On Wigner's Semicircle Law for the Eigenvalues of Random Matrices

L. Arnold

1. Introduction

Wigner asked in [8] for the general conditions of validity for his so-called semicircle law for the distribution of eigenvalues of random matrices which is important in the statistical theory of energy levels of heavy atomic nuclei $[6,7]$. We discovered [2] that the semicircle law possesses the following completely deterministic version from which probabilistic applications can be derived relatively easily.

Let $A_{n}=\left(a_{i j}\right), 1 \leqq i, j \leqq n$, be the nth section of an infinite Hermitian matrix, $\left\{\lambda_{k}^{(n)}\right\}_{1 \leqq k \leqq n}$ its eigenvalues and $\left\{u_{k}^{(n)}\right\}_{1 \leqq k \leqq n}$ the corresponding (orthonormalized column-) eigenvectors. Let $v_{n}^{*}=\left(a_{n 1}, a_{n 2}, \ldots, a_{n, n-1}\right)$, put

$$
\begin{equation*}
X_{n}(t)=(n(n-1))^{-\frac{1}{2} \frac{[(n-1) t]}{}} \sum_{k=1}\left|v_{n}^{*} u_{k}^{(n-1)}\right|^{2}, \quad 0 \leqq t \leqq 1 \tag{1}
\end{equation*}
$$

(bookkeeping function for the length of the projections of the new row v_{n}^{*} of A_{n} onto the eigenvectors of the preceding matrix A_{n-1}), let finally

$$
\begin{equation*}
F_{n}(x)=n^{-1}\left(\text { number of } \lambda_{k}^{(n)} \leqq x \sqrt{n}, 1 \leqq k \leqq n\right) \tag{2}
\end{equation*}
$$

(empirical d.f. of the eigenvalues of A_{n} / \sqrt{n}).
Theorem 1. (Deterministic version of the semicircle law, see [2].) Suppose
(i) $\lim _{n}$ (number of $k \leqq n$ with $\left.\left|a_{k k}\right|>\sqrt{n}\right) / n=0$,
(ii) $\lim _{n} X_{n}(t)=C t(0<C<\infty, 0 \leqq t \leqq 1)$.

Then

$$
\begin{equation*}
F_{n} \Rightarrow W(\cdot, C) \quad(n \rightarrow \infty), \tag{3}
\end{equation*}
$$

where W is absolutely continuous with density (semicircle!)

$$
w(x, C)= \begin{cases}(2 C \pi)^{-1}\left(4 C-x^{2}\right)^{\frac{1}{2}} & \text { for }|x| \leqq 2 \sqrt{C} \\ 0 & \text { for }|x|>2 \sqrt{C}\end{cases}
$$

Suppose now that the matrix elements $a_{i j}$ are real-valued random variables defined on a fixed probability space (Ω, \mathscr{F}, P), being independent for $i \geqq j$ and satisfying $a_{i j}=a_{j i}$ a.s. Suppose further that the diagonal elements $a_{i i}, i \geqq 1$, are identically distributed according to the d.f. G, and that the off-diagonal elements $a_{i j}, i>j$, are also identically distributed with d.f. H having variance σ^{2}.

What we are interested in is the asymptotic behavior of the sequence of stochastic processes defined by (2). We are aiming at a strong (convergence a.s.) and a weak (convergence in probability) form of the semicircle law (3) for (2).

In an earlier paper [1], we proved by a completely different method that the weak form of (3) holds under the conditions $\int x^{2} d G<\infty, \int x^{4} d H<\infty$ and $\int x d H=0$. If, moreover, $\int x^{4} d G<\infty$ and $\int x^{6} d H<\infty$, then the strong form holds, choosing in both cases $C=\sigma^{2}$.

In this paper, we are able to eliminate any condition about G and the condition $\int x d H=0$ and to reduce the moment restrictions on H by 2 . The method used consists in utilizing Theorem 1 by verifying the assumptions (i) and (ii).

