The Combinatorial Structure of Non-Homogeneous Markov Chains

J.F.C. Kingman and David Williams

1. The Combinatorial Structure of Homogeneous Chains

The classical theory of continuous-parameter Markov chains, as described for instance in [1], assumes that the transition probabilities

$$
\begin{equation*}
\mathbf{P}\{X(t)=j \mid X(s)=i\} \quad(s<t), \tag{1}
\end{equation*}
$$

where i and j run over the countable state space I, are functions

$$
\begin{equation*}
p_{i j}(t-s) \tag{2}
\end{equation*}
$$

of $(t-s)$ alone. In this theory one important result is the Lévy dichotomy, proved in full generality by Austin and Ornstein (see [1]), which asserts that if the functions $p_{i j}(\cdot)$ are Lebesgue measurable, then each of them is either always or never zero. Thus the relation R on I defined by

$$
\begin{equation*}
R=\left\{(i, j) ; p_{i j}(t)>0\right\} \tag{3}
\end{equation*}
$$

is independent of $t>0$.
A consequence of this result is that, if $(i, j) \in R$ and $(j, k) \in R$, then for $s, t>0$,

$$
p_{i k}(s+t) \geqq p_{i j}(s) p_{j k}(t)>0,
$$

so that $(i, k) \in R$. Thus R is necessarily a transitive relation. Moreover, if the chain is standard, $(i, i) \in R$ for all $i \in I$, so that R is reflexive.

Conversely, suppose that R is any reflexive transitive relation on the countable set I. Then there exist standard chains on I which satisfy (3); consider for example a q-bounded chain whose infinitesimal generator $\left(q_{i j}\right)$ satisfies

$$
\begin{equation*}
q_{i j}>0 \Leftrightarrow i \neq j, \quad(i, j) \in R . \tag{4}
\end{equation*}
$$

Thus the problem of characterising the relation (3) for homogeneous chains (those for which the conditional probability (1) takes the form (2)) has a very simple solution; the possible relations R are exactly the reflexive transitive relations on I.

This fact has consequences for the embedding problem [3]. Thus, if ($p_{i j} ; i, j \in I$) is a stochastic matrix, and if there exist $\alpha, \beta, \gamma \in I$ with

$$
p_{\alpha \beta}>0, \quad p_{\beta \gamma}>0, \quad p_{\alpha \gamma}=0,
$$

then there is no homogeneous chain whose transition probabilities satisfy
for some $t>0$.

$$
p_{i j}(t)=p_{i j}, \quad(i, j \in I)
$$

The purpose of this paper is to investigate the corresponding problem for non-homogeneous Markov chains. Our main result is Theorem 3, which provides a complete solution when the state space I is finite. The methods depend heavily on the finiteness of I, and a generalisation to infinite state spaces would require new techniques.

2. Non-Homogeneous Markov Chains

Let I be a finite set, and $[a, b]$ a compact, non-degenerate interval. The transition probabilities of a non-homogeneous Markov chain with state space I and parameter space $[a, b]$ are functions

$$
\begin{equation*}
p_{i j}(s, t) \quad(a \leqq s \leqq t \leqq b) \tag{5}
\end{equation*}
$$

which satisfy

$$
\begin{align*}
p_{i j}(s, t) & \geqq 0 \tag{6}\\
\sum_{j \in I} p_{i j}(s, t) & =1 \tag{7}\\
p_{i j}(t, t) & =\delta_{i j} \tag{8}\\
p_{i j}(s, u) & =\sum_{k \in I} p_{i k}(s, t) p_{k j}(t, u), \tag{9}
\end{align*}
$$

for $a \leqq s \leqq t \leqq u \leqq b$. To avoid pathological examples, it will be supposed also that

$$
\begin{equation*}
p_{i j}(s, t) \text { is separately continuous in } s \text { and in } t . \tag{10}
\end{equation*}
$$

