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Let M be a local martingale, A be an adapted process with finite variation on each 
finite interval and H be an adapted cadlag process (i.e. H is continuous on the 
right and has finite left limits). We shall prove that the equation 

t 

X,= Ht + ~f(s, X,_) dM,+ ~g(s, )2,_) dA~ 
o o 

(1) 

has one and only one solution, provided the random functions f and g satisfy the 
properties (L) given below, i.e. a Lipschitz condition 

Ig(s, co, x)-g(s ,  co, y)[ + If(s, r x)- f (s ,  co, Y)l < K  Ix -Yl,  

and two less stringent properties. 
Results of this kind were proved recently by Kazamaki (3) and Protter (7) 

under much more restrictive continuity conditions on M and A. 1 

1. Notations 

Let (f2,~, P) be a complete probability space and (~),__>o an increasing family 
of sub-a-fields of J~ We shall assume, as usual, that ~o contains all the null sets 
of~ ~, and that the family (~)~>_o is continuous on the right. 

We shall say that a process (X~)~> o is cadlag (corlol if one wants to stick to 
English) if, for almost all co, the function t---,Xt(co ) is finite, right continuous and 
has finite left limits for all t eN+.  

Let s be the set of all local martingales (M,)~> o with respect to the family 
(J~)t__>o. We assume, as usual, that M is cadlag and that M o =0. For each M~s 
let [M, M] be the increasing process defined in [2]. Let T be a finite stopping 
time. And let (T,) be an increasing sequence of stopping times such that lim T, = + oo 
a.e., and each T~ reduces the local martingales M and M 2 -  [M, M]. We recall 
that T~ reduces M if and only if M e A r, is a uniformly integrable martingale. We 

Professor Protter has told us that he has independently proved the same result 
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have, using Doob's inequality 

E [  sup [Mt[ 2] -<4E[M2^rn] =4E( [M,  M]T^T~)<=4E([M, M]T), 
t<=T A Tn  

and by Fatou's lemma 

E[sup IM,[ 2] = 4E([M, M]T ). 
t < T  

Let ~U + be the set of all increasing, adapted, cadlag processes (At),> - o such that 
t 

A o = 0. And let ~U = ~U + - ~U +. For any process B in ~,, let us denote by ]B [1 = ~ [dB~l 
the variation of B on [0, t]. The process [B] belongs to ~U +. 0 

We shall talk later on of the unique solution of a stochastic integral equation. 
By "unique" we mean that, if X and Y are both solutions, they are indistinguishable 
(P[~ t; Xt+-Y,] =0). All our equalities of processes should also be understood 
in that sense. 

If X is a process and T a stopping time, we shall denote by X w the process X 
stopped at time T: x T = X t ^ T  . 

2. Existence and Unicity of the Solution 
of the Stochastic Integral Equation (1) 

Let f and g be two functions mapping IR+ x f2 x IR to IR. We shall assume that 
f and g satisfy the following three properties, which we shall refer to, collectively, 
as the L-properties. 

(L 1) For all co, s, x, y 

I g(s, c9, x) - g(s, o3, Y) I + [ f (s, o3, x ) - f  (s, co, y) l < K I x - Y I, 

(L 2) For all o3, and all x, the functions f and g are left continuous and have 
finite right limits in t. 

(L3) For all (t, x) fixed the functions f ( t , . ,  x) and g(t, ", x) are ~t measurable. 
Since ~ contains all the null sets of ~,, we might allow an exceptional subset 

of r on which (L 1) and (L2) would fail to hold. However, it is more convenient 
to assume they hold every where. 

Theorem 1. Let M ~ ,  AeV,, and let H be an adapted cadlag process. Let f and g 
be two functions satisfying the L-properties. Then there exists one and only one 
adapted cadlag process satisfying the stochastic integral equation 

t t 

Xt=H~+ ~f(s, Xs_ ) dMs+ ~g(s, Xs_) dA~. (1) 
0 0 

t 

Note 1. Throughout this paper ~ means ~ . 
0 10, t] 

Theorem 1 will follow from the following three lemmas. Before stating them, 
let us point out a few measurability properties which will be needed. Because of 
the uniform Lipschitz condition in x, the functions (co, x ) ~ f ( t ,  o3, x) and (o3, x ) ~  
g(t, co, x) are fit x N(lR)-measurable. This implies that, if X is an adapted cadlag 
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process, the functions co~f(t ,  co, Xt_) and co~g(t, co, Xt_) are Z-measurable. 
The processes f ( t ,  co, Xt_) and g(t, co, Xt_) are adapted, left continuous, and have 
finite right limits. Therefore they are predictable and locally bounded in the 
sense of [-2] p. 98. For any adapted cadlag process X, the stochastic integrals 

t t 

~f(s, Xs_)dMs and ~g(s, Xs_ ) dA s exist, and we can always write the right term 
0 0 

of equality (1). 
Using the left continuity o f f  and g with respect to t, one sees that the processes 

(t, co)--,f(t, co, x) and (t, co)~ g(t, co, x) are progressively measurable; this implies 
that the functions co~f(t+T(co),co, x) and co~g(t+T(co),co, x) are ~+T-  
measurable for any finite stopping time T. 