2. Stochastic Convergence of $\left\{X_{\boldsymbol{n}}(t)\right\}$

Due to the independence of the $a_{i j}$'s, the vector v_{n}^{*} and the eigenvectors of A_{n-1} are independent, too. This fact will be used without further mentioning.

Lemma 1. We have

$$
\lim _{n} X_{n}(1)=C<\infty \text { in probability } \Leftrightarrow \int x^{2} d H<\infty
$$

If $\int x d H=0$ and $\sigma^{2}<\infty$, then $C=\sigma^{2}$ and

$$
\lim _{n} X_{n}(t)=\sigma^{2} t \text { in probability, } 0 \leqq t \leqq 1
$$

Proof. Since

$$
X_{n}(1)=(n(n-1))^{-\frac{1}{2}} \sum_{k=1}^{n-1} a_{k n}^{2},
$$

the first part of the lemma is essentially the weak law of large numbers (cf. Feller [3], p. 232). For the proof of the second assertion, put

$$
\bar{a}_{k n}= \begin{cases}a_{k n} & \text { for }\left|a_{k n}\right| \leqq \sqrt{n-1} \\ 0 & \text { for }\left|a_{k n}\right|>\sqrt{n-1}\end{cases}
$$

$1 \leqq k \leqq n-1$. Let $\bar{X}_{n}(t)$ be the expression obtained from (1) by replacing $a_{k n}$ by $\bar{a}_{k n}, 1 \leqq k \leqq n-1$. Clearly

$$
P\left[\left|X_{n}(t)-E \bar{X}_{n}(t)\right|>\varepsilon\right] \leqq P\left[\left|\bar{X}_{n}(t)-E \bar{X}_{n}(t)\right|>\varepsilon\right]+P\left[X_{n}(t) \neq \bar{X}_{n}(t)\right] .
$$

We are going to show that the right-hand side tends to 0 . Indeed,

$$
P\left[X_{n}(t) \neq \bar{X}_{n}(t)\right] \leqq \sum_{k=1}^{n-1} P\left[\left|a_{k n}\right|>\sqrt{n-1}\right]=(n-1) P\left[\left|a_{12}\right|>\sqrt{n-1}\right] \rightarrow 0
$$

since $\sum P\left[\left|a_{12}\right|>\sqrt{n}\right]<\infty$, which is the case iff $\sigma^{2}<\infty$. By Chebyshev's inequality,

$$
P\left[\left|\bar{X}_{n}(t)-E \bar{X}_{n}(t)\right|>\varepsilon\right] \leqq \varepsilon^{-2}\left(E \bar{X}_{n}(t)^{2}-\left(E \bar{X}_{n}(t)\right)^{2}\right)
$$

The proof of the lemma will be completed if we know that $E \bar{X}_{n}(t) \rightarrow \sigma^{2} t$ and $E \bar{X}_{n}(t)^{2} \rightarrow \sigma^{4} t^{2}$.

We have
where

Using

$$
E \bar{X}_{n}(t)=(n(n-1))^{-\frac{1}{2}} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} E\left(\bar{a}_{i n} \bar{a}_{j n}\right) E\left(r_{i j}\right)
$$

$$
r_{i j}=r_{i j}(t)=\sum_{k=1}^{[(n-1) t]} u_{i k}^{(n-1)} u_{j k}^{(n-1)} .
$$

$$
\sum_{i=1}^{n-1} r_{i i}=[(n-1) t], \quad E \bar{a}_{i n} \bar{a}_{j n}=E \bar{a}_{i n}^{2}=\bar{m}_{2} \quad(i=j), \quad=\left(E \bar{a}_{i n}\right)^{2}=\bar{m}_{1}^{2} \quad(i \neq j)
$$

we obtain

$$
\begin{equation*}
E \bar{X}_{n}(t)=(n(n-1))^{-\frac{1}{2}}\left([(n-1) t]\left(\bar{m}_{2}-\bar{m}_{1}^{2}\right)+\bar{m}_{1}^{2} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} E r_{i j}\right) . \tag{4}
\end{equation*}
$$