An example of an array $\left(p_{i j}\right)$ satisfying (6)-(10) is given by

$$
\begin{equation*}
p_{i j}(s, t)=p_{i j}(t-s) \tag{11}
\end{equation*}
$$

where $p_{i j}(\cdot)$ are the transition probabilities of a standard homogeneous chain. More generally, let $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ be a dissection of [$\left.a, b\right]$, and for each α in $1 \leqq \alpha \leqq n$ let $p_{i j}^{(\alpha)}(\cdot)$ be the transition probabilities of a standard homogeneous chain. Define the matrix

$$
P(s, t)=\left(p_{i j}(s, t) ; i, j \in I\right)
$$

by

$$
\begin{equation*}
P(s, t)=P^{(\alpha)}\left(x_{\alpha}-s\right) \prod_{\gamma=\alpha+1}^{\beta-1} P^{(\gamma)}\left(x_{\gamma}-x_{\gamma-1}\right) P^{(\beta)}\left(t-x_{\beta-1}\right), \tag{12}
\end{equation*}
$$

where $x_{\alpha-1} \leqq s \leqq x_{\alpha}, x_{\beta-1} \leqq t \leqq x_{\beta}$. Then it is easily checked that (6)-(10) are satisfied.

Our problem is to establish the properties of the relation $R(s, t)$ defined on I by

$$
\begin{equation*}
R(s, t)=\left\{(i, j) ; p_{i j}(s, t)>0\right\} . \tag{13}
\end{equation*}
$$

In the rest of the paper it will be assumed that I is finite and that the functions (5) satisfy (6), (8), (9) and (10). Eq. (7) is for our purposes irrelevant and will not be assumed. The identity relation on I will be denoted by Δ :

$$
\begin{equation*}
\Delta=\{(i, i) ; i \in I\} \tag{14}
\end{equation*}
$$

Theorem 1. The relation $R(s, t)$ is reflexive, and $R(t, t)=\Delta$. If $s<t<u<v$, then

$$
\begin{equation*}
R(t, u) \subseteq R(s, v) \tag{15}
\end{equation*}
$$

Proof. That $R(t, t)=\Delta$ follows from (8). For any $i \in I, t \in[a, b)$, (10) implies that

$$
p_{i i}(t, t+h)>0
$$

for all sufficiently small $h>0$, and for $t \in(a, b]$ that

$$
p_{i i}(t-h, t)>0
$$

for all sufficiently small $h>0$. Since I is finite and

$$
p_{i i}\left(t-h_{1}, t+h_{2}\right) \geqq p_{i i}\left(t-h_{1}, t\right) p_{i i}\left(t, t+h_{2}\right)
$$

it follows that, for each $t \in[a, b]$, there exists $\delta(t)>0$ such that

$$
p_{i i}(s, u)>0
$$

whenever $i \in I$ and

$$
t-\delta(t) \leqq s \leqq t \leqq u \leqq t+\delta(t)
$$

The intervals

$$
I(t)=(t-\delta(t), t+\delta(t)), \quad(a<t<b)
$$

cover $[a+\delta(a), b-\delta(b)]$ and hence admit a finite subcover. If $\left\{I\left(y_{r}\right) ; r=1,2, \ldots, n\right\}$ is a minimal subcover, with $y_{1}<y_{2}<\cdots<y_{n}$, it is easy to see that there exist $x_{0}, x_{1}, \ldots, x_{n}$ with

$$
a<x_{0}<y_{1}<x_{1}<y_{2}<\cdots<y_{n}<x_{n}<b
$$

and

$$
\begin{gathered}
y_{r}-\delta\left(y_{r}\right) \leqq x_{r-1} \leqq y_{r} \leqq x_{r} \leqq y_{r}+\delta\left(y_{r}\right), \\
x_{0} \leqq a+\delta(a), \quad x_{n} \geqq b-\delta(b) .
\end{gathered}
$$

Thus

$$
p_{i i}\left(x_{r-1}, x_{r}\right)>0
$$

so that

$$
p_{i i}(a, b) \geqq p_{i i}\left(a, x_{0}\right) \prod_{r=1}^{n} p_{i i}\left(x_{r-1}, x_{r}\right) p_{i i}\left(x_{n}, b\right)>0 .
$$

This implies that $R(a, b)$ is reflexive, and the same arguments apply to the smaller interval (s, t) to show that $R(s, t)$ is also reflexive whenever $a \leqq s \leqq t \leqq b$.

