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The Combinator ia l  Structure 
of  N o n - H o m o g e n e o u s  M a r k o v  Chains  

J. F. C. Kingman and David Williams 

1. The Combinatorial Structure of Homogeneous Chains 

The classical theory of continuous-parameter Markov chains, as described 
for instance in [1], assumes that the transition probabilities 

P {x(t)=jIX(s)= i} (s < t), (1) 

where i and j run over the countable state space I, are functions 

pij(t-s) (2) 

of ( t -  s) alone. In this theory one important result is the Ldvy dichotomy, proved 
in full generality by Austin and Ornstein (see [1]), which asserts that if the func- 
tions p , ( . )  are Lebesgue measurable, then each of them is either always or never 
zero. Thus the relation R on I defined by 

R = {(i,j); p•(t)>0} (3) 
is independent of t > 0. 

A consequence of this result is that, if (i,j)eR and (j, k)~R, then for s, t>0 ,  

plk (s + t) ____ pi~ (s) pjk (t) > 0, 

so that (i, k) ~ R. Thus R is necessarily a transitive relation. Moreover, if the chain 
is standard, (i, i)eR for all i~I, so that R is reflexive. 

Conversely, suppose that R is any reflexive transitive relation on the countable 
set I. Then there exist standard chains on I which satisfy (3); consider for example 
a q-bounded chain whose infinitesimal generator (qij) satisfies 

qij>O<=~ i . j ,  (i,j)eR. (4) 

Thus the problem of characterising the relation (3) for homogeneous chains 
(those for which the conditional probability (1) takes the form (2)) has a very 
simple solution; the possible relations R are exactly the reflexive transitive 
relations on I. 

This fact has consequences for the embedding problem [3]. Thus, if (p~j; i, jeI) 
is a stochastic matrix, and if there exist ~, fi, 7e I  with 

p~>O,  p~>O,  p~=O,  

then there is no homogeneous chain whose transition probabilities satisfy 

pij(t)=pij, (i, jeI),  
for some t > O. 
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The purpose of this paper is to investigate the corresponding problem for 
non-homogeneous Markov chains. Our main result is Theorem 3, which provides 
a complete solution when the state space I is finite. The methods depend heavily 
on the finiteness of I, and a generalisation to infinite state spaces would require 
new techniques. 

2. Non-Homogeneous Markov Chains 

Let I be a finite set, and [a, b] a compact, non-degenerate interval. The 
transition probabilities of a non-homogeneous Markov chain with state space I 
and parameter space [a, b] are functions 

pij(s, t) (a<_s<_t<_b) (5) 
which satisfy 

Pit (s, t) >_= O, (6) 

2 Plt( s, t)= 1, (7) 
t~ I  

pit(t, t) = bit, (8) 

pij(s, u)= ~ Pik(S, t) pkt(t, U), (9) 
kEl 

for a < s_< t < u < b. To avoid pathological examples, it will be supposed also that 

pij(s, t) is separately continuous in s and in t. (10) 

An example of an array (Pit) satisfying (6)-(10) is given by 

Pit (s, t) = Pit (t - s), (11) 

where Pit(') are the transition probabilities of a standard homogeneous chain. 
More generally, let a=Xo<Xl <xz < ' "  <xn=b be a dissection of [a, b], and 
for each e in 1 < e < n let pl~)(.) be the transition probabilities of a standard 
homogeneous chain. Define the matrix 

P(s, t)=(pit(s, t); i,j ~ I) 
by p-1 

P(s, t)=P(~)(x~-s) y[ P(~)(x~-x~_ 0 P(P)(t-xp_O, (12) 

where x~_l<s<x~,  xa_ l< t<xp .  Then it is easily checked that (6)-(10) are 
satisfied. 

Our problem is to establish the properties of the relation R(s, t) defined on I by 

R(s, t)= {(i,j); pij(s, t)>O}. (13) 

In the rest of the paper it will be assumed that I is finite and that the functions 
(5) satisfy (6), (8), (9) and (10). Eq. (7) is for our purposes irrelevant and will not 
be assumed. The identity relation on I will be denoted by A : 

,4 = {(i, i); ieI} .  (14) 
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Theorem 1. The relation R(s, t) is reflexive, and R(t, t)=A. I f  s < t < u < v, then 

R( t ,u)~R(s ,v) .  (15) 