By assumption, $\bar{m}_{2} \rightarrow \sigma^{2}<\infty$ and $\bar{m}_{1}=o\left(n^{-\frac{1}{2}}\right)$, the last statement following from

$$
\begin{equation*}
\int|x|^{k} d H<\infty, \quad \int x d H=0 \Rightarrow n^{(k-1) / 2} \int_{|x| \leqq \sqrt{n}} x d H=o(1) \quad(n \rightarrow \infty, k \geqq 1) \tag{5}
\end{equation*}
$$

(see Arnold [1], p. 265). Putting this into (4) together with the trivial estimate $\left|\sum \sum E r_{i j}\right| \leqq(n-1)^{2}$, we obtain $E \bar{X}_{n}(t) \rightarrow \sigma^{2} t$.

For estimating

$$
E \bar{X}_{n}(t)^{2}=(n(n-1))^{-1} \sum_{i_{1}=1}^{n-1} \cdots \sum_{i_{4}=1}^{n-1} E\left(\bar{a}_{i_{1} n} \bar{a}_{i_{2} n} \bar{a}_{i_{3} n} \bar{a}_{i_{4} n}\right) E\left(r_{i_{1} i_{2}} r_{i_{3} i_{4}}\right)
$$

we have to consider seven different cases of index degeneracy. Using again $\bar{m}_{1}=o\left(n^{-\frac{1}{2}}\right), \bar{m}_{2} \rightarrow \sigma^{2}$ and in addition $\bar{m}_{3}=o\left(n^{\frac{1}{2}}\right)$ and $\bar{m}_{4}=o(n)$, which follows from

$$
\begin{equation*}
\int|x|^{k} d H<\infty \Rightarrow n^{(k-r) / 2} \int_{|x| \leqq \sqrt{n}}|x|^{r} d H=o(1) \quad(r \geqq k+1) \tag{6}
\end{equation*}
$$

(see Arnold [1], p. 264), we arrive at
q.e.d.

$$
E \bar{X}_{n}(t)^{2}=\sigma^{4} t^{2}+o(1)
$$

3. Almost Sure Convergence of $\left\{X_{n}(t)\right\}$

A much more delicate truncation technique has to be applied in order to obtain
Lemma 2. We have

$$
\lim _{n} X_{n}(1)=C<\infty \text { a.s. } \Leftrightarrow \int x^{4} d H<\infty .
$$

If $\int x d H=0$ and $\int x^{4} d H<\infty$, then $C=\sigma^{2}$ and

$$
\lim _{n} X_{n}(t)=\sigma^{2} t \text { a.s., } \quad 0 \leqq t \leqq 1
$$

Proof. 1. According to Lemma 1, there is a chance for a.s. convergence of $\left\{X_{n}(1)\right\}$ only if $\sigma^{2}<\infty$. The prospective limit C must be equal to σ^{2}. Obviously,

$$
X_{n}(1) \rightarrow \sigma^{2} \text { a.s. } \Leftrightarrow S_{n-1}=(n-1)^{-1} \sum_{k=1}^{n-1}\left(a_{k n}^{2}-\sigma^{2}\right) \rightarrow 0 \text { a.s. }
$$

Since $\left\{S_{n}\right\}$ is a sequence of independent random variables, the Borel-Cantelli lemma yields

$$
S_{n} \rightarrow 0 \text { a.s. } \Leftrightarrow \sum P\left[\left|S_{n}\right|>\varepsilon\right]<\infty \quad \text { for all } \varepsilon>0
$$

By a theorem of Heyde and Rohatgi [4] (Theorem 2) this is equivalent to

$$
\sum n P\left[\left|a_{12}^{2}-\sigma^{2}\right|>n\right]<\infty \quad \text { and } \quad \int_{|x|<n}\left(x^{2}-\sigma^{2}\right) d H \rightarrow 0 .
$$

The second condition is fulfilled since $\sigma^{2}<\infty$, and the first one is equivalent to $E a_{12}^{4}=\int x^{4} d H=m_{4}<\infty$, according to the relation

$$
\begin{equation*}
E|X|^{(t+1) r}<\infty \Leftrightarrow \sum n^{t} P\left[|X|>n^{1 / r}\right]<\infty \tag{7}
\end{equation*}
$$

