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1. Introduction 

The theory of probabilistic metric spaces is of fundamental importance in 
probabilistic functional analysis. Recently, some fixed point theorems for map- 
pings in a probabilistic metric space (PM-space) were proved by several au- 
thors [1-5, 10, 13]. The purpose of this paper is to give some new fixed point 
theorems which generalize and unify the corresponding theorems stated above. 
As an example of applications, in w 5 we use the results of the type considered 
in w 3 to study the existence and uniqueness of solutions of nonlinear Volterra 
integral equations on probabilistic metric spaces. 

2. Preliminaries 

For the sake of convenience, following [2], we first introduce some basic 
definitions and concepts. 

Throughout this paper R denotes the real, R + = [0, oo), Z + is the set of all 
positive integers. 

Definition l. A mapping F: R ~ R  + is called a distribution function if it is 
nondecreasing left-continuous with infF(t)= 0, sup F(t)= 1. 

tER t~R 

In the sequel, we always denote by ~ the set of all distribution functions, 
and H will always denote the specific distribution function defined by 

H(T) = {01 ' t>0 .  t<0 ,  

Definition 2. A mapping A : [0, 1] x E0,1] ~ [0,1] is called a t-norm if it satisfies 
the following conditions: 

(A-I) A(a, 1)=a, A(0,0)=0; 

(A-2) A (a, b) = A (b, a); 
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(A-3) A(c,d)> A(a,b) for c>a, d>b; 

(A-4) A (A (a, b), c) = A (a, A (b, c)). 

We list here three of the simplest t-norms which will be used. 

A l = m a x { s u m - 1 ,  0}, i.e. A l ( a , b ) = m a x { a + b - 1 ,  0}, Va, b~[0,1]. 

Aa=product  , i.e. Az(a ,b)=a.b  , Va, b~[0,1]. 

A3=min, i.e. A3(a,b)=min{a,b }, Va, b~[0,1]. 

Definition3. A Menger PM-space (briefly Menger space) is a triplet (E,~,,A), 
where E is an abstract set of elements, f f  is a mapping of E x E - , ~  and A is a 
t-norm satisfying the following conditions (we shall denote the distribution 
function ~(x ,  y) by F~, y): 

(PM-1) 

(PM-2) 

(PM-3) 

(PM-4) 

F~, y = H if and only if x = y; 

F~,,(0) =0;  

Q,,=Fy, x; 

fx, z(tl + t2) >= A (Fx, y(tl) , Fy, z(t2)), V x, y, zeE, tl, t 2 >= O. 

Schweizer, Sklar [8] have pointed out that if (E,~,A) is a Menger space 
with continuous t-norm A, then (E,o ~,A) is a Hausdorff space in the topology 
J-  induced by the family of neighborhoods 

{Up(e,2): p~E, e>0, ),>0}, (2.1) 

where Uv(e,2)= {x~E, Fx, p(e)> 1-2}.  From the topology 3-- we can derive some 
notions as follows: 

Definition 4. Let (E, g ,  A) be a Menger space with continuous t-norm A. A 
sequence {x ,}cE is said to be J-convergent  to x~E (we write x, 9-~x) if for 
any e>0  and )~>0, there exists a N = N ( e , 2 ) e Z  + such that Fx , ,~ (Q>I -2  
whenever n > N. 

{x,} c E is called a J - C a u c h y  sequence if for any e> 0, 2 >0, there exists a 
N = N(e, 2)~Z + such that Fx,,~,,(e) > 1 - 2 whenever n, m> N. 

A Menger space (E,~,,A) is said to be Y-complete if each 3--Cauchy 
sequence in E converges in Y to an element in E. 

Definition5. Let (E,~,A)  be a Menger space with continuous t-norm A, T a 
self-mapping on (E ,~A) .  T is said to be J -cont inuous  if, whenever {x ,}cE 
converges in Y to a point x~E, then Tx ,  9- ~ Tx  (n~oo).  