If $s \leqq t \leqq u \leqq v$ and $(i, j) \in R(t, u)$, then

$$
p_{i j}(s, v) \geqq p_{i i}(s, t) p_{i j}(t, u) p_{j j}(u, v)>0,
$$

so that $(i, j) \in R(s, v)$, establishing (15) and completing the proof.

3. Some Combinatorial Theory

If R_{1} and R_{2} are reflexive relations on the set I, another reflexive relation $R_{1} R_{2}$ may be defined by

$$
\begin{equation*}
R_{1} R_{2}=\left\{(i, j) ;(i, k) \in R_{1},(k, j) \in R_{2} \text { for some } k \in I\right\} \tag{16}
\end{equation*}
$$

With this definition of "multiplication" the reflexive relations on I form a semigroup (non-commutative if $|I| \geqq 3$) with identity Δ. Clearly

$$
\begin{equation*}
R_{1} \subseteq R_{1}^{\prime}, R_{2} \subseteq R_{2}^{\prime} \Rightarrow R_{1} R_{2} \subseteq R_{1}^{\prime} R_{2}^{\prime} \tag{17}
\end{equation*}
$$

and in particular, since $\Delta \subseteq R$ for any reflexive relation R,

$$
\begin{equation*}
R_{1} \subseteq R_{1} R_{2}, \quad R_{2} \subseteq R_{1} R_{2} \tag{18}
\end{equation*}
$$

This construction is particularly apposite for the present problem, since it follows from (9) that, whenever $s \leqq t \leqq u$,

$$
\begin{equation*}
R(s, u)=R(s, t) R(t, u) \tag{19}
\end{equation*}
$$

If R is any reflexive relation on I, a new relation $\tau(R)$ on I may be defined by

$$
\begin{equation*}
\tau(R)=\{(i, j) ;(j, k) \in R \Rightarrow(i, k) \in R\} \tag{20}
\end{equation*}
$$

Thus $(i, j) \in \tau(R)$ unless there exists $k \in I$ with $(j, k) \in R,(i, k) \notin R$.
Theorem 2. The relation $\tau(R)$ is reflexive and transitive, and satisfies

$$
\begin{equation*}
\tau(R) \subseteq R \tag{21}
\end{equation*}
$$

(with equality if and only if R is transitive) and

$$
\begin{equation*}
R=\tau(R) R \tag{22}
\end{equation*}
$$

Proof. Clearly $(i, i) \in \tau(R)$, so that $\tau(R)$ is reflexive. If $(i, j) \in \tau(R)$ and $(j, l) \in \tau(R)$, then

$$
(l, k) \in R \Rightarrow(j, k) \in R \Rightarrow(i, k) \in R
$$

showing that $(i, l) \in \tau(R)$, so that $\tau(R)$ is transitive.
If $(i, j) \in \tau(R)$, then $(j, j) \in R \Rightarrow(i, j) \in R$, proving (21). If equality holds in (21), then $R=\tau(R)$ is transitive. Conversely, if R is transitive,

$$
(i, j) \in R \Rightarrow\{(j, k) \in R \Rightarrow(i, k) \in R\} \Rightarrow(i, j) \in \tau(R)
$$

so that $\tau(R)=R$.
By (18), $R \subseteq \tau(R) R$. To establish the opposite inclusion, suppose that

$$
(i, j) \in \tau(R) R
$$

so that there exists $k \in I$ with

$$
(i, k) \in \tau(R), \quad(k, j) \in R
$$

The definition of $\tau(R)$ shows that $(i, j) \in R$, and (22) is proved.