(see [4], p. 74). This proves the first part of the lemma.
2. Suppose now $m_{4}<\infty, m_{1}=\int x d H=0, m_{2}=\sigma^{2}$. We are going to prove that

$$
\sum P\left[\left|X_{n}(t)-\sigma^{2} t\right|>\varepsilon\right]<\infty \quad \text { for all } \varepsilon>0
$$

which is sufficient for $X_{n}(t) \rightarrow \sigma^{2} t$ a.s. This time, our truncation level for $a_{k n}$, $1 \leqq k \leqq n-1$, will be

$$
\tau_{n}=(n-1)^{\gamma / 2}
$$

where the appropriate choice of $\gamma \in(0,1]$ will result from the proof. By (5) and (6), $\bar{m}_{1}=o\left(n^{-3 \gamma / 2}\right), \bar{m}_{2} \rightarrow \sigma^{2}, \bar{m}_{3} \rightarrow m_{3}=\int x^{3} d H, \bar{m}_{4} \rightarrow m_{4}$, and $\bar{m}_{r}=o\left(n^{\gamma(r / 2-2)}\right)(r \geqq 5)$, which we have to apply for $r=5,6,7$, and 8 . Finally, for the $r_{i j}$'s introduced in Section 2, we have to take into account that

$$
\sum_{\substack{j=1 \\ j \neq i}}^{n-1}\left|r_{i j}\right|^{p} \leqq \frac{1}{4} \quad(p \geqq 2), \quad\left|\sum_{\substack{j=1 \\ j \neq i}}^{n-1} r_{i j}\right| \leqq \sqrt{n} / 2
$$

and

$$
\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} r_{i j}^{2}=[(n-1) t] .
$$

3. Consider the following events (in Ω):

$$
\begin{aligned}
& A_{1 n}=\left[\left|a_{k n}\right|>\sqrt{\varepsilon} \sqrt{n-1} / 2 \text { for at least one } k \leqq n-1\right], \\
& A_{2 n}=\left[\left|a_{k n}\right|>(n-1)^{\gamma / 2} \text { for at least two } k \leqq n-1\right], \\
& A_{3 n}=\left[\left|\bar{S}_{k n}(t)\right|>\sqrt{\varepsilon} \sqrt{n} / 4 \text { for at least one } k \leqq n-1\right],
\end{aligned}
$$

where for $1 \leqq k \leqq n-1$

$$
\begin{aligned}
\bar{S}_{k n}(t) & =\sum_{\substack{i=1 \\
i \neq k}}^{n-1} \bar{a}_{i n} r_{i k}(t), \\
A_{4 n} & =\left[\left|\bar{X}_{n}(t)-\sigma^{2} t\right|>\varepsilon / 2\right], \\
\Omega_{n} & =A_{1 n} \cup A_{2 n} \cup A_{3 n} \cup A_{4 n}
\end{aligned}
$$

and

$$
B_{n}=\left[\left|X_{n}(t)-\sigma^{2} t\right|>\varepsilon\right] .
$$

We have

$$
B_{n} \subset \Omega_{n},
$$

and therefore $P\left(B_{n}\right) \leqq P\left(\Omega_{n}\right) \leqq \sum_{i=1}^{4} P\left(A_{i n}\right)$, whence

$$
\sum_{n} P\left(B_{n}\right) \leqq \sum_{i=1}^{4} \sum_{n} P\left(A_{i n}\right) .
$$

We complete the proof of the lemma by showing that the four series on the right-hand side of the last inequality converge.
4. Convergence of $\sum P\left(A_{1 n}\right)$: We have

$$
P\left(A_{1 n}\right)=(n-1) P\left[\left|a_{12}\right|>\sqrt{\varepsilon} \sqrt{n-1} / 2\right],
$$

thus

$$
\sum_{n} P\left(A_{1 n}\right) \leqq \sum_{n} n P\left[\left|a_{1 n}\right|>\sqrt{\varepsilon} \sqrt{n} / 2\right] .
$$