Lemma 1 [83. Let (E, ~, A) be a Menger space, with continuous t-norm. Then {x,} 
c E  is J--convergent to x~E if and only if for each t~R 

lim F~=, x(t) = H(t). 
n ~ c ~  



On the Theory of Probabilistic Metric Spaces with Applications 87 

3. Common Fixed Point Theorems for a Sequence of Mappings 

Definition 6. A set B c (E, ~ A) is called probabilistically bounded if 

sup inf Fp,q(t)= 1. 
t > 0  p , q ~ B  

Throughout  this section we always assume that (E,~-~A) is a J - co m p le t e  
Menger space, A is a continuous t-norm which is stronger than A~ = m a x  {sum 
-1 , 0} ,  i.e. A(a,b)>Al(a,b), Va, b~[0,1],  and the function ~(t) satisfies the 
following condition (O): 

(~): ~(t): R + ~ R  + is strictly increasing, O(0)=0, and O~(t)--,oo 
(n-+ oo), V t>0 ,  where O'(t) denotes the n-th iteration of ~(t). 

3-  
Lemma 2 [8]. Let (E, ~ A) and A be the same as above. Suppose that x~ , x, 

y, , y and that F~,y is continuous at touR. Then 

lira Fx,,y, (to)= F~,,(to). 
n--+m 

In particular, under the hypotheses of Lemma 2, if y~ > y, then 

lim F~,y~(to)=F~,y(to). 
n ~ o o  

Theoreml. Let (E,~,A),A, and �9 be the same as above. Let {T,},~ 1 be a 
sequence of self-mappings on (E,~,A). Suppose that there exists a functional 
sequence {m,(x)}~_ 1' ( E , ~ , A ) ~ Z  + such that for each nEZ + and each xeE, 
mn(x)lm~(T,x) and that for any i , j~Z +, i~=j and x, y~E the following holds: 

, rain Fp q(O(t)), V t>_O. (3.1) 
FTr~'(X)x' TT;("Y(  t) ~= p, qe{x, y, TTi(X)x, TTj(Y)y } ' 

Suppose further that there exists some xoeE such that the set {x,}n= 0 E, 

x, = T~ ~( . . . .  ) xn- 1, n = 1, 2,.. .  (3.2) 

is probabilisticaIly bounded. Then there exists a unique common fixed point 
J 

x .~E,  and x n ~x.. 

Proof. For given xoeE we prove that the sequence {x,} defined by (3.2) is a J--  
Cauchy sequence of E. 

In fact, for any i , j eZ  +, id=j it follows from (3.1) that, ~' t>0 ,  

F~ xj(t) = Fr . . . .  ~ . . . .  rTj~j_~,xj_~(t)>= min Fp, q(r 
i " ~ ~ -  i p ,  q e { x i -  1 , x j -  1 , x i ,  x j }  

Therefore for any m, n e Z  + (re<n) from (3.3) we have 

inf Fx~,~j(t)> inf Fx, xj(O(t)). 
m < i , j < n  m - l < i , j < n  

(3.3) 
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By the arbitrariness of n~Z + (n>m) we have 

inf F~,,xj(t)> inf F~,,xj(~b(t))> sup inf F~,,~j(u). (3.4) 
i , j>m i , j>m--1  u < @(t)  i , j>m--1  

By induction, it is easy to prove 

inf F~,~(t)> inf Fx,,~,(~)"~(t))> 
i,j>=m i, j>O 

> sup inf F~,,~j(u), r e = l , 2  .. . .  , V t > 0 .  (3.5) 
u<~m(t) i , j>O 

In view of condition ((b) and the probabilistic boundedness of the set {x,} 
defined by (3.2) it follows that 

lim inf Fx,,~j(t)> lira ( sup inf F~,~j(u)) 
m~c~ i , j>m m - ~  u<q)m(t) i,j>=O 

I 
0, t = 0 ,  

= sup inf F~ ~(u), t>0 ,  
t . u > O  i , j>O i, j 

= ~0, t = O, = H(t), V t >_ O. (3.6) 
1, t>0 ,  

Consequently for any given e > 0  and 2 > 0  there exists N = N ( e , 2 ) e Z  + such 
that 

inf Fx,~(e) > 1 -,~, V m > N .  
i,j>_m 

Therefore we have 

F~,~j(e) > 1 -  2, Vi, j>=N. (3.7) 

This implies that the sequence {x,} defined by (3.2) is a ~---Cauchy sequence in 
9- 

E. By the Y--completeness of E we can suppose that x,  , x ,  EE. 
Now we prove that x ,  is a common periodic point of {T,},% 1, i.e. 