Lemma 1. Let 6 be such that c~ = 3 K 2 6(4 + 3) < 1. Assume that the local martingale 
M can be decomposed into 

M = N + B  

where N~5~, B ~ U  and [N ,N]~  +IBIoo +[A]~<=6. Then the Equation(l) has a 
unique solution on [-0, Go). 

Proof. Step l. Let Z , = X t - H t ,  where X t is a solution of (1). The process Z 
verifies 

t t 

Z, = ~f'(s, Zs_) dM s + ~ g' (s, Z~_ ) dA s (2) 
0 0 

where 

if(s, co, x)= f (s, co, x + U s_ (co)), 

g' (s, co, x) = g (s, co, x + H~_ (co)). 

The functions f '  and g' verify the L-properties. And the Equation (1) has a unique 
solution if and only if the Equation (2) has one. We can therefore assume that 
H = 0 .  

Step 2. Let Tp (co) = inf (t; [f  (t, co, 0)[ > p or [g (t, co, 0) 1 > p)/x p. 

These stopping times T v are finite and go to + oo a.e. as p goes to infinity. 
Suppose we can show that for each p the equation 

t t 

XtV= ~ f(s ,  X~_)dM rp + ~ g(s, X~_)dA Tp 
0 0 

has a unique solution on [0, oo). The processes Xg and Xg +1 will be indistin- 
guishable on [0, Tv]. The process X, = ~ XtPI{rp_~ N t< Tp} will then be, obviously, 

P 

the unique adapted, cadlag solution of (1). 
On the set { Tp > 0} we have 

sup ff(s, co, x)[ <p+ K]xf <(1 + Jxl)(p+k), 
S~ Tp 

sup If(s, co, x)[ 2 <( l  + Ixl2)2(p+K) z. 
S~ Tp 

The same growth conditions hold for g. 
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Step 3. With Step I and Step 2 we have reduced the problem to the study of the 
equation 

Xt=~f(s,X~ )dMT + ig(s,X~_)dA r (3) 
0 0 

where T is a finite stopping time, and the following inequalities hold on {T>0}: 

sup If(s, co, x)[ <D(1 + ]xl), 
s N r  

sup Ig(s, co, x)[ <D(1 + [x]), 
s<-_T 

sup If(s, co, x)] 2 < C(1 + Ix[2), 
s<T 

sup [g(s, co, x)[2_-< C(1 + [x12). 
s<T 

Step 3 a. Existence of the solution of (3). Let us recall that we have assumed: 
M = N + B ,  N E S ,  B~I f ,  [N,N]~+IBI~+[A]~<6. Define by recurrence the 
following processes 

Yfl =0,  
t ~ t 

= Sf(s, g  l)dNJ + If(s, V_-I)dBf + g(s, g --1)dAf. 
0 0 0 

We easily see by induction that the processes Yf are semimartingales (there- 
fore cadlag). The processes f(s, Ys~ - 1) being predictable and locally bounded, this 
is enough to build the Yf by recurrence. Moreover we can prove by induction 
that EEsuplYtk[2]< +oc for all k. It is true for k=0.  If it is true for k<n-1 ,  
then we have 

E[sup'Ytn[2]<gE[supt ,- t i f(s'Y~--1)dN~r2] 

+3E [sup ! f(s ,  Y~-')dBf 

+3E [sup ig(s, Y~-l)dAr~ 2]. 

t 

Look at the first term. The process Kt= i f(s ,  Y~-I)dN~ r is a local martingale, 
t 0 

and [K, K]~= ~ If(s, Ys~_- t)] 2 diN r, Ntis �9 Therefore 
0 

E[sup [Kt]2] =E[sup IKtl2]- -<4E [ i l f (s ,  Y~"--1)I2d[N,N]~] 
t s<=T 

y n - 1 2  < < 4 C 6 E [ l + s u p ]  ~ ] ]  +or 
s 
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Consider now the second term E sup f(s, Y~"-l)dBr~ . We have using the 
Schwartz inequality. L t 

t 2 r IdBff[ 2 r 
supt ! f (s ,  Y~"_-I)dB T < ! [f(s, Y2-1)I <=IBITof If(s, Y~_-I)I 2 IdBr~[. 

