /2] )  2 ~ - Z  0 ( / / / 2 - 4 7 )  < 0 0 ,  

whenever 7 > 4 3. 

6. Convergence of ~. P(A3,,): Putting el = ]/7/4, Chebyshev's inequality yields 

n--1 n - 1  

P(A3,) =< ~, P [ISk, (t) l > q V~3 < c7 6 n-3 ~ E&,.-6 
k = l  k = l  

In detail, 
n - 1  n - 1  

--6 
~sk,= Y~ Y ~(ail,...ai,,)E(r;,k...r,00. 

i1= 1 . . . i6=1  
il *k . . . i 6=#k  

A systematic search through possible index degeneracies leads to ESk,=o(nV), 
thus 

P(A3,)< ~ o(1) n ~+'-3 

The last series is finite, if ~ < 1. It turns out that the restrictions 

� 88  

put on 7 up to now will also assure the convergence of the remaining series. 
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7. Convergence of ~ P(Ar Clearly, 

P(A 4.) <= (2/~) 4 E (.~. (t) -- o "2 t )  4 , 

furthermore 

E(Y.(t)- 04 =< 8 E(2.(t)-  E2.(t)) + t?. 

According to the proof of Lemma 1, 

E.g. (t) - a 2 t = o (n- ~), 

so Z (EX.(t) - a 2  t) 4 certainly converges. After cumbersome, but simple calcu- 
lations following the lines of the proof of Lemma 1, we obtain 

Z ex.(t)? < 
q.e.d. 

4. The Semicircle Law 

The essential part of Lemma i as well as of Lemma 2 requires ~ x dH = O. 
The following lemma assures that the limit of {F,} is not perturbed by a non- 
vanishing expectation of the ais's. If F is any d.f., 

F(z)= ; ( x - z ) - l d F ( x ) ,  Im(z)>0,  
x =  - - o O  

is known as the Stieltjes transform of F. F is uniquely determined by F, and 
uniform convergence of {F,} in compact z sets is equivalent to vague convergence 
of {F,} (see [2], appendix). 

Lemma 3. Let A be an n • n Hermitian matrix, E the n • n matrix having all 
elements equal to 1, D=diag  (dl, ..., d,) a real diagonal matrix. Denote by F, F 1 
and F2 the empirical d. f  of the eigenvalues of A, A + a E  (a real) and A + D, respec- 
tively. Then 

(i) IP(z)-Pl(z)l _<-(n Im(z)) -1, 

(ii) IF(z) - P2 (z) l = (Ira (z))- 2 max Id,[, 

the bounds being independent of A and a. 

Proof (i) We have for Ira(z) > 0 P(z) = n- 1 tr R(z, A) and ~ (z) = n-  1 tr R (z, A + a E), 
where R ( z , A ) = ( A - z I )  -1 denotes the resolvent and trA the trace of A. The 
insertion of 

(I + a ER (z, A) ) - '  = I - (a/(1 + a e' R (z, A) e)) ER (z, A), 

e'=(1, 1, ..., 1) (n times), 

into the second resolvent equation 

R (z, A + a E) = R (z, A) (I + a ER (z, A))-I  

and passing to traces leads to 
ae'R(z,  A) 2 e 

P(z)--Pl(z)=n-1 1 +ae 'R(z ,  A) e 
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I f f ( z ) = ~  ( x - z ) - l d # ( x ) ,  where # (x )=e '  S(x)e, S being the spectral matrix of A, 
we have e'R(z, A )e=f ( z )  and e'R(z, A) 2 e=f '(z) ,  thus 

Since 

and 

we obtain 

~(z)_pl(z)=n_l  af'(z) 
1 + af(z)" 

]1 § af(z) l >= l a] Im (f(z)) = l al Im (z) S I x - z l-  2 d/z (x) 

laf'(z)l ~ lal ~ Ix-z1-2 d~(x), 

IF(z) - F1 (z)]< (n Im (z))-l. 

(ii) Again by the second resolvent equation, 

R (z, A § D ) -  R (z, A) = R (z, A + D) DR (z, A), 
therefore 

[/~(z)-/72 (z)[ < n  -1 [trR(z, A §  DR(z, A)[ 

< [IR(z, A § DR(z, A)][ 

< (Im(z)) -2 max Id,.[, 
l<_i<<_n 

q.e.d. 

We are now in a position to prove 

Theorem 2. Let F, be the empirical d.f. of the matrix A, / l fn  as defined by (2), 
where A,, is a random matrix satisfying the conditions stated in Section 1. Then 

(i) (Weak semicircle law): I f  a 2 < oo, then 

F, ~ W(.,  a 2) in probability, 

where W is Wigner's semicircle d.f  defined in Theorem 1. 

(ii) (Strong semicircle law): If, moreover, ~ x ~ dH < oo, then 

F, ~ W(' ,  o -2) a.s. 

Proof. By virtue of Lemma 3, it is no restriction of generality to assume 
x dH=O. A look at the proof  of Theorem i shows that  it remains true if all 

limits are interpreted as limits in probability. Condit ion (i) of Theorem 1 means 

Z , = n - 1  ~ I(1~1> ~) --+0 in probabili ty,  
k=l 

which is true since 
EZ, = P EIa11I > ]/n ] -~ 0. 

Actually, by the strong law of large numbers (see [5], p. 238), we even have 

Zn----~ O a . s .  

Hence, the weak and strong version of the semicircle law follow immediately 
from Lemma 1 and Lemma 2, resp., q.e.d. 
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In physical applications of the semicircle law it is sometimes required to 
determine the eigenvalue distribution of functions of A,,. This can be done by 
the following 

Corollary 1. Let f (x) be a real-valued measurable function on the real line being 
continuous W(., 0-2)-a.s. Denote by f(F) the image under f of the measure corre- 
sponding to the d.f  F. Define the matrix f(A) as usual by f(A) = ~ f(x) dS (x), S (x) 
being the spectral matrix of A. Then for the sequences of measures t~, defined by 

~t, (M)= n-1(number of eigenvalues o f f  (A,/l f  n) belonging to M) 

we have 
#~ o f ( W ( . ,  ~2)) in probability or a.s. 

whenever 
F n =:> W ( , ,  0 -2) in probability or a.s. 

Proof Clear by observing that/~, =f(F,). 

As an example, put f (x)= x 2. The asymptotic d.f. of the eigenvalues of A2/n 
has density 

g(x)={~/~z ]/x) (1-  x)�89 for 0 < x < l ,  

for x < 0  and x > l ,  

whereas it is sometimes incorrectly assumed that g is a quartercircle (see e.g. [8], 
p. 7). 

We conjecture that the conditions for the strong semicircle law can still be 
reduced to the finiteness of 0-2. The results essentially carry over to the Hermitian 
case. 
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