Proof. That R(t, t)=A follows from (8). For  any i~I, t~[a, b), (10) implies that 

pu(t, t + h ) > 0  

for all sufficiently small h >0,  and for ts(a, b] that 

pu( t -h ,  t )>0  

for all sufficiently small h > 0. Since I is finite and 

pu( t -h l  , t + h2)> pu(t-ha,  t)pu(t, t +h2), 

it follows that, for each t ~ [a, b], there exists ~ (t)> 0 such that 

pii(s,u)>O 
whenever i~ I and 

t--~(t) <=S<_t <--u~ t + ~(t). 
The intervals 

I ( t )=(t-b( t ) ,  t+b(t)), (a<t<b)  

cover [a+b(a) ,  b -b (b ) ]  and hence admit a finite subcover. If {I(Yr); r= 1, 2, . . . ,  n} 
is a minimal subcover, with y~ < Y 2 < ' " < Y , ,  it is easy to see that there exist 
Xo, xl,  ..., x,  with 

a < x o <  y ~ <x~ < Y 2  < " "  < y ,<x , ,<b  
and 

yr--b(yr)<=Xr_l <=yr<=Xr<=yr+b(Yr), 

xo<a+f (a ) ,  x , > b - b ( b ) .  
Thus 

PU(Xr-l,Xr)>O, 
SO that 

n 

pu(a, b)~pu(a, Xo) [-I Pu(X~-l, x~) pu(x,, b)>O. 
r = l  

This implies that R (a, b) is reflexive, and the same arguments apply to the smaller 
interval (s, t) to show that R (s, t) is also reflexive whenever a _  s _  t_< b. 

If s<_t<_u<_v and (i,j)eR(t, u), then 

Pij (s, v)>= Pu (s, t)Pij ( t, u)pij(u, v)> O, 

so that (i,j)6R(s, v), establishing (15) and completing the proof. 

3. Some Combinatorial Theory 

If R1 and R 2 are reflexive relations on the set I, another reflexive relation 
R1 R2 may be defined by 

R 1 R 2 = {(i,j); (i, k)eR1, (k, j)eR 2 for some ks I } .  (16) 
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With this definition of "multiplication" the reflexive relations on I form a semi- 
group (non-commutative if III> 3) with identity A. Clearly 

RI~_RI, R2 ~_R 2 =r R 1R2 ~_R i R'2, (17) 

and in particular, since A _ R for any reflexive relation R, 

R1 ~ R1 R2, R2-~ Ri R2. (18) 

This construction is particularly apposite for the present problem, since it 
follows from (9) that, whenever s-< t_< u, 

a(s, u)=R(s,  t) R(t, u). (19) 

If R is any reflexive relation on I, a new relation z (R) on I may be defined by 

z(R)= {(i,j); (j, k)e R => (i, k)e R } . (20) 

Thus (i,j)ez(R) unless there exists k s I  with (j, k)eR, (i, k)~R. 

Theorem 2. The relation r(R) is reflexive and transitive, and satisfies 

z(g)~_R (21) 

(with equality if and only if  R is transitive) and 

R = z (R) R. (22) 

Proof. Clearly (i, i)ez(R), so that z(R) is reflexive. If (i,j)ez(R) and (j, l)ez(R), 
then 

(l, k)ER =~ (j, k )eR ~ (i, k)eR,  

showing that (i, l)ez (R), so that z (R) is transitive. 

If (i,j)ez(R), then ( j , j ) eR  ~ (i , j)eR, proving (21). If equality holds in (21), 
then R = z (R) is transitive. Conversely, if R is transitive, 

( i , j )eR =~ {(j, k)ER =~ (i, k)en} ~ ( i , j )ez(n),  

so that z (R) = R. 

By (18), R ~_ z (R) R. To establish the opposite inclusion, suppose that 

( i , j )ez (R)R,  
so that there exists k e l  with 

(i, k)ez(R),  (k , j )eR.  

The definition of z(R) shows that (i , j)eR, and (22) is proved. 

4. The Main Theorem 

Theorem 3. The relation R (a, b) may be expressed as a finite product 

R(a, b)= T~ T 2 ... T~, 

where each T~ is reflexive and transitive. 

(23) 
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Proof If R(a, b)=A the result is trivial, since A is transitive. Suppose there- 
fore that R (a, b)= R = A, and define 

x = sup {t; R(t, b)=R}. 
We first prove that 

R (x, b) c R. (24) 

By (15), R(x, b)~R, so that if (24) is false, R(x, b)=R and therefore x<b. If this 
is so, then by continuity there exists 4 in x < 4 < b such that 

for all pairs (i, j) such that 
Pij(4, b)>0 

Pij(x, b) > O. 

Hence R (x, b)_ R (4, b) and, for a__< t < 4, 

so that 
R= R(x, b)~_R(4, b)~_R(t, b)~_R(a, b)= R, 

R(t,b)=R (a=<t<4), 

which contradicts the definition of x. The contradiction proves (24), which also 
shows that x > a. 