And therefore 

E [sup f(s, Ysn-1)dB = C 6 2 E [ l + s u p  IYsn-l[2]< + 00. 
t_ t S 

One shows similarly that E sup g(s, _ < +o0.  Hence we have 
E[sup  I g"12] < + o 0 .  

t 

Using the same method we obtain 

E[sup  IYt n+x-  Y~nl2] =<3K2(4+6) 6 E[SU p lye"- y . -1  2 

t t 

Taking ~ = 3 K 2 (4 + 6) 6, we get by recurrence 

E [sup I Y, "+1-  Y,"] 2] < e" E [sup [ Y, ~ -  Yt~ 2] = K  1 ~". 
t t 

For almost all co the Yt" converge uniformly on [0, o9) to a finite process Yt 

(use the fact that ~ P  (suptY~ "+1-  Yt"I> 1)-<~,Kln4c~n< + a o )  Let us take 
n 

Yt=0 on the set {co; Y~"(o)) does not converge uniformly}. The process Yis cadlag 
and adapted. We still have to show 

t t t 

Y~= If(S, Ys_) dN~r + If(s,  Y~_)dBT + fg(s,  Y~_)dA T. 
0 0 0 

Using the same method again, we get 

E Lsupt Y~- ! f(s, Y~_)dNs r -  o~f(s' Ys_)dB r -  oi g(s, Y~_)dA r2 

< 2 E [ s u p  [ Y t -  Y,"[ 2] + 6 K 2 ( 4 + 6 ) 6  E [sup [ Yt - Yt"-~ 12]. 

And everything will be finished if we show that 

lim E [sup ] Y t -  Yt"l 2] =0 .  
n t 

Just note that suplY,-Yt"]2_-<liminfsuplYt " -  yfl+k 2, and use Fatou's lemma 
to get t k t 

I lsuplN"-  Y,,] IlL= < l im in f  Ilsup I Y, " -  Yt"+kl]L~<t/~ ~ (Ira) k. 
t k t k = n  

That finishes the proof of the existence of a solution of (3). 

Step3b. Unicity of the solution of Equation(3). Let Z t be another adapted, 
cadlag solution of (3). For m>0 ,  take Sm=inf ( f ;  ]Yr[>m or [Ztl>m }. We have 
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Sin>0 and limSm= + oo a.e. The processes Y and Z are bounded on [0, S J  as 
m 

the jumps at time S,, verify 

IN Ysml=lf(s, gsm)ANT + f(s, Ys~)AB~, +g(s, Ysm)AAT,,I 

=D(1 +m)(V~+28)  

and similarly I d Zsm I <= D(1 + m) (]/~ + 28). 

Using again the same method, one obtains 

E[sup L Y,-z,12] [ sup IY -Z,L 2] 
t < S ,~  - -  t < Sn~ 

and Lemma 1 is proved! 

Lemma 2. Let 8 satisfy c~--3K 2 8 ( 4 + 8 ) <  1. Suppose that the local martingale M 
can be decomposed into 

M = N + B ,  

where N ~ ,  Bee f  and, for almost all e), [ANsi 2<0- for all s~lR+ Then the 
~ 2  ~ Equation (1) has a unique solution on [0, ~).  

Proof. Step 1. Let IBh~ and lair be the variations of B and A on [0, t], and set 

Ds=[N, NL+IBIs+IAI . 

The time T~=inf t;Dt>~ is a strictly positive stopping time, and Dry_ <~. 

Define the following processes 

A't = At A Tt - -  A ATa I~>= r~l, 

B't=Bt~ T~ -ABT~ IIt>=r~" 

The processes N', B' and A' verify the conditions of Lemma 1, since 

IN', X']oo + [A'[~ + ]B'[~ =Dye_ +(ANT,) 2 <=8. 

So there exists a unique cadlag solution for the equation 

t t 

Yt=H r'~ + ~ f(s, Y~_)(dN~ +dB's)+ ~ g(s, Y~_)dA'~. (4) 
o o 

The process xl t=Yt+[f(s ,  Yw~_)ABr~+g(s, YT~_)AAT~]I~t>=Tt~ is a solution of 

t 

Xt ~ =HT~+ ~ f(s, X~_)dMr~ + i g(s, X~_)dA r~. 
0 0 

It is the unique solution. For, if Z, is anotber solution, then 

Z t -  If(s, Zr~_)ABT~ +g(s, ZT~_)AAT~] I{t>T1 } 

is the solution of (4) and Z t = Yt on [0, T~ [. 
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Step2. How to go beyond the time T~. Let N,=~+T1-  If K e S e  or ~,, we define 

If K s Y ,  and if an (.Yt)-stopping time S reduces K, it is easy to show that R =  
(S-T~) + is a (N)-stopping time, and that K~A R is a uniformly integrable (fgt)- 
martingale. This implies that N 1 is a (f~0-1ocal martingale, and that IN 1, N1]t = 
([N, NIt+ r~ = NT1) I~T, < + o~}. Define the functions f ,  and gl as follows 

f l  (t, co, x ) = f ( t  + T 1 (co), co, x)I~r ~ < + o~}, 

gl (t, co, x) = g (t + r~ (~o), co, x) 1~1 < + < .  

