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A Large Deviation Theorem for Weighted Sums* 

Stephen A. Book 

Asymptotic representations are derived for large deviation probabilities of 
weighted sums of independent, identically distributed random variables. The main 
theorem generalizes a 1952 theorem of Chernoff which asserts that 

n-  1 log P (S, > cn) ~ - log p, 

where S, is the partial sum of a sequence of independent, identically distributed 
random variables X1, X2, . . .  and p is a constant depending on Xa. The main 
result is similar in form to, but different in focus from, a particular case of Feller's 
(1969) theorem on large deviations for triangular arrays. 

I, Preliminaries 

If X1, X 2 ,  . .  is a sequence of independent, identically distributed nondegen- 
erate random variables and {a,k: l < k < n ,  l < n < o o }  is a double array of non- 

n 

negative real numbers such that ~ aZk = 1 for all n, we want to study the asymptotic 
k = l  

behavior of P S n > c ~ a,k , where S, = a,k X k and c > 0. That probability is 
k = l  k = I  

estimated with the same degree of precision, i.e. logarithmic, as in the large 
deviation theorems of Chernoff [3], Sethuraman [9], Pinsky [8], Sievers [10], and 
Feller [6]. All these results, including the one in the present article, represent the 
asymptotic behavior less precisely than, for example, Cram& [4], Bahadur and 
Ranga Rao [1], and Book [2]. The theorems in [2] on weighted sums, while 
more precise than those here, apply at present only in the absolutely continuous 
case. 

In this section, we state the conditions on the random variables and the 
weights, and we derive a representation of the large deviation probability as an 
integral of an "associated" distribution function. Paralleling the proof of 
Chernoffs theorem on pp. 1017-1018 of Bahadur and Ranga Rao [1], we need 
to know that the associated sums are asymptotically normal, and we show this 
in Section 2. Section 3 contains the proof of the main theorem and its reduction 
to Chernoffs theorem in the simpler case. The theorem and proof are compared 
in Section 4 with Feller's large deviation theorem for triangular arrays. 

We require that the a,k'S be such that the sum S, = ~ a,k Xk  is not dominated 
k = l  

by a relatively few terms. This requirement produces an infinitesimal array, in 

* This paper is based on work done for the author 's  doctoral dissertation written under Prof. Donald R. 
Truax of the University of Oregon, Eugene. 
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n 

view of the fact that Y, azk = 1 for all n. In particular, we ask 
k = l  

Condition I. There exist numbers ~ and 0, 0 < ~ <  1, 0<  0<  i, such that, for 
every sufficiently large n, at least ~ n of the a,k'S exceed or equal 0 a, ,  where 
0-, = m a x  {a,k: l < k < n } .  

Our sequence X1, X2, ... of independent, identically distributed nondegenerate 
random variables has E ( X 0 = 0 ,  E(X2) = 1, and moment-generating function ~b (t) 
which we assume to exist in a nondegenerate interval it[ < B. We define the func- 

n 

tion Q(t)=(a'(t)/(o(t), and we set, for simplicity of notation, A , =  }-" a.k. We can 
k = l  

determine the asymptotic representation for P(S ,>cA. )  if, by analogy with a 
condition of Chernoff and Bahadur-Ranga Rao, we ask that 4~ satisfy 

Condition II. Q assumes the value e/~ 0 at some point, and Bo = O-1 Q-1(c/~ O) 
lies in the domain of ~b. 

Condition II holds, for example, if q~ (t)< oo for all real t and P (X1 > c/~ O)> O. 
Note that the larger the range of X1 is, the smaller the values that ~ and 0 are 
allowed to be. 