4. The Main Theorem

Theorem 3. The relation $R(a, b)$ may be expressed as a finite product

$$
\begin{equation*}
R(a, b)=T_{1} T_{2} \ldots T_{n}, \tag{23}
\end{equation*}
$$

where each T_{r} is reflexive and transitive.

Proof. If $R(a, b)=\Delta$ the result is trivial, since Δ is transitive. Suppose therefore that $R(a, b)=R \supset \Delta$, and define

$$
x=\sup \{t ; R(t, b)=R\}
$$

We first prove that

$$
\begin{equation*}
R(x, b) \subset R \tag{24}
\end{equation*}
$$

By (15), $R(x, b) \subseteq R$, so that if (24) is false, $R(x, b)=R$ and therefore $x<b$. If this is so, then by continuity there exists ξ in $x<\xi<b$ such that
for all pairs (i, j) such that

$$
p_{i j}(\xi, b)>0
$$

$$
p_{i j}(x, b)>0 .
$$

Hence $R(x, b) \subseteq R(\xi, b)$ and, for $a \leqq t<\xi$,

$$
R=R(x, b) \subseteq R(\xi, b) \subseteq R(t, b) \subseteq R(a, b)=R
$$

so that

$$
R(t, b)=R \quad(a \leqq t<\xi),
$$

which contradicts the definition of x. The contradiction proves (24), which also shows that $x>a$.

Now suppose, if possible, that

$$
(i, j) \in R, \quad(i, j) \notin \tau(R)
$$

Then there exists $k \in I$ with

$$
(j, k) \in R, \quad(i, k) \notin R .
$$

Take $t<x$, so that

$$
(j, k) \in R=R(t, b) .
$$

Then $(i, j) \in R(a, t)$ would imply

$$
(i, k) \in R(a, t) R(t, b)=R
$$

contrary to hypothesis, and so we must have

$$
p_{i j}(a, t)=0
$$

This holds for all $t<x$, so that by continuity

$$
p_{i j}(a, x)=0 .
$$

Hence

$$
(i, j) \in R, \quad(i, j) \notin \tau(R) \Rightarrow(i, j) \notin R(a, x)
$$

and since $R(a, x) \subseteq R$ it follows that

$$
\begin{equation*}
R(a, x) \subseteq \tau(R) \tag{25}
\end{equation*}
$$

Therefore, by (22),

$$
R=R(a, b)=R(a, x) R(x, b) \subseteq \tau(R) R(x, b) \subseteq \tau(R) R=R
$$

showing that

$$
\begin{equation*}
R(a, b)=\tau(R(a, b)) R(x, b) \tag{26}
\end{equation*}
$$

We now proceed by induction. Write $x_{0}=a, x_{1}=x$ and note that, unless $R(x, b)=\Delta$, the argument just described applies to $R\left(x_{1}, b\right)$ to give

$$
\begin{gathered}
x_{2}=\sup \left\{t ; R(t, b)=R\left(x_{1}, b\right)\right\}, \\
R\left(x_{2}, b\right) \subset R\left(x_{1}, b\right), \\
R\left(x_{1}, b\right)=\tau\left(R\left(x_{1}, b\right)\right) R\left(x_{2}, b\right) .
\end{gathered}
$$

Continuing, we have a sequence
with

$$
\begin{gather*}
R\left(x_{m+1}, b\right) \subset R\left(x_{m}, b\right) \tag{27}\\
R\left(x_{m}, b\right)=\tau\left(R\left(x_{m}, b\right)\right) R\left(x_{m+1}, b\right) . \tag{28}
\end{gather*}
$$

The process can only terminate when $R\left(x_{n}, b\right)=A$, and this must be reached after a finite number of steps because of (27) and the finiteness of I. Then (23) follows from (28) on writing

$$
T_{m}=\tau\left(R\left(x_{m-1}, b\right)\right)
$$

and the proof is complete.
The conclusion of the theorem is the best possible, since if T_{m} is any reflexive transitive relation, it can be realised in terms of a standard homogeneous chain. Sticking together the chains realising $T_{1}, T_{2}, \ldots, T_{m}$ in the manner described by (12), we have a non-homogeneous chain satisfying (23). In other words, let us call a relation R embeddable if there is a non-homogeneous chain with $R(s, t)=R$ for some $s \leqq t$. Then R is embeddable if and only if it is expressible as a finite product of reflexive transitive relations.

