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Let M be a local martingale, 4 be an adapted process with finite variation on each
finite interval and H be an adapted cadlag process (i.e. H is continuous on the
right and has finite left limits). We shall prove that the equation

Xo=H,+ [ (s, X, )dM,+ [ g(s, X, ) dd, 1)
0 [t

has one and only one solution, provided the random functions f and g satisfy the
properties (L) given below, i.e. a Lipschitz condition

|g(S= , X)—g(S, w, y)l‘f‘|f(5= @, X)—f(S, , y)ng |x_J’|,

and two less stringent properties.
Results of this kind were proved recently by Kazamaki (3) and Protter (7)
under much more restrictive continuity conditions on M and A.

1. Notations

Let (Q, % P) be a complete probability space and (#,),,, an increasing family
of sub-o-fields of & We shall assume, as usual, that &, contains all the null sets
of # and that the family (%)), , is continuous on the right.

We shall say that a process (X,);»q 18 cadlag (corlol if one wants to stick to
English) if, for almost all w, the function ¢ — X,(w) is finite, right continuous and
has finite left limits for all teIR | .

Let & be the set of all local martingales (M,),., with respect to the family
(F )20 We assume, as usual, that M is cadlag and that M,=0. For each Me %,
let [M, M] be the increasing process defined in [2]. Let T be a finite stopping
time. And let (T,) be an increasing sequence of stopping times such that lim 7, = + oo
a.e., and each T, reduces the local martingales M and M?—[M, M]. We recall
that T, reduces M if and only if M, ; is a uniformly integrable martingale. We

' Professor Protter has told us that he has independently proved the same result
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have, using Doob’s inequality

E[ sup |M,]S4E[M}, 1, ]=4E (M, M]y, 1) S4E(M, M1y),

and by Fatou’s lemma

E[sup [M,*] 4E([M, M]y).

Let 7+ be the set of all increasing, adapted, cadlag processes (4,), >, such that
t

Ao=0.Andlet¥"=7"* — 7"+ Forany process Bin ¥ let us denote by | B|,= ||dB|
the variation of B on [0, t]. The process | B| belongs to ¥°+. 0

We shall talk later on of the unique solution of a stochastic integral equation.
By “unique” we mean that, if X and Y are both solutions, they are indistinguishable
(P[3t; X, + Y ]=0). All our equalities of processes should also be understood
in that sense.

If X is a process and T a stopping time, we shall denote by X7 the process X
stopped at time T: X[ =X, ;.

2. Existence and Unicity of the Solution
of the Stochastic Integral Equation (1)

Let f and g be two functions mapping IR, x @ x R to IR. We shall assume that
f and g satisfy the following three properties, which we shall refer to, collectively,
as the L-properties.

(L1) Forall w, s, x, y

Ig(S’ @, X)—g(S, @, y)|+lf(sa w, X)‘f(S, @, y)léK |x_)’|,

(L2) For all w, and all x, the functions f and g are left continuous and have
finite right limits in ¢.

(L3) For all (t, x) fixed the functions f(z, -, x) and g(, -, x) are &, measurable.

Since %, contains all the null sets of %, we might allow an exceptional subset
of Q on which (L 1) and (L.2) would fail to hold. However, it is more convenient
to assume they hold every where.

Theorem 1. Let Me ¥, Ae, and let H be an adapted cadlag process. Let f and g
be two functions satisfying the L~properties. Then there exists one and only one
adapted cadlag process satisfying the stochastic integral equation

X,=H+ jtf(s, X, )dM,+ jtg(s, X, )d4,. 1

t
Note 1. Throughout this paper | means | .
0 10,1]

Theorem 1 will follow from the following three lemmas. Before stating them,
let us point out a few measurability properties which will be needed. Because of
the uniform Lipschitz condition in x, the functions (e, x)—f (¢, w, x) and (w, x) -
g(t, », x) are Z, x (R)-measurable. This implies that, if X is an adapted cadlag
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process, the functions w—f(t,w, X,_) and w—g(t, w, X, ) are %-measurable.
The processes f(t, w, X, ) and g(t, w, X,_) are adapted, left continuous, and have
finite right limits. Therefore they are predictable and locally bounded in the
sense of [2] p.98. For any adapted cadlag process X, the stochastic integrals

j (s, X, )dM, and fg s, X,_)dA, exist, and we can always write the right term

of equality (1).