Now suppose, if possible, that 

(i,j)eR, 

Then there exists k~I with 

Take t < x, so that 

(i,j)r 

(j, k)~R, (i, k)r 

(j,k)eR=R(t,b). 

Then (i, j)~ R (a, t) would imply 

(i, k)eR(a, t) R(t, b)= R 

contrary to hypothesis, and so we must have 

Pij(a, t)=O. 

This holds for all t < x, so that by continuity 

Pij (a, x) = O. 
Hence 

(i,j)eR, (i,j)r ~ (i,j)r x), 

and since R (a, x)__ R it follows that 

R(a,x)~_z(R). 
Therefore, by (22), 

R =R(a, b)=R(a, x) R(x, b)~_z(R) R(x, b)~_ T(R) R=R,  
showing that 

R (a, b) = z (R (a, b)) R (x, b). 
6 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26 

(25) 

(26) 
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We now proceed by induction. Write xo=a,  x l = x  and note that, unless 
R (x, b)= A, the argument just described applies to R (xl, b) to give 

X 2 = sup {t; R(t, b)=R(Xl ,  b)}, 

R(x  2, b ) cR(X l ,  b), 

R(x , ,  b)= z(R (xl, b)) R(x  2 , b). 

Continuing, we have a sequence 

so that 

and therefore 

a = X o < X  1 ~ x 2 ~  . . .  

with 
R(x,,+l, b )cR(xm,  b), (27) 

R(x,,,  b)=z(R(xm, b)) R(Xm+l, b). (28) 

The process can only terminate when R(x  n, b)=A, and this must be reached 
after a finite number of steps because of (27) and the finiteness of I. Then (23) 
follows from (28) on writing 

rm=z(R(x , ,_ l ,  b)), 
and the proof is complete. 

The conclusion of the theorem is the best possible, since if T,, is any reflexive 
transitive relation, it can be realised in terms of a standard homogeneous chain. 
Sticking together the chains realising Ta, T2 . . . . .  T,, in the manner described by 
(12), we have a non-homogeneous chain satisfying (23). In other words, let us 
call a relation R embeddable if there is a non-homogeneous chain with R (s, t) = R 
for some s =< t. Then R is embeddable if and only if it is expressible as a finite 
product of reflexive transitive relations. 

It is possible to give a crude upper bound for n in terms of the number N = 1I[ 
of elements of I. Thus (27) shows that 

[R (x,,+~, b)] < tR (x,,, b ) l -  1, 

N=]A[=  [R(x., b)] < [R (xo, b)l - n < N2 - n, 

n < N  2 - N .  (29) 

5. An Algorithm 

Theorem 3 reduces the problem of deciding whether a given pattern of positive 
elements can arise in the transition matrix of a non-homogeneous chain to the 
combinatorial problem of deciding whether a given relation can be written as a 
finite product of reflexive transitive relations. The proof of the theorem also 
suggests an algorithm for solving this combinatorial problem. 

If R and R1 are reflexive relations on the finite set I, call R1 a child of R if 

R 1 c R, R = z (R) R1. (30) 

Lemma. A reflexive relation R has at least one child if and only if z (R )~A .  
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Proof If z(R)=A, then the conditions (30) become mutually contradictory: 

R 1 c R ,  R = R  1. 

Suppose therefore that z ( R ) ~  A, and set 

S = { R \ z ( R ) } w A .  

Then S is reflexive, S c R and, since S___ z (R) S and z (R)___ z (R) S, 

R =S w z(R)~_z(R) S ~ z ( R )  R = R .  

Hence S is a child of R (and so likewise is every relation R1 with S__ Ra c R). 

Children of a reflexive relation R may themselves have children, and so on, 
so that a family tree may be built up for R. Since a child has fewer elements than 
its parent, such a tree has at most ]R[-  N generations. 

Theorem 4. A reflexive relation R is embeddable if and only if it has a transitive 
descendant. 

Proof If R has a transitive descendant T, there is a sequence 

R = R o , R 1 , R z , . . . , R , _  1 = T 

in which R,, is a child of R,,_I. Writing T,, =z(R, ,_l)  so that T,= T, we have 

R.,_ 1 = T., Rm, 
whence R = T 1 T2... T,. 

Conversely, if R is embeddable, then there is a non-homoger.eous chain with 
R(a, b)=R. By (27) and (28), R(xm+ 1, b) is a child of R(x,,, b), so that A = R ( x , ,  b) 
is a descendant of R(xo, b)=R. Hence R has the transitive descendant A, and 
the proof is complete. 

Corollary. A relation R with 

R = A ,  ~(R)=A (31) 
is not embeddable. 