As in Section 1 of [2], we define random variables Y,k = a,k(Xk--C) and observe 

that P ( S , > c A , ) = P  Y~k>0 �9 The moment-generating function (m.g.f.) of Y~k 
\ k = l  

is (a ,k(h)=exp(-hc  a,k)c~(ha~k), where C~.k(h ) exists for Ih[ <B  a~-k 1. Because each 
a.k > O, all (gnk(h), 1 < k < n, exist for Ihl < B o-~-1. We restrict h to this interval from 
now on. We define an "associated" distribution function (d. f.) H,k(y ) by 

ehY 
dH. k (Y) = - -  dH.k (y) 

(O.k(h) 

for each h, 0<h<Bo-~ -1, where H,k(y ) is the d.f. of Y.k, and we denote by Ynk a 

random variable distributed according to this d.f. We set S ,=  ~, Ynk and A , =  
k = l  

a,k. We have the following formula, whose proof is identical in form with the 
k = l  

proof of the analogous Lemma 2 on p. 1017 of Bahadur and Ranga Rao [1] : 

Lemma 1. I f  H~ (y) = P(S~ < y), then 

,] P ( S , > c A . ) = e x p ( - h c A , )  ha.k I~(h), 
k = l  

oo 

where I. (h) = h ~ e- hr [H. (y ) -  H, (0)] dy. 
o 

In order to make use of the formula of Lemma 1, we must study the behavior 
of the quantity H~(y)-H~(O). We want to find conditions under which the 
quantity can be approximated by the corresponding normal probability ~ (y)-  ~ (0), 
so that it will be bounded away from 0 for each y > 0 as n-~ oc. 
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2. Asymptotic Normality of S. 

The "associated" random variable ~k has m.g.f. ~,k(t)= (9,k(t + h)/(9,k(h), 
where (9nk(h) = exp ( -  h c ank ) (9 (hank ). Therefore S. has m. g. f. 

~.(t)= (I [(9.~(t + h)/(9.~(h)]. 
k=l 

The moment-generating properties of the m.g.f, imply that 

E(S.)= ~ t~t.k(O ) and Var(S.)= ~ [(~tntk(O)--(6t.k(O))2 ] . 
k=l k=l  

Upon computing these derivatives from the expression for ~gnk(t ) and recalling 
that Q(t)= (9'(t)/(9(t), we obtain explicit expressions as follows: 

Lemma 2. 

E(S.)= ~ a.kQ(ha.k)- -cA. ,  
k=l  

and 
Var(S.) = ~ a2.k Q'(h a.k). 

k=l 

It turns out that, under Conditions I and II, there exists a sequence {h.' 
1 _-< n < oo } of h's to appear in the definition of the associated random variables 
such that E(S.)=0 and the variances Var(S.) are uniformly bounded away from 
0 and oe. In particular, we have the following two results, whose proofs can be 
found in Section 2 of [2] : 

Lemma 3. Under Conditions I and II, there exists, for every positive integer n, 
a solution h= h. of  the equation E(S,)= 0, and the solution satisfies the inequalities 

bo=Q-l (caO2)<h,  a,<O -1 Q-l(c/c~O)=Bo. 

Lemma 4. Under Conditions I and II, there exist numbers d2o>0 and D 2 < 
such that d 2 < Var (S,) < D~. 

From now on, we assume that the associated random variables are constructed 
with h= h.. The following result, based on the continuity theorem for moment- 
generating functions of Curtiss [51, establishes the asymptotic normality of the 
associated sums. For simplicity of notation, we set 62 = Var (S,). 

Lemma 5. Under Conditions I and II, ~q~(S./6n)---~N(O, 1) as n--+ oo. 

Proof CSn has m. g. f. 

q~. (t) = exp ( -  t c An) [ I  [(9 ((t + hn) a.k)/(9 (h. ank)], 
k=l 

which exists when ( t+h . )an<B,  so when [ t [ < a ~ l ( B - h .  an), and so when 
I t l<B--Bo since h. an<B o and a .<  1. The m.g.f. 7n(t) of S./6n is given by 