Using the left continuity of f and g with respect to ¢, one sees that the processes
(t, w) = f(t, w, x) and (t, w)— g(¢, w, x) are progressively measurable; this implies
that the functions w— f(t+ T(w), w,x) and w- g(t+ T(w), w,x) are F,, ;-
measurable for any finite stopping time T.

Lemma 1. Let § be such that a=3K?* §(4+6)< 1. Assume that the local martingale
M can be decomposed into

M=N+B

where Ne.#, BeV and [N, N], +|Blo+|Al.=0. Then the Equation (1) has a
unique solution on [0, c0).

Proof. Step 1. Let Z,=X,—H,, where X, is a solution of (1). The process Z
verifies

Zo= [ 15,7y )dMy+ [ (5. Z, )dA, @
0 0

where
fs,0,x)=f(s, 0, x+ H,_(w)),
2'(s, 0, x)=g(s, v, x+ H, ().

The functions ' and g’ verify the L-properties. And the Equation (1) has a unique
solution if and only if the Equation (2) has one. We can therefore assume that
H=0.

Step 2. Let T,(w)=inf(t;|f(t, w,0)|Zp or [g(t, »,0)|=p) A p.
These stopping times T, are finite and go to +co a.e. as p goes to infinity.
Suppose we can show that for each p the equation
t t
XP={f(s, X2)dMJr+ [ g(s, XP_)d A~
0 0
has a unique solution on [0, co). The processes X7 and XP*! will be indistin-
guishable on [0, 7,]. The process X,=) XFI (1,1 t<1,; Will then be, obviously,

p
the unique adapted, cadlag solution of (1).
On the set {T,>0} we have

sup [f (s, 0, )| =p+K|x| =1+ |xD(p+k),

sup [f (s, 0, )P =(1+]xP) 2(p+ K).

The same growth conditions hold for g.
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Step 3. With Step 1 and Step 2 we have reduced the problem to the study of the
equation

X,={ /(s X, )dMT+ 6fg(s, X, )dAT ®)

0

where T is a finite stopping time, and the following inequalities hold on {T >0}:
sup £ (s, @, x)| < D(L+[x), |
sup g(s, 0, | £ D(1 + x),
sup (5, 91" C(1-+ [+P),
EZIIT) g (s, w, x)?< C(A +]x[?).

Step 3a. Existence of the solution of (3). Let us recall that we have assumed:
M=N+B, Ne¥, Bev", [N,N],+|B|,+|4],<6. Define by recurrence the
following processes

Yt0=0>

t t

B={f(s Y dNT+§f(S, YohdB] + fgls, Y1) A
0 0

We easily see by induction that the processes Y are semimartingales (there-

fore cadlag). The processes f(s, Y1) being predictable and locally bounded, this

is enough to build the ¥" by recurrence. Moreover we can prove by induction

that E[sup|Y*?]1< + oo for all k. It is true for k=0. If it is true for k<n-—1,

then we have

]

t
E[sup| ¥/ S3E [sup | [ (s ) dNT
t t [¢]

t

2
+3E [sup |1 765, 121 |
t |0
t 2
+3E [supj (s, Y- 1dAT ]
t |0

t

Look at the flrst term. The process K,= j f(s, Y"1 dNT is a local martingale,

and [K,K],= flf(s, YA -H12d[NT, NTT,. Therefore
E[sup |K,*]=E[sup |K,|*]<4E [f |f(s, Y2 Y)2dN, N]s]
t s=T 0

T
<4E [j C+1Y" 13 d[N, N]s]
0

S4CSE[1+sup Y ] < + 0.
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[ (s Y2-1)dBT

