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Stopping Times 
for Stochastic Approximation Procedures* 

Robert L. Sielken, Jr. 

1. Introduction 

The pioneering paper in the field of stochastic approximation was published 
in 1951 by Robbins and Monro [6]. That paper dealt with the following situation. 
Suppose that, for every point x belonging to the real line, a random variable Y(x) 
can be observed. The distribution function of Y(x) and the expected value of Y(x), 
denoted by M(x) and assumed to exist, are both unknown. Assuming that the 
equation M(x)=~ has a unique root, denoted by x =  0, it is desired to estimate 0 
by making observations on Y at points x 1, xz,  x3, ... which are generated sequen- 
tially in accordance with some definite experimental procedure in such a way 
that x ,~O in probability as n~oo.  

The Robbins-Monro procedure (RM) for generating the sequence {x,} is to 
take x I to be any constant and define Xz, x3, ... in accordance with the recurrence 

relation x, + 1 = x, + a, (~ - y,) (1.1) 

where y, is a random variable whose conditional distribution for given x, coincides 
with the distribution of the random variable Y(x,) and is independent of 
Xl . . . . .  x ._l  and the sequence {a,} is a sequence of positive constants which 
converge to zero as n~oo.  

Robbins and Monro [6] established sufficient conditions for x,--.O in prob- 
ability as n ~ ~ .  Later researchers gave results on the rate of convergence, conver- 
gence with probability one, convergence in mean square, and asymptotic normality 
of the sequence x, in both RM and various generalizations of RM - see [5, 8], or 
[10] for specific results and references. 

In many practical situations it is desirable to terminate the successive approxi- 
mation procedure when x, is sufficiently close to 0 with high probability. This 
paper indicates stopping times Na, ~ and Ta,~l which terminate RM in such a way 
that, for any given 7 in the open interval (0, ~-), 

l imP( xN~ ~+1-0 < d ) = l - 2  7 
d~0 ' - -  

and 
lim P[]m(xr~ ~,+1)- el <d ]  = 1 - 2  7. 
d~0 '" 

The empirical behaviors of some of these stopping times have been investigated 
by the author [8] in a Monte Carlo study. 

* This paper is part of the author's doctoral dissertation which was supported in part by the Office of 
Naval Research and the National Institute of General Medical Sciences. 
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2. Notation 

The following conditions with Z ( x ) -  Y ( x ) -  M(x)  are used in all of the theorems 
in this paper: 

C 1 : 7 is a positive constant less than �89 
C2: The sequence {c,} is a sequence of positive constants such that c.nZ--+c 

as n--, oe, c>0 ,  and 0<2<�89 
C3: The sequence {a,} has the form {A/n} where A is a constant such that 

2A~1>1. 
C4: M is a Borel measurable function. 
C5: For each e>0,  inf M ( x ) - e > 0  and s u p  1 M ( x ) - e < 0 .  

e < X - - 0 < ~  - 1  g <  0 - - X <  - 

C 6 : For some constants K1 and K 2 , I M ( x ) -  ~1 < K1 + K2 Ix - 01 for all x. 
C7: sup E[lZ(x)[2l =-w< oo. 

x 

C8: lim E[IZ(x)I 2] =E[[Z(O)I 2] =-0 2 >0. 
x ~ 0  

C9" lira lira sup ~ IZ(x)[adP=O. 
R---,m ~ 0  + Ix-_Ol<~ { iZ(x) l>R} 

C10: For some positive constants g and ~ ,  if I x -O l<g ,  then 

M(x) = ~ + ~ l ( x -  O) + a(x) 

where a(x)=o(lx-OI) as [ x - 0 [ ~ 0 .  
C l l :  The distribution function of Y(x), denoted by H(' lx),  is such that, for 

every y, H(yI ' )  is Borel measurable. 

C 12: There exists e > 0 such that, for every positive integer r, 

sup E [ l Z ( x ) ( ] <  ~ .  
Ix-01<e 

The majority of this paper is concerned with results about the behavior of the 
sequence {x,}. All of these results hold for any initial value x 1. 

