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The Combinatorial Structure
of Non-Homogeneous Markov Chains

J.F.C.Kingman and David Williams

1. The Combinatorial Structure of Homogeneous Chains

The classical theory of continuous-parameter Markov chains, as described
for instance in [1], assumes that the transition probabilities

P{X@=jlX(s)=i} (s<), (1)
where i and j run over the countable state space I, are functions
pij(t—3s) )

of (t—s) alone. In this theory one important result is the Lévy dichotomy, proved
in full generality by Austin and Ornstein (see [1]), which asserts that if the func-
tions p;;(+) are Lebesgue measurable, then each of them is either always or never
zero. Thus the relation R on I defined by

R={(i,j); p;;(t)>0} G)
is independent of ¢>0.

A consequence of this result is that, if (i, )eR and (j, k)eR, then for s,t>0,
Pi(s+1)Zpi;(s) pjr(1)>0,

so that (i, k)e R. Thus R is necessarily a transitive relation. Moreover, if the chain
is standard, (i, ))eR for all iel, so that R is reflexive.

Conversely, suppose that R is any reflexive transitive relation on the countable
set I. Then there exist standard chains on I which satisfy (3); consider for example
a g-bounded chain whose infinitesimal generator (g;;) satisfies

Thus the problem of characterising the relation (3) for homogeneous chains
(those for which the conditional probability (1) takes the form (2)) has a very
simple solution; the possible relations R are exactly the reflexive transitive
relations on I.

This fact has consequences for the embedding problem [3]. Thus, if (p;;; i, jel)
is a stochastic matrix, and if there exist a, 8, yeI with

paﬁ>07 pﬁy>05 payzoa
then there is no homogeneous chain whose transition probabilities satisfy

pii(O=p;;, (. jel),
for some ¢ >0.
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The purpose of this paper is to investigate the corresponding problem for
non-homogeneous Markov chains. Our main result is Theorem 3, which provides
a complete solution when the state space I is finite. The methods depend heavily
on the finiteness of I, and a generalisation to infinite state spaces would require
new techniques.

2. Non-Homogeneous Markov Chains

Let I be a finite set, and [a,b] a compact, non-degenerate interval. The
transition probabilities of a non-homogeneous Markov chain with state space I
and parameter space [a, b] are functions

pii(s,t)  (aSs=t=b) &)
which satisfy
pij(s, t)goa (6)
leij(sa t)=19 (7)
pi;(t, 1) =46y, ®)
pij(s,u)= kzlpik(sa 1) p(t, w), )]

for a<s=t<u<h. To avoid pathological examples, it will be supposed also that
Pi;(s, t) is separately continuous in s and in t. (10)

An example of an array (p;)) satisfying (6)-(10) is given by

pij(s, )=py(t—s), (11)

where p;;(+) are the transition probabilities of a standard homogeneous chain.
More generally, let a=xy<x; <x,<---<x,=b be a dissection of [qa,b], and
for each « in 1<a<n let p{(-) be the transition probabilities of a standard
homogeneous chain. Define the matrix

Pls, )=(py(s, ;1. je1)
P(S, t)=P(“)(xm—S) Bﬁl P(')’)(xy—xy_l) P('B)(t—xﬁ—l)7 (12)

y=a+l1

by

where x, | S5=Xx,, x;_; St=<x,. Then it is easily checked that (6)-(10) are
satisfied.

Our problem is to establish the properties of the relation R (s, ) defined on I by

R(s, 0)={(0.)); py;(s, )>0}. (13)

In the rest of the paper it will be assumed that I is finite and that the functions
(5) satisfy (6), (8), (9) and (10). Eq.(7) is for our purposes irrelevant and will not
be assumed. The identity relation on I will be denoted by 4:

A={(,i); iel}. (14)
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Theorem 1. The relation R(s, t) is reflexive, and R(t,t)=A4. If s<t<u<uw, then
R(t, )R (s, v). (15)
Proof. That R(t, t)= 4 follows from (8). For any iel, te[a, b), (10) implies that
pu(t, t+h)>0
for all sufficiently small h>0, and for te(q, b] that
piit—h,6)>0
for all sufficiently small A > 0. Since [ is finite and
Diit—hy, t+hy)Zp;(t—hy, t) p(t, t+h,),
it follows that, for each te[a, b], there exists () >0 such that

