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Some Results in the Probabilistic Theory 
of Asymptotic Uniform Distribution Modulo 

R. M. Loynes 

1. Introduction and Summary 

The concept of the asymptotic uniform distribution (or equidistribution) 
modulo 1 of a sequence belongs, strictly, to the Theory of Numbers, but in recent 
years, for two rather different reasons, probabilistic ideas have been applied to it. 
On the one hand the basic idea of asymptotic distribution is a particular case of 
a standard probabilistic notion, that of weak convergence of distributions (see 
Billingsley [13, pp. 50-52), and on the other such a property is essentially an ex- 
pression of some long-term regularity of the sequence, of just the kind that is of 
interest in probability theory. (See, for example, Robbins [73.) The description 
"probabilistic theory" in the title is intended to refer particularly to the second 
aspect. 

In w 2 we give the continuous-time analogue of a result of Holewijn [43: we 
shall find (sufficient) conditions under which 

1 r 
Pr(x)=~-o~ I[{X(t)} <x] d t ~ x  a.s. for all x in [0, 1] as T--.oo, 

where X(t) is a stochastic process, {x} denotes the fractional part of x, and I [A] 
is the indicator function of the set A. 

In w we prove a rather general version of a result that has been widely used, 
while w is concerned with the generalisations of equidistribution: A-equidistri- 
bution, in which 

o0 

Pa, T(X)=~a(T, t ) I[{X(t)<=x]dt~x a.s. fo ra l lx in  [0,1] as T-~ov, 
0 

oo 

where a(T, t )>0 and ~ a(T, t )dt= 1 for all 2q and B-equidistribution, the special 
0 

case of A-equidistribution that arises by setting a (T, t) = b (t)/B (T), where b (t) > 0 
T 

and B (T) = ~ b (t) dt. [The notation/~T and ~, T is adopted, to underline the analogy 
0 

with the empirical distribution function.] 

2. Asymptotic Equidistribution in Continuous Time 

We suppose that {X(t): 0=< t<  ~} is a stochastic process with the following 
property: 

(It): the distribution of X(t  + h)-X(t) ,  where t, h => 0, depends on h but not on t. 
3 Z. Wahrscheinlichkeitsthe~rie verw. Geb., Bd. 26 
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It was observed in Loynes [6] w 4 that (Ic)implies that {exp (i 2n 2X(t))} is 
a second-order stationary process for every real 2, so that 

oo 

ei2~xx(~ ~ ei~ dZ).(O) 
- o o  

and 

(1) 

converge to 0 a.s. for m = 1, 2, .... Next we use the obvious extension of Theorem 
2.1 of Kuipers and van der Steen [5] (see also the next section) to the case in which 
a general probability space replaces the interval [a, b] to see that it is sufficient 
to show that 

w l r ~  

lim il--EIdpt(m)12dt<oo, m = l , 2 ,  .... (4) 
T ~ o o  1 t 

Finally we use (2) to transform the expression in (4) into 

oo [ id0~_ll z 
~ dFm(O) t302 dt (5) 

- -0o  1 

where the inner integral is to be understood as log T if 0---- 0. Now 

~ [eiOt_l]2 IOlT ]eiX_l] 2 
t3 02 dt= ~ x3 dx 

1 101 

which is O(log 101) for small 0 and bounded in any interval excluding the origin, 
so the result follows. 

[There are various ways of showing that convergence of the functions (~T(m) 
for integral m is sufficient for weak convergence. One possibility is to identify the 

oo 

E [e ia~(x(t§ = ~ e i~ d F~(O) (2) 

for appropriate Z~ and F~, Z~ having orthogonal increments and F~ being the 
spectral measure. Then we have the following result. 

Theorem 1. I f  the stochastic process {X(t)} satisfies (Ic) and if 
(i) AFro (0), the jump in F~ at 0 = 0, vanishes for every m = 1, 2 . . . . .  

+ 1  

(ii) ~ log ]0] dFm(O)< ~ for every m = 1, 2, . . . ,  
- 1  

then a.s. as T ~  
P r ( x ) ~ x  for all x in [0, 1]; 

that is, FT converges weakly to the uniform distribution in [0, 1]. 