The procedures in the next section apply directly to the case in which the 
random variables Y(x) are such that the cq referred to in condition C 10 is positive. 
If the experimenter is actually observing random variables Y* (x) with a correspond- 
ing ~1 which is negative and he is seeking the value of x such that E [Y* (x)] = ~*, 
then when he carries out the procedures to follow he should let Y(x)= - Y* (x) 
and ~ = - ~*. 

3. Sequentially Determined Bounded Length Confidence Intervals for RM 

Blum [2] gave sufficient conditions, slightly weaker than C3-C7,  for the 
sequence {x.} in RM to be such that 

x , ~ O  as n--+oe w.p. 1. (3.1) 

Then Sacks [-7] showed that conditions C 3-C 10 are sufficient for 

n~(x,+,-O) in RM to be asymptotically normally 
(3.2) 

distributed with mean zero and variance A 2 ~2/(2A cq - 1). 

Furthermore, Burkholder [31 proposed estimators of sl and o .2 and obtained 
sufficient conditions for these estimators to converge to cq and o.z respectively 
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with probability one. The form of Burkholder's estimator of el requires that at 
the n-th step in RM an observation is taken not only on Y(x.)  but also on Y(x .  + c.) 
where the sequence {c.} is a sequence of positive constants such that c. n~--.c as 
n ~  0% c > 0, and 0 < 2 < 1. Let the sequence {y'.'} be a sequence of random variables 
such that the conditional distribution of y~' for given x. coincides with the distribu- 
tion of Y(x ,  + c,) and is independent of x l, x 2 . . . . .  Xn- 1, Yl, Y2 . . . . .  Y,, Y'i', Y'2 . . . .  , Y~- 1" 
Burkholder's results imply that, if conditions C2-C  12 are satisfied, then as n ~  oo 

and 

[ 1 t , - -max 1/2A, y j ' - y j ) / c j n  --+c~ 1 w.p. 1 
j = l  _1 

(3.3) 

2=(�89 (yy-~)Z/n + (yj-c0Z/n ~o  -2 w.p.l .  (3.4) S n 
[ L j = I  J L j ~ I  

If, for each n, n � 8 9  O) is normally distributed with mean zero and variance 
A2O.z/(2A~l-1) and if K s is the 100(1-~)-th percentile of a standard normal 
random variable, then 

P {Xn+ 1 - -  K s [A 2 o.2/n(2A o: l -  l ) ] ~ -  < 0 ~  Xn+ 1 -~- K s [A 2 o.2/n(2A ~1 - -  1 ) ] ~ }  = 1-- 27. 

Thus, if a 100(1-  2~)~  confidence interval on 0 of length 2d is desired, n cold be 
chosen as the smallest integer such that 

d > K s [A 2 o.2/n(2A el - 1)] ~ 
or, equivalently, 

n > K~ z A 2 o.2/( 2 A el - 1) d 2 . (3.5) 

Thus, when a 100 (1 - 2 7 )  ~ confidence interval on 0 of length 2 d is desired, the 
proposed stopping time for RM is Na. ~ defined as the smallest positive integer n 
such that 

n > K 2 A 2 s2/(2 A t, - 1) d E . (3.6) 

The principle results concerning this stopping time are: 

Theorem 1. I f  conditions C 1-C 12 are satisfied, then 

lira Nd ~/[K 2 A 2 o.2/(2A :q - 1) d 2] = 1 w.p . I .  (3.7) 
d ~  0 ' 

Theorem 2. I f  conditions C 1-C 12 are satisfied, then 

~imo P (l XNd,, + i--01 _-<d)---a - 2 ~ .  (3.8) 

If na, ~ = K~ A 2 o.2/E(2 A a l -  i) d2], then he, ~ would be the number of observa- 
tions required to determine a 100(1-27)~o confidence interval on 0 of length 
2d if, for each n, n ~ ( x . - O )  were exactly normally distributed with mean zero and 
known variance A 2 o-2/(2 A el - 1). Thus, Theorem 1 implies that Na. ~ is an asymptot- 
ically efficient stopping time in the sense that Na.7/na,7~l as d ~ 0  with prob- 
ability one. 