Pii(s, w)>0
whenever iel and
—O0()SsZtZust+0().
The intervals
I)=(t—0o(t),t+6(t), (a<t<b)

cover [a+6(a), b—56(b)] and hence admit a finite subcover. If {I(y,); r=1,2, ..., n}
is a minimal subcover, with y, <y, <---<y,, it is easy to see that there exist
Xg, X1 -ns X, With

A< X< Y <Xy <Pp < - <P, <x,<b

and
Ve —=0()=x%, 1 21, 2,2y, +6(3),
xoSa+d(@), x,2b—4d(b).
Thus
Pii(xp—1,%,)>0,
so that

i@, )2 pii(a, xo) [ | pii(x,_ 1, %) pis (%, b)>0.
r=1

This implies that R(a, b) is reflexive, and the same arguments apply to the smaller
interval (s, f) to show that R(s, t) is also reflexive whenever a<s=<t=<b.

If s<t=u=vand (i, j)eR(t, u), then
P (s, v) Zp;i (s, 1) py;(t, u) pj;(u, v) >0,

so that (i, j)e R (s, v), establishing (15) and completing the proof.

3. Some Combinatorial Theory

If R, and R, are reflexive relations on the set I, another reflexive relation
R, R, may be defined by

R, R, ={(i,j); (i, k)€ Ry, (k,j)eR, for some kel}. (16)
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With this definition of “multiplication” the reflexive relations on I form a semi-
group (non-commutative if |I] = 3) with identity 4. Clearly

R,=R,,R,=R, =R, R, SR, R;, (17)
and in particular, since 4 =R for any reflexive relation R,
R,SR,R,, R,=R(R,. (18)

This construction is particularly apposite for the present problem, since it
follows from (9) that, whenever s<t<u,

R(s,u)=R(s, t) R(t, u). (19)
If R is any reflexive relation on I, a new relation t(R) on I may be defined by
t(R)={(i,)); (j, KheR = (i, k)eR}. (20)
Thus (i, j)e T(R) unless there exists kel with (j, k)eR, (i, k)¢ R.

Theorem 2. The relation t(R) is reflexive and transitive, and satisfies

T(R)ER (21)
(with equality if and only if R is transitive ) and

R=t(R)R. (22)

Proof. Clearly (i, i)e(R), so that t(R) is reflexive. If (i, j)ez(R) and (j, )et(R),
then
(Lk)eR = (j,k)eR = (i, k)eR,

showing that (i, )et(R), so that t(R) is transitive.

If (i, et (R), then (j, )eR = (i, ))eR, proving (21). If equality holds in (21),
then R=1(R) is transitive. Conversely, if R is transitive,

(i, )eR = {(j,k)eR = (i, k)e R} = (i, )eT(R),
so that T(R)=R.
By (18), R=1(R).R. To establish the opposite inclusion, suppose that

(i, )et(R)R,
so that there exists kel with

(i, kjet(R), (k,j)eR.
The definition of 7(R) shows that (i, j)e R, and (22) is proved.

4. The Main Theorem

Theorem 3. The relation R(a, b) may be expressed as a finite product
R@b)=TT,..T, 23)

where each T, is reflexive and transitive.



The Combinatorial Structure of Non-Homogeneous Markov Chains 81

Proof. If R(a, b)=A4 the result is trivial, since 4 is transitive. Suppose there-
fore that R(a, b)=R> 4, and define

x=sup{t; R(t,b))=R}.
We first prove that
R{(x,b)=R. 24

By (15), R(x, b)=R, so that if (24) is false, R(x, b)=R and therefore x <b. If this
is so, then by continuity there exists ¢ in x <& <b such that

p;;(&, b)>0
for all pairs (i, j) such that
pij(x7 b) >0.

Hence R(x, b)=R(¢, b) and, for a=st<¢,

R=R(x,b)=R( b)SR(t,b)<R(a,b)=R,
so that
R(t,b)=R (a=t<?),

which contradicts the definition of x. The contradiction proves (24), which also
shows that x> a.

Now suppose, if possible, that

@)eR, (,)j)¢r(R).