T~"(X*)x,=x, ,  n = l , 2  . . . . .  

Indeed, for any i e Z  +, it follows from (3.1) that for any n>i  we have 

Fx., rr ,  ~x.)~, (t) = FT~.( . . . .  ) . . . . .  Yriai(x*)x*(t) 

> min Fp, q(~(t)), V t>O. (3.8). 
p, qe{x~- 1,x,,xn, T'~dX*)x,} 

Let G o be the set of all discontinuity points of F~,,rm~,~,(t ). Since 4~" is 
strictly increasing, we know that ~-m(Go) is the set of all discontinuity points 
of Fx,,rpi~,~,(~bm(t)), m=1,2 , .  .... Moreover, Go, ~b-m(G0), r e = l , 2  . . . .  are all 

countable sets, therefore 

(L G = G O u (G O 
= 

is also countable. Let G = R + \ G .  When t = 0  or t e d  (i.e. t is a common 
continuity point of F~,,rT,~(x,,~,(t), and F~,.rp,~.~x,(q~m(t)), m =1 ,2  . . . .  ) it fol- 
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lows from (3.8) and Lemma 2 that 

Fx, r~(x,~x,(t ) = lim F~n ' rm,(x,~x,(t) 
n__+ ~o 1 

Repeating this procedure we can prove that 

Letting n-~ oo and noting condition (r we have 

F x , , r ~ c ~ , ( t ) = H ( t ) ,  g t ~ d  or t=0 .  (3.9) 

When tGG with t>0 ,  by the density of real numbers there exist q , t 2EG 
such that 0<  t: < t < t  2. A distribution function being nondecreasing, we have 
from (3.9)" 

I = H ( t l ) = F  ~ r t < F  t < F  ~ t - 

This shows that for all tGG with t > 0  

F~,, rr,(x,,~,(t) = H(O. (3.10) 

Combining (3.9) with (3.10) we have 

Fx,,rF,~(~,,x,(t)=H(t ), Vt>0.  (3.11) 

i.e. 

x ,  = T/m'(~*) x , ,  i=1 ,2 , . . . .  

To prove that x ,  is the unique periodic point of {T,},~_: we proceed as 
follows. 

Suppose that y ,  s E  is another periodic point of some Tj, i.e. 

y ,  = TjmAY*) y , .  

Hence for any i e Z  +, i4=j, we have 

F~,. y,(t) = Frm,~,,~, rrJ:,,,y,(t) > min Fp.q(~b(t)) 
z - p ,  q e { x , , y , , x , , y , }  " 

= F~,,y,(O(t)), Vt=>0. 

Repeating this procedure we can prove 

F~,,~,(t)>F~,,y,(,b~(t)), n = l , 2  .. . .  , V t>0 .  

Letting n ~ oo and noting condition (~) we get 

F~,.y,(t)=H(t), g t > 0 ,  i.e. x , = y , .  

Furthermore, by the assumption that m,(x)jm,(T~(x)), VxGE and for all 
n ~ Z  +, there exists for each i=  1,2 .. . .  some k~eZ + such that 

m,( T~ x ,) = ki m,(x ,). (3.11) 
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Hence we have for each i=  1, 2 .. . .  

~ x ,  = ~ r~'~x*~ x ,  = r ,  r,~"i~x*~ x ,  . . . .  = ~ ~k'm~x*~ x,  
= T~ T~ ~'~T'x*~ x ,  = T;"'~T'X*~T, x,. 