If Y(x) is not a continuous random variable for all x, then the sequence {s~} 
in the definition ofNd, ~ should be replaced by the sequence {s 2.} where 

2* s, = max (k,, s~) 
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and the sequence {k,} is a sequence of positive constants which converge to zero 
as n ~  oo. This substitution would not affect the results which follow and would 
only need to be done in order to insure that RM would not be stopped because the 
estimator of a 2 was zero. 

The experimenter might want to be able to determine stopping times Tn, 7 with 
the property that, for any given ~ in (0, �89 

limP[IM(XT~,~+I)--~[ <d]  = 1 - 27. (3.9) 
d ~ O  

Since 
3- 

= n ( x . -  0) {[-M(x.)- ~]/(x . -  0)} n ~ [ M ( x . ) -  ~] -~ 

and condition C 10 implies 

[M(x)-c~]/(x-O)~oq as x~O,  
& 

(3.1) and (3.2) imply that, if conditions C3-C 10 are satisfied, then n~[M(x,)-~] 
is asymptotically normally distributed with mean zero and variance 

~2 a 2 ~2/(2A cq - 1). 

^ 2 . . . + _ 2  Thus, since conditions C2-C 12 are sufficient for t .ocq  and 5. o as n o ~  with 
probability one, an intuitively appealing stopping time is Ta,~ defined as the small- 
est positive integer n such that 

2 2 2 Ks[t . A s . / (2At . -1 )  n]~<d 
or, equivalently, 

n>=K 2 A 2 s2/(2A t . -  1) (d/t.) 2 . (3.10) 

In fact, under conditions C 1-C12 

lim P [IM (XT~,~ + O--mI <_d] 
d ~ O  

= lira P [1~ (XT~,~ +~-  0)+ O(IXT,,~+~-- 0[) I <d]  (3.11) 
d ~ 0  

= l i m P ( l x r a , v + t - O l < d )  = 1 - 2 7 a - ~ o  

and with probability one 

lira Td 2 2 tr2 d~o ,r/[Kr ~1 A2/(2Acq-1) d2] =1. (3.12) 

The proofs of (3.11) and (3.12) are similar to the proofs of Theorem1 and Theorem 2. 

4. Proofs of Theorems 1 and 2 

The proof of Theorem 1 follows easily from the definition of Nd, ~, and the 
convergence of s, 2 and t, to ~r 2 and ~1 respectively. 

The key aspect of the martingale theory which is used in proving Theorem 2 
is a generalization of Kolmogorov's inequality for martingales which was proved 
by Cs6rg6 [4]. Cs6rg6's result is Lemma 1. 

Lemma 1. Let the sequence {Wk} be a sequence of random variables such that 
E(W~)=0 and, for n> 2, E(W.IW~ . . . . .  W._I)=0. Let S.= WI + W2 +. . .+  W. for 
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each n> l. I f  E(S2)<oo for each n>- i and the sequence {g,} is a nonincreasing 
sequence of positive constants, then, for any positive integers m and n with m < n and 
arbitrary e > O, 

n--1 

I" ] = 5  -2  g2mEE(Wk2)+ ~, g~E(I'Vk2) �9 
L k ~ l  k = r a + l  

The  p r o o f  of  T h e o r e m  2 is as follows: Let  N = Na, ~. Since the condit ions of  
Theorems  1 and 2 are the same, it follows f rom T h e o r e m  1 that  

l im d/[K 2 A 2 a 2/(2 A a l - 1) N ]  ~ = 1 w.p. 1. (4.1) 
d ~  0 

The  definition of Kr  and (4.1) imply that  to p rove  T h e o r e m  2 it is sufficient to 
show that,  for all x, 

lim P [ N  ~ (2 A ~a - 1)~ A - ~ a -  ~ (xN + ~ - 0) < x] = r (x) (4.2) 
d ~ 0  

where �9 is the dis t r ibut ion function of a s tandard  no rma l  r a n d o m  variable.  