These functions verify the L-properties with respect to (Nt). 

We can apply Step 1 again, with respect to the family (~t). Let 

DI = ]A ~ I, + IB* 1~ + [N ~, N*], = (Dr+ r1 - Dr,) I{T 1 < + oo}, 

a n d S a = i n f ( t ; D ~ > ~ ) .  There exists a unique solution of the equation 

t t 

X ? _  s  + S2 -- l i t+T1 -~- XTI  --HT1 + I f  I (S, Xgs-, ~ d(MllS:, ,~ "q- j g  [ ~1 t[s, X 2s_)' d(A1) s2' 
0 0 

The time U2 = T~ + S  2 is an (~)-stopping time. Using the fact that ( t -T~) + is a 
(f~t)-stopping time, one sees easily that the process defined by 

x , = x r  on [0, T~] 

x L  ~ on ] T1, Vl + s~] 

x L  on [ ~ + & ,  +oo) 

is the unique adapted cadlag solution of 
t t 

Hu2 Xt= t + Yf(s, X s - ) d m y  2+ yg(s ,X~- )dAy  2 
0 0 

Step 3. One can go on, and define by recurrence 

51=7"1,  8 2 7 . . . , S  . . . . .  , U I = S 1 ,  U 2 = S 1 J T S 2 , . . . ,  U n = S 1  -~- ' ' ' -~ S . . . . .  

w h e r e S , = i n f ( t ; D t + v n _ , - D v ~ _ ~ > ~ ) . F o r e a c h n w e s h a l l h a v e a u n i q u e s o l u t i o n  

of the stochastic integral equation 
t t 

X,=I4tV"+ ~f(s, Xs_ ) dMVs~+ ~g(s, Xs_) dAy ~. 
0 0 

Now we have D u n ~ T .  So the time U,,, is bigger than T = i n f  t ;Dt> ~ . As 

lim T, = + oo, we have finished the proof  of Lemma 2. 

Lemma 3. Let M be a local martingale, and fl be an arbitrary number such that fi > O. 
Then M can be decomposed into 

M = N + B  

where N ~ ~ ,  B ~ Y/and, for almost all co, I A Ms[ < 2 fi for all s ~ IR +. 
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Proof Let S~, S 2 . . . .  , S, ... be the following stopping times 

S~ =inf(t ;  [AMtl > fi) 

S, - in f ( t ;  t> S._~, IAM, I > fi) 

and set 

C,--- Z dMs.I t>_so . 
n 

The process Ct belongs to ~, its variation is locally integrable. Let C be the 
predictable process belonging to ~ such that C - C  is a local martingale. The 
martingale H = M - C + C satisfies 

IAH~I<IAMs-ACsI+IACsI<=~+IACsl .  

So we cannot have I~Gl>2p unless IA~l>fi. Look at the stopping times 
al, a2 . . . . .  G , . . .  

U 1 ---inf{t; IA ~l >/~} 

U~ =inf{t; t >  Un_l, ]A C~[ _-> fl}. 

These stopping times are predictable. The process D~=AHvpI{t>=v~} is a local 
martingale. The process D t = ~ DVt is in ~ and Dt v~ is a local martingale for each p. 

P 

Therefore D t is. a local martingale (see [2]). Taking N----H- D and B = C -  C + D, 
we have the desired decomposition. 

Note 2. We have, as a particular case of Theorem 1 (take f = g ) ,  the following 
result. Let Z be a semimartingale and H be an adapted cadlag process. If the 
random function f satisfies the L-properties, then the equation 

t 

X t = H t +  I f ( s ,  X~_) dZs 
o 

has one and only one cadlag adapted solution. 
This might even be a better way of stating Theorem 1 : for, let Q be a probability 

equivalent to P; a P-local martingale is not in general a Q-local martingale. But a 
P-semimartingale Z is a Q-semimartingale and the stochastic integrals ~ Y~ dZ~ of 
locally bounded, predictable processes Y are the same for the two probabilities 
P and Q. 

Theorem 1 extends trivially to systems of equations. 

Theorem 2. Let Fj(t, co, x) = (F)(t, co, x), ..., Fd(t, co, x)), 1 <=j <=p, be IRa-valued func- 
tions mapping IR + • t2 • IR a to IRa. We suppose that the Fj h verify the L-properties. 
Let  M 1, . . . ,  M p be p semimartingales and let H ~ . . . . .  H a be some adapted cadlag 
processes. Then there exist one and only one IRa-valued, adapted, eadlag process 
X_ = (X1, ..., X a) such that 

x t =  Hi+ x s )dM . 
j -1 o 
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