This implies that T~x, is also a periodic point of T~. Since x ,  is the unique 
periodic point of T~, we have x , = T ~ x , ,  i=1 ,2  . . . . .  This means that x ,  is the 
desired unique common fixed point of {T,},% 1 . 

This completes the proof of Theorem 1. 

Taking ~( t )={,  he(0,1), t > 0  it is easy to see that ~(t) satisfies the con- 

dition (4~). From Theorem 1 we get the following 

Corollary 1. Let {T,},%1, (E,~,A) and {mn(x)}n~ be the same as in Theorem l. 
Suppose that for any i,j~Z +, i~-j, and any x, yeE the following holds 

min Fv,q(~], Vt=>0. (3.11) F~r,~,x ~,;~,,,,(t)>= 
p,q~{x, y, T~ i (x )x ,  T~j(Y)y} \n! 

X eo Suppose further that there exists xoeE such that the set { ,},=0 defined by (3.2) 
is probabilistically bounded. Then the conclusions of Theorem 1 still hold. 

Remark I. A particular case of Corollary 1 with T,= T, n=  1,2 . . . . .  m(x)=mi(x), i 
= 1, 2,. . . ,  appears in Istrdlescu [4]. 

Zoo Corollary 2. Let { ,},= 1 be a sequence of self-mappings on (E, ~, A). Suppose that 
there exists a sequence {m,},~ 1 ~ Z  + such that for any x, y~E and any i, j e Z  +, i 
+j the following holds 

min Fpq( ! t ,  Vt>O. (3.12) Frm,~,ryjr(t)> 
p , q ~ { x , y , T ~ i x ,  Trfjy} ' \~/ 

Suppose further that there exists xo~E such that the set {x,},~ o defined by (3.2) 
is probabilistically bounded. Then the conclusion of Theorem 1 still holds. 

Remark2. The main result of Sehgal, Bharucha-Reid [10] is a particular case 
of Corollary 2. 

4. Common Fixed Point Theorems for a Pair of Mappings 

Throughout this section we suppose that (E,~-~A) is a J--complete Menger 
space with continuous t-norm A, and that the function ~b(t) satisfies the 
condition (cb). Suppose further that S, T are self-mappings on (E, ~, A) and that 
they are commutable and J-continuous.  Furthermore we denote 

Os, r(x;O, oo)={SiTJx}~j=o, Vx~E. 

Theorem 2. Let (E, 2, A), S, T and cb be the same as above. Suppose that for each 
x~E the set Os, r(x; O, oo) is probabilistically bounded. Suppose further that there 
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exist ' + ' >_ m, m e Z  , m + m _ l  such that for each x e E  and all t>O the following 
holds 

inf Fv, q(t)> inf Fp, q(q~(t)). (4.1) 
p, qGO ~T(SmTm'X;  O, CO) p, qEOs, T(X; O, cYO) 

Then for each xoeE,  the sequence { S " T ~ x o } ~ o  converges in . f  to some 
common f ixed  point x ,  e E  of  S and T. 

Proof. Letting h= max  {m,m'} for any given x o e E  , from (4.1) we have 

inf Fp, qit)> inf Fp, q(t) 
p ,q~Os ,T (Sh  Thxo; O, co) p, q~Os ,T (SmTm'xo ;  O, vo) 

> inf Fp, q(C])(t))~ sup inf Fp, q(U), 
p, qaOs,T(xO; O, C~) U < ~(t) p, qGOs,T(XO; O, 00) 

By induction we can prove that the following inequality holds: 

V t > 0 .  

inf Fv, q(t)> inf Fp, q(q)(t)) 
p, qEOs,T(s~hTnhxo;  O, 00) p, qGOs,r(S(n-1)h T (n - 1)hxo; O, 00) 

)) > > inf t 
p,q~Os,T(XO; O, 00) 

> sup inf Fp, q(U), V t > 0 .  
u<q)n(t) p, qeOs,T(Xo;O,o0) 

(4.2) 

Invoking condition (~) from (4.2) we have 

lira inf Fp,q(t) 
n ~  oo p ,qGOs,T(SnhTnhxo;  O, C~) 

> lim sup inf fp,q(U) 
n ~  0o u < ebb(t) p, qeOs ,T(xo;  O, ee) 

(sup inf Fp, q(U), t > 0  
~ /u>0  p, qeOs ,T(xo;O,  oo) 

t 0, t = 0  
= H(t), V t>0 .  