Since Sacks [7] has shown that,  for all x, 

. 1 1 - - 1  --  h r n P [ n ~ ( 2 A a l - 1 ) ~ A  a I ( X n + I - - O ) ~ X ] = ~ ( X ) ,  (4.3) 

it need only be shown that  this conclusion is valid when n is replaced by N. 

Let  M , = M ( x . ) ,  Z , =  Y ( x , ) - M ( x , ) ,  and 6 , = M , - ~ - ~ x ( x , - O ) .  Thus  

x ,+  a - O = ( x , - O ) - ( A / n )  (Z. + M . - o  0 
(4.4) 

= [1 - (A ~l/n)] (x. - 0 ) -  (A/n) Z , -  (A/n) 5,. 
If  

B., .= [-I ( 1 - A a l J  -1) 
j = m + l  

= 1  

then the i terat ion of  (4.4) back  to n = 1 implies 

where  

Let  

for O < m < n  

for m = n ,  

x , + I - O = B o , ( x l - O ) - A  ~ B, , ,m -1 5 , , - (a /~1)S ,  
m=l 

S . = ( A ~ l / a ) ~ B m . m - l Z m  . 
m = l  

(4.5) 

h.= Aal )2m-2  B . 
m ~ l  J 

It is easily shown that  there exists a sequence of constants  {~m} such that  ~m-->O 
as m ~  and, for all n>m, 

(1 -era) m a~l n-A~l~B,nn<=(1 + ern ) m a~l n -A~I. (4.6) 
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Thus 
lim hffn ~ (2 A cq - 1)~ ( A  e l ) -  1 = 1 .  
n~oo 

(4.7) 

Sacks establishes (4.3) by showing that 

h. Bo.(X 1 -  0)~0 

and 

h. i Bm,,m-116ml~0 
m = l  

P(h,,S,,< x ) ~ ( x )  

Since (3.7) implies 
N - ~  oo a s  

as n~oo ,  

in probability as n ~  ~ ,  

as n ~  ~ for all x. 

d ~ 0  w.p. 1, 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.5) and (4.8) imply that (4.2) will hold if 

N 
h~ ~ BmNm -1 [6~[~0 in probability as d ~ 0  

m = l  

and, for each x, 
p(hNSN<x)~cb(x) as d ~ 0 .  

If nd= K 2 A 2 o'2/[(2 A cq - 1) d2], then (3.7) implies 

lim N/% = 1 w.p. 1. 
d~ 0 

(4.12) 

(4.13) 

(4.14) 

Thus, (4.6) and (4.7) imply (4.12) will hold if 

N 
Ft�89 d. E mAal-1 [6m["-'~0 

m = l  

Now (4.6), (4.7), and (4.9) imply 

N 
n ~-A~' ~ m A~'-116m[--*0 

m = l  

Thus, since for any e > 0 

~ d .  m = l  

in probability as d ~ 0 .  (4.15) 

in probability as n ~  oo. (4.16) 

: ~  ) < p [.~-A~, mAal-1 - ~,od, ~ Ibm[ > e and N/nd 5 2 + P (N/nd > 2) 
m = l  

2ha 
<_~ P [(2 nd)�89 llT'lA~l- l [(~m[ ~ ~ 2�89 Aal] "q- P(N/nd ~ 2) , 

(4.14) and (4.16) imply (4.15) and consequently (4.12). 
Anscombe's central limit theorem [1] will imply (4.13) if the sequence {S,} 

is uniformly continuous in probability; that is, given any small positive e and ~, 
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there are positive constants v and p such that n > v implies 

P(i. max [S,-S,[>=eh2a)<~l. (4.17) 
�9 li--n[<-_np 

If e' -- e a/h n A ~1 and rn~ and m 2 are integers such that n (1 - p )~  ml < n (1 - p) + 1 
and n(l + p ) -  1 < m 2 ~ n(1 + p), then 