By (7), the last series is finite iff $m_{4}<\infty$.
5. Convergence of $\sum P\left(A_{2 n}\right)$: We have

$$
A_{2 n}=\bigcup_{\substack{i=1 \\ i \neq j=1}}^{n-1} \bigcup_{i n}^{n-1}\left[\left|a_{i n}\right|>(n-1)^{\gamma / 2} \text { and }\left|a_{j n}\right|>(n-1)^{\gamma / 2}\right],
$$

therefore (independence!)

$$
P\left(A_{2 n}\right) \leqq(n-1)^{2}\left(P\left[\left|a_{12}\right|>(n-1)^{\gamma / 2}\right]\right)^{2} .
$$

Since $m_{4}<\infty, n^{2 \gamma} P\left[\left|a_{12}\right|>n^{\gamma / 2}\right] \rightarrow 0$, thus

$$
\sum\left(n P\left[\left|a_{12}\right|>n^{\gamma / 2}\right]\right)^{2}=\sum o\left(n^{2-4 \gamma}\right)<\infty,
$$

whenever $\gamma>\frac{3}{4}$.
6. Convergence of $\sum P\left(A_{3 n}\right)$: Putting $\varepsilon_{1}=\sqrt{\varepsilon} / 4$, Chebyshev's inequality yields

In detail,

$$
P\left(A_{3 n}\right) \leqq \sum_{k=1}^{n-1} P\left[\left|\bar{S}_{k n}(t)\right|>\varepsilon_{1} \sqrt{n}\right] \leqq \varepsilon_{1}^{-6} n^{-3} \sum_{k=1}^{n-1} E \bar{S}_{k n}^{6}
$$

$$
E \bar{S}_{k n}^{6}=\sum_{\substack{i_{1}=1 \ldots i_{6} \\ i_{1} \neq k \ldots i_{6} \neq k}}^{n-1} E\left(\bar{a}_{i_{1} n} \ldots \bar{a}_{i_{6} n}\right) E\left(r_{i_{1} k} \ldots r_{i_{6} k}\right) .
$$

A systematic search through possible index degeneracies leads to $E \bar{S}_{k n}=o\left(n^{\prime \prime}\right)$, thus

$$
\sum P\left(A_{3 n}\right) \leqq \sum o(1) n^{1+\gamma-3} .
$$

The last series is finite, if $\gamma<1$. It turns out that the restrictions

$$
\frac{3}{4}<\gamma<1
$$

put on γ up to now will also assure the convergence of the remaining series.
7. Convergence of $\sum P\left(A_{4 n}\right)$: Clearly,

$$
P\left(A_{4 n}\right) \leqq(2 / \varepsilon)^{4} E\left(\bar{X}_{n}(t)-\sigma^{2} t\right)^{4}
$$

furthermore

$$
E\left(\bar{X}_{n}(t)-\sigma^{2} t\right)^{4} \leqq 8 E\left(\bar{X}_{n}(t)-E \bar{X}_{n}(t)\right)^{4}+8\left(E \bar{X}_{n}(t)-\sigma^{2} t\right)^{4} .
$$

According to the proof of Lemma 1,

$$
E \bar{X}_{n}(t)-\sigma^{2} t=o\left(n^{-\gamma}\right)
$$

so $\sum\left(E \bar{X}_{n}(t)-\sigma^{2} t\right)^{4}$ certainly converges. After cumbersome, but simple calculations following the lines of the proof of Lemma 1, we obtain

$$
\sum E\left(\bar{X}_{n}(t)-E \bar{X}_{n}(t)\right)^{4}<\infty,
$$

q.e.d.