2
}. We have using the
0

Consider now the second term E [sup
Schwartz inequality. t

2 T
S| [1f (s Y1)l 4By

0

t
[ fs, Y1) dBY
0

2 T
é,Bng [/ (s, Yo D2 1dB]].

sup
t

And therefore

[f(s Yo dB]
0

2
E[sup ]gCézE[l—l—sup[Ys"‘lfz]<+oo.
t N

t

[gls, Yr-hydAl

2
]< 4+ c0. Hence we have
0

One shows similarly that E [sup
E[sup |Y"*]< + c0. t
t

Using the same method we obtain

E[sup |+ — Y712 £3K2(@+6) 6 E[sup | ¥/~ ¥ 1 2],
t t

Taking x=3 K2(4+5)J, we get by recurrence
E[sup | " = Y] <o"E[sup | ' — Y°1*] =K, o".
t t

For almost all @ the Y converge uniformly on [0, c0) to a finite process Y,

1
(use the fact that ) P (sup [y st — X"]>n—2‘) <YK nto'<+ oo). Let us take
n t n

Y,=0 on the set {w; ¥;"(w) does not converge uniformiy}. The process Y is cadlag
and adapted. We still have to show

4 t T

Y=[f(s Y, )ANT+ [ f(s, Y._)dB] + [ g(s, Y,_)dAS.
0 0 0

Using the same method again, we get

E [ !

t

t t t
Y= f(s, Y, )AN = f(s, Y,_)dB{ — | g(s, Y;_)dAS
0 0 0

<2E[sup|Y,— ¥"[2]+ 6 K2(4+3)6 E[sup | ¥,— ¥/~*[].
t t

And everything will be finished if we show that
lim E[sup|Y,— ¥;*|*]=0.
n t
Just note that sup|Y,— Y"|?<lim infsup|¥"— Y%, and use Fatou’s lemma
to get ’ k !
Isup %"= Y] || - Sliminf sup | "= ¥**¥) - /K, Y, (/)
t k t k=n

That finishes the proof of the existence of a solution of (3).

Step 3b. Unicity of the solution of Equation(3). Let Z, be another adapted,
cadlag solution of (3). For m>0, take S, =inf(f;|Y,|2m or |Z,]Zm}. We have
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S,>0 and lim S,,= + oo a.e. The processes Y and Z are bounded on [0, S,] as
the jumps at time S,, verify
|4, | =115, Ys,) ANS, +f (s, ¥s) 4B, +g(s, Ysz) A4, |
<D(1+m)(3/5+29)

and similarly |4Zg | <D(1 +m)(}/d+29).
Using again the same method, one obtains

E[sup |Y,—Z*|S«"E[ sup |, —Z,|*] -0
t=8S, t=Sm
and Lemma 1 is proved!

Lemma 2. Let § satisfy a=3K?§(4+8)<1. Suppose thdt the local martingale M
can be decomposed into

M=N+B,

where Ne ¥, Be?" and, for almost all w, |AN|2<— for all seR . Then the
Equation (1) has a unique solution on [0, 00).

Proof. Step1. Let |B|, and |4|, be the variations of B and A on [0, t], and set
D=[N, N]+|B|;+|4l;.

. . AN . . . . 0
The time T, =inf (t;Dth) is a strictly positive stopping time, and D _ éi'

Define the following processes

N'=N,, 1,
A;:At/\Tl_AATl I{t>T1}a
Bi=B,, 1, —4Bg, Ijz1,-

The processes N', B' and A’ verify the conditions of Lemma 1, since
[N/’ Nl]oo+‘A,loo +|B,loo=DT1— +(ANT1)2§5
So there exists a unique cadlag solution for the equation
t t
Y= BT+ [ (s, Yo ) AN +dB)+ [ gls, Y, ) dA}. @
0 0
The process X} =Y,+[f(s, Yy, ) ABr +g(s, Yy, ) 4Az ] I{t>m is a solution of

X{=H+ ff(s, Xsl_)dMsT‘Hg(S, X )dAd
0 0

1t is the unique solution. For, if Z, is another solution, then
Z—[f(s,Zy, )ABr, +8(8, Zy, JAA7 I Iz,

is the solution of (4) and Z,=Y, on [0, T{[.
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Step 2. How to go beyond the time T,. Let 4, =%, r . If Ke¥ or ¥, we define
Kzl :(Kt+T1_KT1)I{T1<+oo}'