( ' ) P(i.. li-,l~npmax ISi-Sn[>=eh:l)<_P_ ml~i<=n-lmax m~=lrn-l B,niZm- m=l ~ m-l  B'nnZm __>--e' 

+ P (  max i _ ) 

i > /2] 
=<P [ max~,<=i<=._l ~= (Bmi-B~")m-l g 

(4.18) 

+ P  max m -1Zm >e'/2 
Ln+l  <i<m2 

+ ,  "oiz. 

The establishement of (4.17), which will complete the proof of Theorem 2, 
is accomplished by proving that, for n sufficiently large, each of the last four 
probabilities in (4.18) converge to zero as p~0 .  For example, in the first of these 
last four probabilities, if 

D,.m~= B,.,. , for re<m1 
--1 

=Brn~m for m>ml, 

then it can be readily verified that 

so that 
Bmi - Bran = (1 - Bin ) Brnl i Dram1. 

i Zm ] [ > '  P mx<~_<.-lmax ~=(B,. i-Bm.)m -1 = e / 2  

i 

(4.19) 
V m !  

~(8,/2)-21(l__Bmln)2 2 - 2  2 Bm, m~ Z E(z2) m Dmrn~ L 
n--1 1 

2 2 --2 2 |  + ~ (1-B,~n)2Bm, mDmm~ m E(Zm) J 
? t l ~  m l  -b 1 

where the inequality in (4.19) follows from Lemma 1. The convergence of the 
upper bound in (4.19) to zero as p ~ 0  is a straightforward consequence of condition 
C 7, (4.6), and (4.7). 
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5. Two Modifications of RM 

An unfortunate characteristic of the use of Na, ~ as a stopping time for RM is 
that, although two observations must be taken at each step in order to obtain 
convenient information of %, only one of those two observations is actually used 
to generate the next estimate of 0. One way to avoid this shortcoming is to generate 
the sequence {x.) by the following procedure which is herein called the modified 
Robbins-Monro procedure: Let xl be any constant, and let 

1 l It x ,+ 1 = x ,  + a . [ e - ( ~ )  (y,  + y , )]  

in which y', and y~' are random variables whose conditional distributions for 
given x, are independent, coincide with the distributions of Y ( x . -  c,) and Y ( x ,  + c,) 
respectively, and are independent of x l , x  2 . . . .  , x . - 1 ,  Y'x, Y'z, . . ., Y'.-a, Y't', Y'~, . . ., Y',-1. 

Venter [-9] actually went one step further than the modified Robbins-Monro 
procedure. He proposed a successive approximation procedure which at the n-th 
step incorporates the cumulative information on el as well as the observations on 
Y ( x , +  c,) and Y ( x . - c , )  into the recurrence relation which generates x.+,. If 
the conditions C3-C 10 are satisfied, the asymptotic variance of the error in 
RM, A z a2/(2 A el -1 )  n, is minimized with respect to A if A = ei-1. Unfortunately, 
el will usually be unknown. Venter recognized these facts and proposed that the 
sequence {x,} be generated according to the recurrence relation 

x . + l = x , + ( 1 / n t * ) .  [ ~ _  (~)1 (y,,, + yn)], 

where t* is an estimator of el, xl is any constant, and the form of the sequences 
{y"} and {y',} is the same as in the modified Robbins-Monro procedure. 

Stopping times analogous to Na, ~ and Td, r have been proposed in [8] for both 
the modified Robbins-Monro procedure and Venter's procedure. Statements 
analogous to Theorems 1 and 2, (3.11), and (3.12) are given there for the stopping 
times of these two additional procedures. Also, in [8] are the results of a fairly 
extensive Monte Carlo study of the empirical behaviors of the stopping times for 
all three procedures. 

Acknowledgements. The author is indebted to Dr. J. Sethuraman for his comments on this research 
and its presentation. 
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