As a simple example of the use of this result, let ! = {1, 2, 3, 4}, 

e ~ �89 (32) o I  
� 8 9  

and R={(i , j ) ;pi j>O }. Since v(R)=A, R is not embeddable, and so P is not 
embeddable as P(s, t) for a Markov transition function satisfying (6)-(10). However, 

1--[ pu>de t  P > 0 ,  
i 

so that (32) is a counter-example to the conjecture at the end of w 6 of Goodman's  
paper [-2]. 
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6. A Structure Theory 

Theorem 3 shows that the relation R(a, b) is expressible as a finite product 
of reflexive transitive relations T,, but it asserts no direct significance for the T~. 
Nor does it give any information about the structure of the family of relations 
R(s, t) (a < S < t < b), beyond the obvious fact that each is embeddable. The next 
result shows that (roughly speaking) R(s, t) is transitive when the interval (s, t) 
is small. 

Theorem 5. For each t~(a, b] there is a reflexive transitive relation F_ (t) on I 
such that 

R ( t -  h, t) = F_ (t) (33) 

for all sufficiently small h>0.  For each t~[a,b), there is a reflexive transitive 
relation F+ (t) such that 

R (t, t + h) = F+ (t) (34) 

for all sufficiently small h > O. 

Proof. Using the notation of the proof of Theorem 3, we distinguish two cases: 

(i) If x .<b,  then R ( b - h , b ) = A  whenever O < h < b - x , ,  so that (33) holds 
when t = b with F_ (b) = A. 

(ii) If x, = b, then the definition of x, implies that, whenever 0 < h<  b - x , _ l ,  

R ( b - h ,  b )=R(x ,_ l ,  b) 

= z (R (x ._l ,  b)) R (x., b) 

='c(R(x,_ 1, b)), 

so that (33) holds when t = b with 

F_ (b)=z(R(X,_l,  b)), 

which is reflexive and transitive. 

Hence we have proved the first part when t=b, and applying the same 
arguments to the chain on [a, t] proves it for all te(a, b]. 

If the matrices P(s, t)=(pij(s, t)) satisfy (6), (8), (9) and (10), then so do the 
matrices 

P* (s, t)= P(a + b -  t, a + b -  s) T, (35) 

A r denoting the transpose of the matrix A. Applying the first part of the theorem 
to this dual family yields the second part of the theorem. 

The relations F+ (') and F_ (-) describe the local structure of R (. , .) ,  and might 
be called the germs of the family of relations R(s, t). They contain enough infor- 
mation to allow the R (s, t) to be reconstructed. 

Theorem 6. For any dissection 

D: s = x  o <x  1 <x  z < . . . < x . = t  (36) 

of [s, t], define a relation 
n--1 

R D =r+ (Xo) H {F_ (xr) F+ (xr)} F_ (x,,). (37) 
r = l  
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Then, if D 2 is a refinement of D1, 

R,I ~_RD2 ~_R (s, t), (38) 

and there exists a dissection D with 

R D = R (s, t). (39) 

Proof It follows from Theorem 5 and (15) that 

R (u, v) ___ F+ (u), n (u, v) _~ F_ (v), 

and hence that, if yr = �89 ~ + x~), 

n- -1  

R(s, t )=R(xo,  Yl) I~ {R(yr, x~) R(x~, y,+[)} R(y,,  x,) 
r = l  

n- -1  

___ r+ (Xo) ]7[ { r  (xO r+ (x0} r (x.) 
r = l  

= R D �9 

If D z is a refinement of O n, then repeated application of (18) shows that R.1 ___ R.2, 
so that (38) is proved. 

Theorem 5 shows that, for each x ~ [a, b], there exists 6 (x) > 0 such that 

R (x - h, x) = F (x), 0 < h _-< rain (6 (x), x - a), 

R (x, x + h) = F+ (x), 0 < h < min (6 (x), b -  x). 

As in the proof of Theorem 1, we can find points 

S=Xo<~ 1 <x  I <~2 < ... <~n<Xn=t , 
with 

Then 

so that 

x~-a(Xr)<~,<x,<{,+l <x~+a(x,). 

R(~r R(xr,{r+,)=F+(Xr), 

rE--1 

R (s, t )=R (s, ~a) l~ {R(~r, xr) R (sr, {r+l)} R(~n, t)=RD 
r = l  

if D is the dissection (36). Hence the theorem is proved. 

If the dissections D of [s, t] are ordered by refinement and relations on I by 
inclusion, then (38) and (39) assert that the map D v-~ RD is monotone, and that 

R (s, t) = sup RD, (40) 
D 

the supremum being attained. Thus (40) expresses R(s, t) explicitly in terms of 
the germs at points in [-s, t]. It should be noted, however, that there is in general 
no simple relation between the dissections which attain the suprema in (40) for 
different intervals [s, t]. 
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