Then there exists kel with
(j,keR, (i, k¢R.
Take t<x, so that
(j, kleR=R(t, b).

Then (i, j)e R(a, t) would imply
(i, k)eR(a,t) R(t,b)=R
contrary to hypothesis, and so we must have
pij(a, t)=0.
This holds for all t<x, so that by continuity
pij(a, x)=0.

,)eR, (G )¢T(R)= (i, )¢R(a, x),

and since R(a, x)< R it follows that

Hence

R(a, x)=t(R). (25)
Therefore, by (22),
R=R(a,b)=R(a,x)} R(x,b)=t(R) R(x,b)=t(R) R=R,

showing that
R(a, b)=1(R(a, b)) R(x, b). (26)

6 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26
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We now proceed by induction. Write x,=a, x; =x and note that, unless
R(x, b)=A, the argument just described applies to R(x,, b) to give

x,=sup{t; R(t, b))=R(x,, D)},
R(x,,b)cR(x,,b),
R(x;, b)=1(R(x, b)) R(x,,b).

Continuing, we have a sequence

a=Xg<Xg <X2<"'
with
R(xm+15 b)cR(xm, b)a (27)

R(xm’b)=I(R(xm=b))R(xm+15b)' (28)

The process can only terminate when R(x,,b)=4, and this must be reached
after a finite number of steps because of (27) and the finiteness of I. Then (23)
follows from (28) on writing

TmZT(R(xm—l ’ b)):
and the proof is complete.

The conclusion of the theorem is the best possible, since if T, is any reflexive
transitive relation, it can be realised in terms of a standard homogeneous chain.
Sticking together the chains realising T}, T,, ..., T,, in the manner described by
(12), we have a non-homogeneous chain satisfying (23). In other words, let us
call a relation R embeddable if there is a non-homogeneous chain with R(s, )=R
for some s<t. Then R is embeddable if and only if it is expressible as a finite
product of reflexive transitive relations.

It is possible to give a crude upper bound for # in terms of the number N =|I|
of elements of I. Thus (27) shows that

|R(xm+19 b)'élR(xm: b)l_l,
so that
N=|4]=|R(x,, b)| <|R(xg,b)| —n<N*—n,
and therefore
n<N2?2-N. (29)

5. An Algorithm

Theorem 3 reduces the problem of deciding whether a given pattern of positive
elements can arise in the transition matrix of a non-homogeneous chain to the
combinatorial problem of deciding whether a given relation can be written as a
finite product of reflexive transitive relations. The proof of the theorem also
suggests an algorithm for solving this combinatorial problem.

If R and R, are reflexive relations on the finite set I, call R, a child of R if
R,cR, R=t(R)R,. (30)
Lemma. A reflexive relation R has at least one child if and only if 1(R)=+4.
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Proof. If ©1(R)=4, then the conditions (30) become mutually contradictory:
R,=R, R=R,.
Suppose therefore that 1(R)> 4, and set
S={R~1(R)}ud.
Then S is reflexive, S= R and, since S=7(R) S and 1(R)=1(R) S,
R=Surt(R)et(R)S=t(R)R=R.

Hence S is a child of R (and so likewise is every relation R; with SR, < R).

Children of a reflexive relation R may themselves have children, and so on,
so that a family tree may be built up for R. Since a child has fewer elements than
its parent, such a tree has at most |R|— N generations.

Theorem 4. A reflexive relation R is embeddable if and only if it has a transitive
descendant.

Proof. If R has a transitive descendant 7, there is a sequence
R=Ry,R,R;,....R, ;=T
in which R, is a child of R,,_,. Writing T,,=7(R,,_,) so that T,=T, we have

Rm—l = Tm Rm>
whence R=TT,... T,.

Conversely, if R is embeddable, then there is a non-homoger.eous chain with
R(a, b)=R. By (27) and (28), R(x,, ., b) is a child of R(x,,, b), so that 4=R(x,, b)
is a descendant of R(x,,b)=R. Hence R has the transitive descendant 4, and
the proof is complete.

Corollary. A relation R with

R>4, 1(R)=4 (31
is not embeddable.