This is quite analogous to Theorem 2 of Holewijn [4], and his proof needs 
only minor changes. First we observe that, Fr being for every T a distribution func- 
tion which concentrates all the probability on [0, 1-1, the claimed weak convergence 
occurs if and only if the characteristic functions 

1 T 
qST(m)= ~ o i 2 ~ m x r l e  [ ~ r ~ - -  r  

to, 11" ~x r ~ j - ~ - o j  ~ dt (3) 
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half-open interval [0, 1) with the circumference of the unit circle via the correspond- 
ence x~--~e 2~ix, for then the integrands e 2~imx in (3) are the characters of the circle 
group and the result, aside from one complication, follows at once, as in Billingsley 
(p. 51). The difficulty arises from the fact that the points 0 and 1 on the line are to 
be identified, but since points are closed sets, by Billingsley (Thm. 2.1) 

lim sup F, ({0, 1})<F({0, 1}) 

when F is the weak limit of F,: when, as in this case, the limit is continuous, F, ({0}) 
and F, ({1 } )~  0 so that the points 0 and 1 can merely be ignored in the l imi t - i t  is 
unimportant whether they are identified or not. The problem cannot be overcome 
in Proposition 1 below: using only integral m it is clearly impossible to distinguish 
between 0 and 1.] 

Corollary. I f  {X(t): t > 0} has stationary independent increments, and X(O) = O, 
then, provided there is no rational number r such that for all t the values of X(t) are 
a.s. integral multiples of  r, {X(t)} is asymptotically uniformly distributed modulo 1. 

The proof is quite straightforward, and again is the natural analogue of 
Holewijn's, in his w 3. By the hypothesis that X(t) has stationary and independent 
increments, the left hand side of (2) has the form e -hO('~) for h > 0  and e +hO(2) for 
h < 0, for some • (2), where the real part of ~ (2) is non-negative for all 2 and ~k (m) Je 0 
for r e= l ,  2 . . . . .  [See Breiman [-8], Proposition 14.18.] Suppose O ( m ) = c + i d  
where c>0 :  then it is easily seen that F m has a density 

C 

fm (0) = u [c 2 + (d + 0) 2] (6) 

so that (i) and (ii) are satisfied. If on the other hand c = 0 and d + O, Fm (0) places all 
its mass at - d, and again it is seen that (i) and (ii) follow. 

Note that this in effect includes Theorem 3 of Robbins [7] and Satz 1 of 
Hlawka [3]. 

Remarks. (A) Whether in continuous time (as here) or discrete time the same 
techniques could be applied in cases where the values of X(t) are not real but are 
elements of some other locally compact group. 

(B) Condition (i) of Theorem 1 ensures that convergence is to the uniform 
distribution: without it but with condition (ii) (amended so that 0 is omitted from 
the range of integration) we should still have a. s. convergence to some distribution 
(perhaps random) on the circle, or equivalently on [0, 1] with 0 and 1 identified. 
Condition (ii) is rather different: if we drop this we have what might be called 
asymptotic equidistribution in L2, but perhaps not a. s. equidistribution, and such 
a concept might be of interest in some applications. There is, incidentally, a possi- 
bility that condition (ii) could be weakened, for an inspection of the proof of the 
theorem in the next section shows that condition Ic is nowhere used. 

It is of some interest to discuss the possible limit laws Of FT when condition (i) is 
not satisfied, and we have the following partial result. 

Proposition 1. I f  {X(t)} satisfies (I~) and if X(O)=O, then the Lz-limit of F r 
(which always exists) is a. s. constant if and only if 

1 T 
lim - -  ~ E(e 2~imx(O) dt 
T~oo T o  

3* 



36 R.M. Loynes: 

is 0 or 1 for m = 1, 2 . . . . .  The possible non-random limits of FT are the distribution 

functions Ho and Hk(P), for k = 1 , 2  . . . . .  and 0 < p ~ k ,  where H o corresponds to 

the uniform distribution on [0, 1] and Hk(P) puts probability p at O, k -1 - p  at l, 
1 2 k - 1  

and k -1 at each of  the points - -  - -  
k ' k ' " "  k 

Mutatis mutandis this result is also valid in the discrete time situation, and 
in either case if there is an a.s. limit for FT it concides with the L 2 limit. Whether, 
in either case, all the possible laws mentioned can actually arise does not seem 
obvious. 

Proof From the yon Neumann ergodic theorem [Doob  [9], Thm. X.6.1] the 
characteristic functions (aT(m) of (3) L2-converge to AZm(O). Now this is non- 
random if and only if for all m 

E [IAZm(O)- E AZm(O)I z] =0;  
i.e. if 

E ]AZm(O)[ 2 = IE AZm(O)I 2. 