7. (t)= ~. (t/6.)= e-(,ca.)/e. [I  (9 ((t ~Tn 1 + h.) an k) 

k= l (9 (h. a.k) ' 

and exists for I tl < 6. ( B -  Bo), so for I tl < do ( B -  Bo) by Lemma 4. Using a Taylor 
series expansion with remainder about t = 0 of log (9 ((t ~ 1 +  h.) a.k), we have, for 
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ltl<=do(B--Bo), 

log 7. (t)= - (t c A.)/6. + ~ log q~ ((t ~n I -~- h.) a.k) 
k = I  

- ~ log r (h. a.k) 
k = l  

= - (t c A.)/6. + ~. t 621 a. k Q (h. a.k) 
k = l  

- 2 , + ~ 2 -1 t 2 a2 2 a.k Q (h. a.k) 
k = l  

~, 3 . . . .  a n k + h ,  ank)  ' + 6-1t3anaank Q (O,,ktan 1 
k = l  

where 10.kl < 1. Now by Lemma 2 and the choice of h., the expansion reduces to 

3 r~,,r t log]~n(t)=t2/2 +(t3/6~3) ~ ank "~ t .k), 
k = l  

where t.k = (O.k t ~ j  1+ h.) a.k. To apply the theorem of Curtiss [-5], it remains only 
to show that the last term tends to 0 for all t in a nondegenerate closed interval 
about the origin. But for Itt < do ( B -  Bo)/2, we have 

IQ"(t.k)l < max {IQ"(x)[" Ix[ < do(B-B0)/2 ~. + h. ank } 

< m a x  {IQ"(x)[' Ix[ <(B +Bo)/2} = M <  ~ ,  

because Q" is continuous for It[ <do(B-Bo)/2 .  Therefore, for t fixed, 

k~l " Q"(t.k) 3 --3 ~'~ 3 3 (t/6o-.) <(1t13/6~ 3) m ank ank 
_ k = l  

<(Itl 3 M/6d3o)a. a.k 
k = l  

tends to 0 as n ~  because 1 = ~ a2k>anOaZ, implies that a . -~0  as n ~ .  
k = l  

3. The Large Deviation Theorem 

It follows from Lemma 5 that, as n ~ 0% H~ (y ~ , ) -  ~r  (0) tends to �9 (y ) -  q0 (0). 
This situation yields us the following fact: 

Lemma 6. Under Conditions I and II, lira (h, A,)- 1 log I, (h,) = 0. 

Proof. For a n y ,  > 0, Lemma 4 implies that 

I.(h.)>=h. ~. e - h n y  [H.(y)--H.(0)] dy>= [H.(e)-H.(0)]  e -n"~ 

>=e -h'~ P(O< :~./ff. ~ e Dol). 
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It then follows from Lemma5 that l iminf(hnAM)-llogln(h.)=O, since An> 
n ~ o o  

= ~ ank < n an, and hn ---, oo as n ---, oo because enOan--,oo as n--,oo because 1 2 2 
k = l  

hn an>bo>O by Lemma 3 and ~rn~O. On the other hand, 

oo 

I n (h.) < hn ~ exp ( -  h. y) dy = 1, 
0 

so that lim sup (h. A.)- 1 log I. (h.) < 0. 
n ~ o o  

The main theorem now follows, setting L(t) = t Q ( t ) -  log ~b (t). 

Theorem. Under Conditions I and II, P (S. > c A.) = e- r. + o (,.), where r. = c b. h. A n 
for a bounded sequence of  positive numbers b. such that 

0 < (e/c Bo) L(t) b9) < bn < 1 - (e/c Bo) log ~b (0 bo) < 1. 

Proof From Lemma 1 and the conclusion of Lemma 6, we need be concerned 
only with 

l o g J . = l o g { e x p ( - h ,  cAn)~=14)(hna.k) } 

= - hn c An + i log q5 (hn ank). 
k = l  

On the one hand, 

log J. > -hncA.+c~nlog(o(h .Or  -h.cAn+c~nlog(o(Obo),  
so that 

lim inf(ch.An) -~ log J . >  - 1 +(e/cBo) log (~(Obo), 

because c~ n(c hn A.)-l>c~n(cnBo) -1 =c~/cBo, as hn An<hn ~ ank <=hn n an<=nBo. 
k = l  