It is possible to give a crude upper bound for n in terms of the number $N=|I|$ of elements of I. Thus (27) shows that

$$
\left|R\left(x_{m+1}, b\right)\right| \leqq\left|R\left(x_{m}, b\right)\right|-1
$$

so that

$$
N=|\Delta|=\left|R\left(x_{n}, b\right)\right| \leqq\left|R\left(x_{0}, b\right)\right|-n \leqq N^{2}-n,
$$

and therefore

$$
\begin{equation*}
n \leqq N^{2}-N \tag{29}
\end{equation*}
$$

5. An Algorithm

Theorem 3 reduces the problem of deciding whether a given pattern of positive elements can arise in the transition matrix of a non-homogeneous chain to the combinatorial problem of deciding whether a given relation can be written as a finite product of reflexive transitive relations. The proof of the theorem also suggests an algorithm for solving this combinatorial problem.

If R and R_{1} are reflexive relations on the finite set I, call R_{1} a child of R if

$$
\begin{equation*}
R_{1} \subset R, \quad R=\tau(R) R_{1} \tag{30}
\end{equation*}
$$

Lemma. A reflexive relation R has at least one child if and only if $\tau(R) \neq \Delta$.

Proof. If $\tau(R)=\Delta$, then the conditions (30) become mutually contradictory:

$$
R_{1} \subset R, \quad R=R_{1}
$$

Suppose therefore that $\tau(R) \supset \Delta$, and set

$$
S=\{R \backslash \tau(R)\} \cup \Delta
$$

Then S is reflexive, $S \subset R$ and, since $S \subseteq \tau(R) S$ and $\tau(R) \subseteq \tau(R) S$,

$$
R=S \cup \tau(R) \subseteq \tau(R) S \subseteq \tau(R) R=R
$$

Hence S is a child of R (and so likewise is every relation R_{1} with $S \subseteq R_{1} \subset R$).
Children of a reflexive relation R may themselves have children, and so on, so that a family tree may be built up for R. Since a child has fewer elements than its parent, such a tree has at most $|R|-N$ generations.

Theorem 4. A reflexive relation R is embeddable if and only if it has a transitive descendant.

Proof. If R has a transitive descendant T, there is a sequence

$$
R=R_{0}, R_{1}, R_{2}, \ldots, R_{n-1}=T
$$

in which R_{m} is a child of R_{m-1}. Writing $T_{m}=\tau\left(R_{m-1}\right)$ so that $T_{n}=T$, we have

$$
R_{m-1}=T_{m} R_{m}
$$

whence $R=T_{1} T_{2} \ldots T_{n}$.
Conversely, if R is embeddable, then there is a non-homogereous chain with $R(a, b)=R$. By (27) and (28), $R\left(x_{m+1}, b\right)$ is a child of $R\left(x_{m}, b\right)$, so that $\Delta=R\left(x_{n}, b\right)$ is a descendant of $R\left(x_{0}, b\right)=R$. Hence R has the transitive descendant Δ, and the proof is complete.

Corollary. A relation R with

$$
\begin{equation*}
R \supset \Delta, \quad \tau(R)=\Delta \tag{31}
\end{equation*}
$$

is not embeddable.
As a simple example of the use of this result, let $I=\{1,2,3,4\}$,

$$
P=\left(\begin{array}{cccc}
\frac{2}{3} & 0 & 0 & \frac{1}{3} \tag{32}\\
0 & \frac{2}{3} & \frac{1}{3} & 0 \\
\frac{1}{3} & 0 & \frac{2}{3} & 0 \\
0 & \frac{1}{3} & 0 & \frac{2}{3}
\end{array}\right)
$$

and $R=\left\{(i, j) ; p_{i j}>0\right\}$. Since $\tau(R)=A, R$ is not embeddable, and so P is not embeddable as $P(s, t)$ for a Markov transition function satisfying (6)-(10). However,

$$
\prod_{i} p_{i i}>\operatorname{det} P>0
$$

so that (32) is a counter-example to the conjecture at the end of $\S 6$ of Goodman's paper [2].