Now the left hand side is AF,~(O), while from (1) 

1 T 
E [A Z m (0)3 = liTm ~- 0~ E (e 2"'~ x(,)) dr, 

1 r 
=lirm ~-  o~ E(e 2"'m(x(')-x(~ dt 

= AFro (0) 

from (2). The main part of the result is now proved, while if Fo~ is the non-random 
limit Of Fr, with characteristic function gb, we have ~b 2 = q~, so that Fo~ is an idempo- 
tent positive measure on the circle, and the result follows by using Theorem 3.2.1 
of Grenander [10]. 

3. An Auxiliary Theorem 

The following theorem contains the essence of Davenport,  Erd6s and LeVeque's 
theorem [2], and Theorem 2.1 of Kuipers and van der Steen. We suppose that B 
is a positive measure on the non-negative reals, and write B (x)= B ([0, x]). 

1 T 
Theorem 2. Let S t =  B(T)  ~o u(t) B(dt) where 

(i) l u (01 < K < oo for almost all t (B-measure), and u is measurable; 
(ii) B(T)--,oo as T ~ o o  ; 

AB(T)  
(iii) - - - ~ . 0  as T ~  oo, where AB (T) is the mass assigned by B to the point T. 

B(T) 
B(dT)  

Then from ~ ip(Sr) B--~-T-]-<~, where ~ is non-negative and $(x)--*O implies 
Id  

x ~O, follows ST""~O. 
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The proof depends on the following lemma. 

Lemma. I f#  is a positive bounded measure on [0, ~), then there exists a positive 
function ), which is monotone increasing and tends to + ~  as x ~  such that 
~2d/~<oo. 

To show this we let, for r=  1, 2, ..., xr be the smallest number for which 
/l([xr, oo))<2 -r, or 0 if there is no such x,. For x such that Xr<X<Xr+l write 
2(x) = 2~r: then 

co 

~2d/~= ~ ~ 2 d p = ~ 2 ~ ' p ( [ x ~ , x r + l ) ) < 2 2 ~ ' 2 - r < ~ .  
x l  r = l  [xr, Xr+l) r = l  

Returning to the proof of the theorem, there exists 2 such that 
oo B (dT~ 
~" 2(T)$  (ST) ~ <  
o ( )  �9 

Let M1 < c~ be arbitrarily chosen so that 2 (M1)> 2, and then define Mr, r = 2, 3,.. . ,  
inductively by 

2(Mr) B(Mr)+ 1}. 
Mr+l=inf{x:  B(x)> 2(Mr)_ 1 

All Mr are finite, and 

2(Mr) B(Mr)+I>B(M~+a_) ' 
B(Mr+I)~ 2(M,)-  1 

from which it follows that M r increases monotonically to o% and since 

B(M,+I) B(Mr+I-)+ AB(Mr+I) 
B(M~) S(Mr) 

in which the first term tends to unity while 

AB(M,+O < AB(M,+O 2(Mr) 
B(M~) = B(Mr+I- ) (2 (Mr) - I )  

we find that B (M, + 1)/B (Mr) ~ 1. 
Now let Nr be any number in Mr< T<=M~+I at which ~(ST) is less than 1/r 2 

greater than the infimum of ~ (ST) in that range: then 

O(SN")<= B(Mr+a)-B(M,) ~ O(ST)+ B(dt) 
(Mr, Mr+ 11 ! 

0 (ST) B (dt) 1 
B(Mr+I) ~ B(T) ~ r e 

<= B(Mr+I)-B(M,) (Mr, Mr+i] 

-__ ~ 2 ( T ) - ' S  " B(dt) 1 

and by adding these inequalities together for r= l ,  2 ... .  we conclude that 
~0(SN.)<OO: hence O(SN.)--*O, sO that SN#-*O. If we now notice that, when 
N <  r<=Nr+l we have 

IB ( r) S r -  B(N) SN.I < K(B(N + O -  B (N)), 
we also see that St--*0. 
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Corollary. Suppose that u is a random function such that a.s. lu(t)l < K <  oo for 
almost all t (B-measure), where K may be a random variable, and that the other 
conditions of  Theorem 2 are satisfied. Then if 

E 0 (s~) < oo 
a t~t ) 

for some a, S r ~ O  a.s. 

The proof  is immediate, since by Fubini's theorem 

~0(S~  <oo a.s. 