If Ke#, and if an (#)-stopping time S reduces K, it is easy to show that R=
(§—T,)* is a (%)-stopping time, and that K}, ; is a uniformly integrable (%,)-
martingale. This implies that N is a (%,)-local martingale, and that [N!, N'],=
(LN, N1, 1,— Nr) Iz, < 4 ;- Define the functions f* and g* as follows

fl(t7 , x):f(t+ Ti((/)), CL), x)I{T1<+oo}9
gl (t, 0, x)=g(t+ T, (w), o, X) Ior, < ¢ oy

These functions verify the L-properties with respect to (%,).
We can apply Step 1 again, with respect to the family (%,). Let

DtlzlAllt"'lBl'z'l‘[NleNl]t:(Dt+T1"'DTl)I{T1<+oo};

d . . .
and S, =inf (t; D}_2_§>. There exists a unique solution of the equation

+T

X?=H'#5+ X7 —Hyp + j[fl (s, X2 ydwM?* fH—jgl (s, X2 )d(A*)3.
0
The time U, =1, +S, i3 an (#%,)-stopping time. Using the fact that (t—T})" is a
(%)-stopping time, one sees easily that the process defined by
X,=X} on [0, 1]
X2y on 1T, T,+5,]
Xz, on [T;+S,, +0)
is the unique adapted cadlag solution of

t t
X,=HP+ [f(s, X, ) dMJ>+ [ g(s, X,_) dAY?
0 0

Step 3. One can go on, and define by recurrence

Si=T,, Syree0rSpy s Uy=8,, Upy=5,+8,, ..., Uy=S,++Sp ...

. é . .
where S, =inf (t; D, .y _,—Dy | ;5>. For each n we shall have a unique solution

of the stochastic integral equation
i t

X,=H"+ [ [(s, X, ) AM{"+ [ g(s, X,_) dAJ".
0 0

0 .
Now we have DUng%. So the time U, is bigger than T,=inf (t;Dt;*). As
lim T, = 4 o0, we have finished the proof of Lemma 2.

Lemma 3. Let M be a local martingale, and B be an arbitrary number such that > 0.
Then M can be decomposed into

M=N+B
where Ne &, Be " and, for almost all o, |AM,|<2f for all seIR , .
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Proof. Let S;, S,, ..., S, ... be the following stopping times
S, =inf(t; |AM, 2 )
Sy=inf(;¢>8,_,|4M,| = f)

and set

Co=) AMg, Iz s,y

The process C, belongs to ¥, its variation is locally integrable. Let C be the
predictable process belonging to ¥” such that C—C is a local martingale. The
martingale H=M — C + C satisfies

|AH|S|AM— AC|+14C| < p+4C,).

So we cannot have |[AH|>=2pf unless |AC,|=p. Look at the stopping times
U,u,..U,..

U, =inf{z;|4C|Z B}
U,=inf{t;t>U, ,,]AC,|=B}.

These stopping times are predictable. The process Df=AHy Iy, is a local
martingale. The process D, =Y D?is in #; and DY~ is a local martingale for each p.

r ~
Therefore D, is a local martingale (see [2]). Taking N=H—D and B=C—C+D,
we have the desired decomposition.

Note 2. We have, as a particular case of Theorem 1 (take f=g), the following
result. Let Z be a semimartingale and H be an adapted cadlag process. If the
random function f satisfies the L-properties, then the equation

t
X,=H+[[(sX, )dZ,
0

has one and only one cadiag adapted solution.

This might even be a better way of stating Theorem 1: for, let Q be a probability
equivalent to P; a P-local martingale is not in general a Q-local martingale. But a
P-semimartingale Z is a Q-semimartingale and the stochastic integrals | Y, dZ of
locally bounded, predictable processes Y are the same for the two probabilities
P and Q.

Theorem 1 extends trivially to systems of equations.

Theorem 2. Let Fi{t, », X)=(F}t, ®, %), ..., F(t, w, %)), 1<j=<p, be R*valued func-
tions mapping R | x Q@ x R? 10 R%. We suppose that the F} verify the L-properties.
Let MY, ..., M? be p semimartingales and let H*, ..., H* be some adapted cadlag
processes. Then there exist one and only one R%valued, adapted, cadlag process
X=X, ..., XY such that

p
Xi=H;+ ), [Fs X, )dM].

Jj=10
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