On the other hand, by Lemma 2 and the definition of h., 

n n 

log Jn = - hn ~ ank Q (hn ank) -}- Z log (o (hM ank) 
k = l  k = l  

= - i L(hn ank) < --c~nL(Obo) 
k = l  

because L(t) is positive for all positive t and is increasing in t, since the (non- 
degenerate) associated distributions have variances Q'(t). It follows that 

lim sup (c hn AM)- 1 log Jn < - (~/c Bo) L(O bo). 
n ~ o o  

Therefore, - ( c  hn An) -~ log P(S.> c AM)= bn + 6., where bn is bounded as in the 
conclusion of the theorem, and 6n ~ 0 as n ~ oo. Therefore 

log P (S. > c A.) = - r. + o (rn), 

and the theorem is proved. 
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As a corollary, we obtain 

Chernoff's Theorem. I f  S, = ~ X k and there exists a z > 0 such that Q (z) = c, then 
k = l  

lira n -1 log P(S, > cn) = - log p, 

where p = e- cr c~ (~). 

Proof In this case, we would have e =  1 and 0 =  1 in Condition I and so 
Condition II is equivalent to the existence of a -c > 0 with Q (z) = c. Then A n = n -~, 

a , = n  , and S,=n -~ ~ X k  in the main theorem. The bounds bo and Bo of 
k = l  

Lemma 3 have the common value "c so that h, = z n ~. The bounds on b, in the main 
theorem have the common value (c z)-  1 (c z - log ~b (z)) = (c z)- 1 ( _  log p), and 
therefore r, = - n log p. Chernoffs  theorem follows. 

4. Comparison with Feller's Theorem 

If Theorem 4, p. 14, of Feller's paper  [6] is applied to the weighted sum case, 
it reads as follows in our notation: 

Feller's Theorem. Under some conditions on X1 and the weights, if {h~*: 
l <=n< ~ }  is a sequence of numbers such that 

r* :h*  ~ a.k Q(h* a.k)-- ~ log c~(h* a.k)~O~ 
k = l  k = l  

as n ~ o% and 

then 

z*= ~ a.k Q(h* a.k), 
k = l  

P(S,> z* )=exp ( - r*  +o(r*)). 

In formulating his theorem, Feller was primarily interested in deriving the anal- 
ogues of the law of the iterated logari thm in [7], so he wanted the sequence of h,*'s 
to give r*'s and z*'s in accordance with this goal. The h*'s are used only as a 
bridge between z* and r*; they hold no intrinsic interest, so no at tempt  is made 
to study their behavior, or even their existence for particular z*'s and l"*'s. On the 
other hand, Feller's results are much more  wide-ranging, in the sense that any 
sequence of h*'s, which results in r* ~ oe as n --* o% is considered. 

In the present paper, only the sequence z, = c A, is considered, since the goal 
is an extension of Chernoff 's large deviation theorem. The method of proof  and 
the conditions are, of course, quite a bit simpler than Feller's, and really only a 
generalization of Bahadur and Ranga Rao 's  technique on pp. 1017-1018 of [1]. 
Based on the choice of z , - - c A . ,  the existence and some properties of the corre- 
sponding h,'s are established, and then the r,'s are determined later. This produces 
a result which reduces in a straightforward manner  to Chernoffs  original theorem, 
since the h.'s can be precisely calculated in that case. 

Our Condition II, an analogue of the only condition in the Chernoff and 
Bahadur-Ranga Rao articles, guarantees that the equation z* = c A, has a solution 
h =  h*, and provides some estimate of the sequence of h*'s. The conditions of  
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Feller's theorem, on the other hand, do not always guarantee that the parametric 
equations for z* and r* in terms of h* are solvable. In fact, for his more general 
results, he includes as a specific condition that the equations be solvable, as well 
as that r* (h,) ~ oo as n ~ oo. In our more restricted situation, Condition II itself 
assures this, while assuming nothing more than the natural analogue of Chernoffs 
original condition. 

Acknowledgment. The author would like to thank Prof. D.R.Truax for several discussions on 
questions leading to the results presented here. 
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