Therefore for any given e > 0 and 2 > 0 there exists a positive integer N = N(e, 2) 
such that 

inf Fp, q(~) > 1 -  2, Vn>=N. 
p, q~Os, T(S nh TnhxO; 0, ee) 

This implies that all subsequences of {S i T J Xo}~j = 0 in which the indexes i and j 
are both convergent to ~ ,  are ~--Cauchy sequences. By the 3--completeness of 
E they all converge in J to the same limit x , e E .  In particular, the following 
three subsequences converge in W to the limit x , :  

{S"T"xoILo,  {s(s"T")xo}Lo, {T(S ~176 . 

By the 3 -con t inu i ty  of S and T we get 

x ,  = S x ,  = T x , ,  

i.e. x ,  is a common fixed point of S and T. 
This completes the proof  of Theorem 2. 
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Theorem 3. Let (E,~,,A), S, T and el) be the same as in Theorem 2. Suppose that 
for each x~E the set Os, r(x; O, oo) is probabilistically bounded. Suppose further 

r t -b that there exist m, m ,n ,n  ~Z with m + m ' >  l, n + n ' >  l such that for any x, yeE 
and any t >O the following holds: 

inf Fp, q(t)> inf Fp, q(q)(t)). (4.3) 
p qe{Os T(SmTrn'x;  O, co) p, qE{Os,T(X; O, 00) 

u O'S,T(SnT n y; O, 00)} tj OS,T(Y; O, r 

Then there exists a unique common fixed point x .  of S and T in E and for 
T"x  ~ converges in 3- to x . .  any xoeE the sequence {S" oJ,=o 

Proof. Letting h--max{re, re' n,n'} and taking y = x  in (4.3) we have 

inf Fp, q(t)>= inf Fp, q(~(t)), V xeE,  t >__O. 
p, q e O s , T ( S h T h x ;  O, 0o) p, qeOs,T(X;  O, C~) 

By Theorem2 we know that for each xoeE the sequence {S ~ T"xo} converges 
in 3- to some common fixed point x , ~ E  of S and T. 

Now we prove that x ,  is the unique common fixed point of S and T in E. 
Suppose this is not the case, hence there exists another common fixed point 

y , ~ E  of S and T. From (4.3) we have 

F~,,y,(t)= inf Fp, q(t) 
p, q~{Os,T(S m Tin'x,;  O, cyo) ~A OS,T(N n Tn'y , ;  O, oo)} 

> inf Fp, q(Crp(t)) = F~,,y,((/)(t)), V t >= 0. 
p, qe{Os ,T(x , ;  O, c~) ~j OS,T(y*; O, OO)} 

Repeating this procedure we can prove 

F~,,y,(t)>F~,,y,(q~"(t)), Vt>0 ,  n = l , 2  . . . . .  

Letting n ~ co and using the condition (~b) we get 

Fx,,y,(t)=H(t), Vt>0 ,  i.e. x , = y , .  

This completes the proof of Theorem 3. 

Remark 3. The special cases of Theorem 3 with S=  T and m' =n'  =0  appear in 
Chang [3]. 

As a consequence of Theorem 3 we have the following result. 

Corollary 3. Let (E, ~, A) and cb be the same as in Theorem 3. Suppose that T is a 
3--continuous self-mapping on (E,W,A) and that for each x6E  the set Or(x; 0, oo) 
= {T" x},~ o is probabilistically bounded. Suppose further that 

(i) there exists m~Z  + such that for all t>O 

inf Fp, q(t)>= inf Fp,q(~(t)), V x~E. 
p , q e O T ( T m x ;  O, o0) p,q~OT(x;  O, o0) 

Then for any xoeE the sequence { Tnxo}n~o~ converges in 3- to some fixed point 
in E. 