6. A Structure Theory

Theorem 3 shows that the relation $R(a, b)$ is expressible as a finite product of reflexive transitive relations T_{r}, but it asserts no direct significance for the T_{r}. Nor does it give any information about the structure of the family of relations $R(s, t)(a \leqq s \leqq t \leqq b)$, beyond the obvious fact that each is embeddable. The next result shows that (roughly speaking) $R(s, t)$ is transitive when the interval (s, t) is small.

Theorem 5. For each $t \in(a, b]$ there is a reflexive transitive relation $\Gamma_{-}(t)$ on I such that

$$
\begin{equation*}
R(t-h, t)=\Gamma_{-}(t) \tag{33}
\end{equation*}
$$

for all sufficiently small $h>0$. For each $t \in[a, b)$, there is a reflexive transitive relation $\Gamma_{+}(t)$ such that

$$
\begin{equation*}
R(t, t+h)=\Gamma_{+}(t) \tag{34}
\end{equation*}
$$

for all sufficiently small $h>0$.
Proof. Using the notation of the proof of Theorem 3, we distinguish two cases:
(i) If $x_{n}<b$, then $R(b-h, b)=\Delta$ whenever $0<h<b-x_{n}$, so that (33) holds when $t=b$ with $\Gamma_{-}(b)=\Delta$.
(ii) If $x_{n}=b$, then the definition of x_{n} implies that, whenever $0<h<b-x_{n-1}$,

$$
\begin{aligned}
R(b-h, b) & =R\left(x_{n-1}, b\right) \\
& =\tau\left(R\left(x_{n-1}, b\right)\right) R\left(x_{n}, b\right) \\
& =\tau\left(R\left(x_{n-1}, b\right)\right),
\end{aligned}
$$

so that (33) holds when $t=b$ with

$$
\Gamma_{-}(b)=\tau\left(R\left(x_{n-1}, b\right)\right)
$$

which is reflexive and transitive.
Hence we have proved the first part when $t=b$, and applying the same arguments to the chain on $[a, t]$ proves it for all $t \in(a, b]$.

If the matrices $P(s, t)=\left(p_{i j}(s, t)\right)$ satisfy (6), (8), (9) and (10), then so do the matrices

$$
\begin{equation*}
P^{*}(s, t)=P(a+b-t, a+b-s)^{T} \tag{35}
\end{equation*}
$$

A^{T} denoting the transpose of the matrix A. Applying the first part of the theorem to this dual family yields the second part of the theorem.

The relations $\Gamma_{+}(\cdot)$ and $\Gamma_{-}(\cdot)$ describe the local structure of $R(\cdot, \cdot)$, and might be called the germs of the family of relations $R(s, t)$. They contain enough information to allow the $R(s, t)$ to be reconstructed.

Theorem 6. For any dissection

$$
\begin{equation*}
D: s=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=t \tag{36}
\end{equation*}
$$

of $[s, t]$, define a relation

$$
\begin{equation*}
R_{D}=\Gamma_{+}\left(x_{0}\right) \prod_{r=1}^{n-1}\left\{\Gamma_{-}\left(x_{r}\right) \Gamma_{+}\left(x_{r}\right)\right\} \Gamma_{-}\left(x_{n}\right) \tag{37}
\end{equation*}
$$