4. The Semicircle Law

The essential part of Lemma 1 as well as of Lemma 2 requires $\int x d H=0$. The following lemma assures that the limit of $\left\{F_{n}\right\}$ is not perturbed by a nonvanishing expectation of the $a_{i j}$'s. If F is any d.f.,

$$
\hat{F}(z)=\int_{x=-\infty}^{\infty}(x-z)^{-1} d F(x), \quad \operatorname{Im}(z)>0
$$

is known as the Stieltjes transform of $F . F$ is uniquely determined by \hat{F}, and uniform convergence of $\left\{\hat{F}_{n}\right\}$ in compact z sets is equivalent to vague convergence of $\left\{F_{n}\right\}$ (see [2], appendix).

Lemma 3. Let A be an $n \times n$ Hermitian matrix, E the $n \times n$ matrix having all elements equal to $1, D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ a real diagonal matrix. Denote by F, F_{1} and F_{2} the empirical d.f. of the eigenvalues of $A, A+a E$ (a real) and $A+D$, respectively. Then
(i) $\left|\hat{F}(z)-\hat{F}_{1}(z)\right| \leqq(n \operatorname{Im}(z))^{-1}$,
(ii) $\left|\hat{F}(z)-\hat{F}_{2}(z)\right| \leqq(\operatorname{Im}(z))^{-2} \max _{1 \leqq i \leqq n}\left|d_{i}\right|$,
the bounds being independent of A and a.
Proof. (i) We have for $\operatorname{Im}(z)>0 \hat{F}(z)=n^{-1} \operatorname{tr} R(z, A)$ and $\hat{F}_{1}(z)=n^{-1} \operatorname{tr} R(z, A+a E)$, where $R(z, A)=(A-z I)^{-1}$ denotes the resolvent and $\operatorname{tr} A$ the trace of A. The insertion of

$$
\begin{aligned}
(I+a E R(z, A))^{-1} & =I-\left(a /\left(1+a e^{\prime} R(z, A) e\right)\right) E R(z, A), \\
e^{\prime} & =(1,1, \ldots, 1) \quad(n \text { times }),
\end{aligned}
$$

into the second resolvent equation

$$
R(z, A+a E)=R(z, A)(I+a E R(z, A))^{-1}
$$

and passing to traces leads to

$$
\hat{F}(z)-\hat{F}_{1}(z)=n^{-1} \frac{a e^{\prime} R(z, A)^{2} e}{1+a e^{\prime} R(z, A) e}
$$

If $f(z)=\int(x-z)^{-1} d \mu(x)$, where $\mu(x)=e^{\prime} S(x) e, S$ being the spectral matrix of A, we have $e^{\prime} R(z, A) e=f(z)$ and $e^{\prime} R(z, A)^{2} e=f^{\prime}(z)$, thus

$$
\hat{F}(z)-\hat{F}_{1}(z)=n^{-1} \frac{a f^{\prime}(z)}{1+a f(z)}
$$

Since

$$
|1+a f(z)| \geqq|a| \operatorname{Im}(f(z))=|a| \operatorname{Im}(z) \int|x-z|^{-2} d \mu(x)
$$

and

$$
\left|a f^{\prime}(z)\right| \leqq|a| \int|x-z|^{-2} d \mu(x)
$$

we obtain

$$
\left|\hat{F}(z)-\hat{F}_{1}(z)\right| \leqq(n \operatorname{Im}(z))^{-1}
$$

(ii) Again by the second resolvent equation,

$$
R(z, A+D)-R(z, A)=R(z, A+D) D R(z, A)
$$

therefore
q.e.d.

$$
\begin{aligned}
\left|\hat{F}(z)-\hat{F}_{2}(z)\right| & \leqq n^{-1}|\operatorname{tr} R(z, A+D) D R(z, A)| \\
& \leqq\|R(z, A+D) D R(z, A)\| \\
& \leqq(\operatorname{Im}(z))^{-2} \max _{1 \leqq i \leqq n}\left|d_{i}\right|
\end{aligned}
$$