(ii) there exist m, n6Z  + such that for all x, yEE and all t >O 

inf Fp, q (t) > inf Fp, q(~(t)). 
p, qE{OT(Tmx; 0, CO) u OT(Tny;  O, ~)} p, q~{OT(X; O,c~) • OT(y; O, (X))} 
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Then for any xo6E the sequence {T'xo},~__0 converges in Y to some fixed point 
of T in E. 

Proof Conclusion of (i) is a special case of Theorem 2 with S = I (the identical 
mapping), and conclusion (ii) is a special case of Theorem 3 with S = I. 

5. Application 

As an application, in this section we use some results stated in Sect. 3 to study 
the existence and uniqueness of the solution of nonlinear Volterra integral 
equations on a kind of particular probabilistic metric spaces. 

Definition 7. Let (E, d) be a metric space. The space (E, g,, A) is called an induced 
Menger space if A=A3=min(i .e.  A3(a,b)=min{a,b }, Va, be[0,1]) and f f  is a 
mapping from E • E - ,  ~ defined via ~'(x, y) = Fx. y, where 

Fx, y(t)=H(t-d(x,y)), Vx, y~E, t~R. 

It is well-known that if (E, d) is a complete metric space, then the induced 
Menger space (E,~, A3) is a J -comple te  Menger space (see [10], Theorem 2), 
and that the sequence {x,} c E  converges in Y to a point x ,  eE if and only if 
{x,} c E converges in the metric d to x , .  

In what follows let [0,a] be a fixed real interval ( 0 < a < o o )  and (E, II �9 I1~) a 
real Banach space. We denote by C([0,a] ; E) the Banach space of all E-valued 
continuous functions defined on [0, a] with norm defined by 

ILxlic = sup IIx(t)llE, x(t)~C([O,a];E). (5.1) 
O~=t<=a 

Besides the norm I[" ][c, the space C([O,a]; E) can be endowed with another 
norm ]i'll, which is defined as follows" 

Ilxl[,= sup (e - u  IIx(t)ll~), (5.2) 
O<t<a 

where L is any positive number. It is clear that the norm It" J], is equivalent to 
the norm I]" JJc. 

In the sequel we also denote by (C([0,a];E),~,A3) the induced Menger 
space where ~ is the mapping from C([0,a]; E)• C([0, a]; E) into ~ defined 
by 

Fx,y(t)=H(t-Hx-YKi,), x(s), y(s)eC([O,a]; E), teR. 

Now we study the existence and uniqueness of solutions of the following 
kind of nonlinear Volterra integral equations 

t 

x(t)=y(t)+~K(t,s,x(s))ds, O<t<a, (5.3) 
0 

where y(t)~ C([0, a], E) is any given function. 

Theorem4. Let (E,[]-~), C([O,a];E) and (C([O,a];E),Y, A3) be the same as 
stated as above. Suppose that the following conditions are satisfied 
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(i) K(t, s, x(s))~ C([0, a] x [0, a] x C([0, a] ; E); E), and 

IlK[If: sup IIK(s,t,x)[IE< ~ ; 
t ,s~[O,a],x6E 

(ii) there exist m ~ Z  + and a constant fl~IO, 1) such that 

rain F;,~ ( t t ,  Vx, ysC([O,a];E) ,  t~R +, r~ ,~( t ) :  
p,q~{x, y, Tmx, Troy} \p ! 

where the mappings T and T m are defined as follows: 

t 

(Tx)(t)-= y(t) + ~ K(t, s, x(s)) ds, 
0 

t 

(Tmx)(t) = y(t) + ~ K(t, s, T m- 1 x(s)) ds; 
0 

(iii) for any x(t)~C([O,a];E) the set Or(x;O, oo)={T'x( t )}n~ o is bounded. 
Then for any Xo(t) e C([O, a] ; E) the sequence { T" Xo(t)},~ o converges in the norm 
I[" ]]c to a solution x,( t )~C([O,a];E) of equation (5.3). 

Proof The conclusion follows immediately from Corollary 2. 
For similar results, see [6]. 
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