Then, if D_{2} is a refinement of D_{1},

$$
\begin{equation*}
R_{D_{1}} \subseteq R_{D_{2}} \subseteq R(s, t) \tag{38}
\end{equation*}
$$

and there exists a dissection D with

$$
\begin{equation*}
R_{D}=R(s, t) . \tag{39}
\end{equation*}
$$

Proof. It follows from Theorem 5 and (15) that

$$
R(u, v) \supseteq \Gamma_{+}(u), \quad R(u, v) \supseteq \Gamma_{-}(v),
$$

and hence that, if $y_{r}=\frac{1}{2}\left(x_{r-1}+x_{r}\right)$,

$$
\begin{aligned}
R(s, t) & =R\left(x_{0}, y_{1}\right) \prod_{r=1}^{n-1}\left\{R\left(y_{r}, x_{r}\right) R\left(x_{r}, y_{r+1}\right)\right\} R\left(y_{n}, x_{n}\right) \\
& \supseteq \Gamma_{+}\left(x_{0}\right) \prod_{r=1}^{n-1}\left\{\Gamma_{-}\left(x_{r}\right) \Gamma_{+}\left(x_{r}\right)\right\} \Gamma_{-}\left(x_{n}\right) \\
& =R_{D}
\end{aligned}
$$

If D_{2} is a refinement of D_{1}, then repeated application of (18) shows that $R_{D_{1}} \subseteq R_{D_{2}}$, so that (38) is proved.

Theorem 5 shows that, for each $x \in[a, b]$, there exists $\delta(x)>0$ such that

$$
\begin{array}{ll}
R(x-h, x)=\Gamma_{-}(x), & 0<h \leqq \min (\delta(x), x-a) \\
R(x, x+h)=\Gamma_{+}(x), & 0<h \leqq \min (\delta(x), b-x) .
\end{array}
$$

As in the proof of Theorem 1, we can find points

$$
s=x_{0}<\xi_{1}<x_{1}<\xi_{2}<\cdots<\xi_{n}<x_{n}=t
$$

with

$$
x_{r}-\delta\left(x_{r}\right) \leqq \xi_{r}<x_{r}<\xi_{r+1} \leqq x_{r}+\delta\left(x_{r}\right)
$$

Then

$$
R\left(\dot{\xi}_{r}, x_{r}\right)=\Gamma_{-}\left(x_{r}\right), \quad R\left(x_{r}, \xi_{r+1}\right)=\Gamma_{+}\left(x_{r}\right)
$$

so that

$$
R(s, t)=R\left(s, \xi_{1}\right) \prod_{r=1}^{n-1}\left\{R\left(\xi_{r}, x_{r}\right) R\left(s_{r}, \xi_{r+1}\right)\right\} R\left(\xi_{n}, t\right)=R_{D}
$$

if D is the dissection (36). Hence the theorem is proved.
If the dissections D of $[s, t]$ are ordered by refinement and relations on I by inclusion, then (38) and (39) assert that the map $D \mapsto R_{D}$ is monotone, and that

$$
\begin{equation*}
R(s, t)=\sup _{D} R_{D} \tag{40}
\end{equation*}
$$

the supremum being attained. Thus (40) expresses $R(s, t)$ explicitly in terms of the germs at points in [$s, t]$. It should be noted, however, that there is in general no simple relation between the dissections which attain the suprema in (40) for different intervals $[s, t]$.

86 Kingman and Williams: The Combinatorial Structure of Non-Homogeneous Markov Chains

References

1. Chung, K. L.: Markov chains with stationary transition probabilities. Berlin-Heidelberg-New York: Springer 1967.
2. Goodman, G.S.: An intrinsic time for non-stationary Markov chains. Z. Wahrscheinlichkeitstheorie verw. Geb. 16, 165-180 (1970).
3. Kingman, J.F.C.: The imbedding problem for finite Markov chains. Z. Wahrscheinlichkeitstheorie verw. Geb. 1, 14-24 (1962).
J.F.C. Kingman

Mathematical Institute
24 St Giles
Oxford, OX 1 3LB, Great Britain
D. Williams

Department of Pure Mathematics University College of Swansea
Swansea, SA 28 PP, Great Britain