We are now in a position to prove
Theorem 2. Let F_{n} be the empirical d.f. of the matrix A_{n} / \sqrt{n} as defined by (2), where A_{n} is a random matrix satisfying the conditions stated in Section 1. Then
(i) (Weak semicircle law): If $\sigma^{2}<\infty$, then

$$
F_{n} \Rightarrow W\left(\cdot, \sigma^{2}\right) \quad \text { in probability }
$$

where W is Wigner's semicircle d.f. defined in Theorem 1.
(ii) (Strong semicircle law): If, moreover, $\int x^{4} d H<\infty$, then

$$
F_{n} \Rightarrow W\left(\cdot, \sigma^{2}\right) \quad \text { a.s. }
$$

Proof. By virtue of Lemma 3, it is no restriction of generality to assume $\int x d H=0$. A look at the proof of Theorem 1 shows that it remains true if all limits are interpreted as limits in probability. Condition (i) of Theorem 1 means

$$
Z_{n}=n^{-1} \sum_{k=1}^{n} I_{\left(\left|a_{k k}\right|>\sqrt{n}\right)} \rightarrow 0 \quad \text { in probability }
$$

which is true since

$$
E Z_{n}=P\left[\left|a_{11}\right|>\sqrt{n}\right] \rightarrow 0
$$

Actually, by the strong law of large numbers (see [5], p.238), we even have

$$
Z_{n} \rightarrow 0 \quad \text { a.s. }
$$

Hence, the weak and strong version of the semicircle law follow immediately from Lemma 1 and Lemma 2, resp., q.e.d.

In physical applications of the semicircle law it is sometimes required to determine the eigenvalue distribution of functions of A_{n}. This can be done by the following

Corollary 1. Let $f(x)$ be a real-valued measurable function on the real line being continuous $W\left(\cdot, \sigma^{2}\right)$-a.s. Denote by $f(F)$ the image under f of the measure corresponding to the d.f.F. Define the matrix $f(A)$ as usual by $f(A)=\int f(x) d S(x), S(x)$ being the spectral matrix of A. Then for the sequences of measures μ_{n} defined by

$$
\mu_{n}(M)=n^{-1}\left(\text { number of eigenvalues of } f\left(A_{n} / \sqrt{n}\right) \text { belonging to } M\right)
$$

we have

$$
\mu_{n} \Rightarrow f\left(W\left(\cdot, \sigma^{2}\right)\right) \quad \text { in probability or a.s. }
$$

whenever

$$
F_{n} \Rightarrow W\left(\cdot, \sigma^{2}\right) \quad \text { in probability or a.s. }
$$

Proof. Clear by observing that $\mu_{n}=f\left(F_{n}\right)$.
As an example, put $f(x)=x^{2}$. The asymptotic d.f. of the eigenvalues of A_{n}^{2} / n has density

$$
g(x)= \begin{cases}(2 / \pi \sqrt{x})(1-x)^{\frac{1}{2}} & \text { for } 0<x<1 \\ 0 & \text { for } x<0 \text { and } x>1\end{cases}
$$

whereas it is sometimes incorrectly assumed that g is a quartercircle (see e.g. [8], p.7).

We conjecture that the conditions for the strong semicircle law can still be reduced to the finiteness of σ^{2}. The results essentially carry over to the Hermitian case.

References

1. Arnold, L.: On the asymptotic distribution of the eigenvalues of random matrices. J. math. Analysis Appl. 20, 262-268 (1967).
2. - Deterministic version of Wigner's semicircle law for the distribution of matrix eigenvalues. (To appear.)
3. Feller, W.: An introduction to probability theory and its applications, Vol. II. New York: John Wiley 1966.
4. Heyde, C.C., Rohatgi, V.K.: A pair of complementary theorems on convergence rates in the law of large numbers. Proc. Cambridge philos. Soc. 63, 73-82 (1967).
5. Loève, M.: Probability theory, 2nd edn. New York: Van Nostrand 1960.
6. Metha, M.L.: Random matrices. New York: Academic Press 1967.
7. Porter, C.E. (ed.): Statistical theories of spectra: Fluctuations. New York: Academic Press 1965.
8. Wigner, E. P.: Random matrices in physics. SIAM Review 9, 1-23 (1967).

Dr. L. Arnold
Fachbereich Mathematik der Universität Stuttgart BRD-7000 Stuttgart 1, Herdweg 51
Germany