As a simple example of the use of this result, let I={1, 2, 3, 4},

2004
02 10

P= 32
5030 2
04032

and R={(i, ); p;;>0}. Since 7(R)=4, R is not embeddable, and so P is not
embeddable as P(s, t) for a Markov transition function satisfying (6)-(10). However,

[1pii>det P>0,

so that (32) is a counter-example to the conjecture at the end of § 6 of Goodman’s
paper [2].

6*
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6. A Structure Theory

Theorem 3 shows that the relation R(a, b) is expressible as a finite product
of reflexive transitive relations 7;, but it asserts no direct significance for the T,.
Nor does it give any information about the structure of the family of relations
R(s,t) (a<s=t=b), beyond the obvious fact that each is embeddable. The next
result shows that (roughly speaking) R(s, t) is transitive when the interval (s, t)
is small.

Theorem 5. For each te(a, b] there is a reflexive transitive relation I'_(t) on 1

such that
R(t—ht)=I_(1) (33)

Jor all sufficiently small h>0. For each te[a,b), there is a reflexive transitive
relation I, (t) such that
R(t,t+h)=I(2) (34)

for all sufficiently small h>0.

Proof. Using the notation of the proof of Theorem 3, we distinguish two cases:

(@) If x,<b, then R(b—h,b)=4 whenever 0<h<b—x,, so that (33) holds
when t=b with I'_(b)=A4.

(ii) If x,=b, then the definition of x, implies that, whenever 0<h<b—x,_;,
R(b—h,b)=R(x,_;,b)
=7(R(x,_1, b)) R(x,, b)
=1(R(x,_1, b)),
so that (33) holds when t=b with
I_(b)=1(R(x,_s, b)),

which is reflexive and transitive.

Hence we have proved the first part when t=b, and applying the same
arguments to the chain on [a, t] proves it for all te(a, b].
If the matrices P(s, t)=(p;;(s,t)) satisfy (6), (8), (9) and (10), then so do the

matrices
P*(s,t)=P(a+b—t,a+b—s)T, (35)

AT denoting the transpose of the matrix A. Applying the first part of the theorem
to this dual family yields the second part of the theorem.

The relations I', (+) and I'_(-) describe the local structure of R(-, *), and might
be called the germs of the family of relations R(s, t). They contain enough infor-
mation to allow the R(s, t) to be reconstructed.

Theorem 6. For any dissection
Dis=xo<x;<x,<--<x,=t (36)
of s, t], define a relation

n—1

Rp=T (xo) [[1 (I (x) I ()} I (x,). (37



The Combinatorial Structure of Non-Homogeneous Markov Chains 85

Then, if D, is a refinement of Dy,
Rp, SRp, SR(s, 1), (38)
and there exists a dissection D with
Rp=R(s,1). (39)
Proof. Tt follows from Theorem 5 and (15) that
R(u,v)=2T, (v), R@u,v)=21_(),

and hence that, if y,=3(x,_; +x,),

n—1

R(S: t)=R(x05 yl) Ul{R(yra xr) R(X,., yr+1.)} R(yna xn)

n-1

2T, (x) [_]1 {(x) I (%)} T (x,)
=Ry.

If D, is a refinement of Dy, then repeated application of (18) shows that R, =R,
so that (38) is proved.

Theorem 5 shows that, for each xe[a, b], there exists §(x)>0 such that

R(x—h,x)=I_(x), O<h<min(d(x),x—a),
R, x+h)=T, (0, O<h<min(5(x),b—x).

As in the proof of Theorem 1, we can find points

s=xq<& <x; <y << <X, =1,

with
X —0(x) =&, <X, <&y 2,4+ 6(x,).
Then
R(ér’xr);.r— (xr)a R(xr,ér+1)=r+(xr)a
so that

n—1
R(S, t)=R(Sa ‘)::1) l_[ {R(f,., xr) R(Srv 6r+1)} R(én: l)=RD

if D is the dissection (36). Hence the theorem is proved.

If the dissections D of [s, t] are ordered by refinement and relations on I by
inclusion, then (38) and (39) assert that the map D+ Ry, is monotone, and that

R(s,t)=sup Ry, (40)
D

the supremum being attained. Thus (40) expresses R(s, t) explicitly in terms of
the germs at points in [s, t]. It should be noted, however, that there is in general
no simple relation between the dissections which attain the suprema in (40) for
different intervals [s, ¢].
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