Remark. In the situation treated in the corollary, it is possible to strengthen 
a detail in the proof. As the proof stands now, the sequence N, is a random sequence, 
but it is easy to modify it so that N, may be supposed deterministic. All that need 
be done is to replace ~k(Sr) by E(~(ST)) everywhere until the statement 

E O (Sin)< oo is reached: then Fubini's theorem may be applied to show that 
~ (SN) < oo a.s., and the proof continues as before. 

4. A and B-Equidistribution 

For a.s. A-equidistribution it is necessary and sufficient that the characteristic 
functions 

of) 

q~a,r(m)= ~ eiZ~"~dPa, r(X) = [, a(T, t) ei2~mx(~ (7) 
[o, 11 o 

converge to 0 a. s. for m = 1, 2 . . . . .  

Now using (1) we have 

and hence 

) ~ba, r(m) = a(T,t)ei~ dZm(O) 
- - o o  

~ t)e~O~dt 2 Elc~a,r(m)la= ~ a(T, dF,,(O). 
- 0 

(8) 

(9) 

In order that the same approach may be used conditions must be imposed to 
allow some estimate of this quantity to be made. As will be seen we shall put 
restrictions on F,, (i.e. on {X(t)}) and on a(T, t); no doubt other combinations of 
conditions which would suffice could be found. 

Theorem 3. Suppose that {X(t)} satisfies (Ic) and for each r e= l ,  2 . . . .  , F,, is 
absolutely continuous with dFm(O)/dO<Km<oo, where K,, is a constant. I f  

c o  o0 oo  

a ( r ) d r <  oo, where e ( r ) =  ~ a(T, t)Z dt, and if, for each m, ~ a(T, t)e~2"mX(~ dt 
0 0 0 

is a.s. uniformly continuous for sufficiently large T, then a.s. as T--*oo 

Pa, T(X)~X for all x in [0, 1]. 



Asymptotic  Uniform Distribution Modulo 1 39 

The proof is straightforward, since by hypothesis, and (9), 

El(oar(m)]2<gm, = dO a(T , t )e  i~ = 2 r C K m S a ( T , t ) 2 d t = 2 ~ K , , e ( T )  (10) 
- -oo  0 

by Parseval's theorem. Thus by Fubini 

oo 

E f I(~ 2 dT=SE[(~ 2 d T <  oo (11) 
0 

oo 

so that a.s. ~ Iq~.,T(m)l 2 d T <  co. This, together with the a.s. uniform continuity 
0 

of 4)0, r (m) " implies that 4~, r (m)~ 0 a.s. 

Remark. The condition on Fm is satisfied by processes with stationary independ- 
ent increments, provided that there is no real number d and integer p such that for 
all t the values of X(t) have the form (k + t d)/p, with k = 0, _+ 1 . . . .  ; see the discussion 
at and near (6). In particular, it is satisfied by the Wiener process, but in this case 

o0 

Hlawka [3] needs only to impose the condition ~ e-~2/~(r)dT< oo for every 6 > 0, 
oo 0 

in place of our much stronger ~ c~(T) d T <  oo ; his proof, however, uses the proper- 
o 

ties of the Wiener process in an essential way. 

For the case of B-equidistribution it is possible to show that under relatively 
weak conditions on b (t) the requirement that q~, r (m) be a.s. uniformly continuous 
follows automatically, but this is of no great interest since the application of 
Theorem 2 allows an appreciably stronger result. 

Theorem 4. Suppose that {X(t)} satisfies (Ic) and for each m = l ,  2, ..., F m is 
absolutely continuous with dFm(O)/dO<Km< o% where K m is constant. I f  B ( T ) ~ o o  
as r ~  co and if  r 

o~ Jb(t)  ~a t  
j o ~ b ( t ) d t < ~  

B(T) 3 

then a.s. {X(t)} is asymptotically B-equidistributed: a.s. 
1 T 

Fb, T (X)=- -~T~oI [ {X( t ) }<=x  ] b ( t ) d t ~ x  for  all xe[0,  1]. 

The proof is trivial, since we need only use (10) and write ST = q~b, T (m), ~/(x) = ]X] 2 
in the corollary to Theorem 2. 

There are results for discrete time which are quite analogous to Theorems 3 
and 4. Both are concerned with a stochastic process {X(n): n=0 ,  1, 2 . . . .  } which 
satisfies (Io). 

(I9): the distribution of Xm+,-Xn,  where m, n >-0, depends on m but not on n. 
Corresponding to (1) and (2) we have 

ei2='~x"= ~ ei2n~ (12) 
[o, l) 

and 
E[e'2~z(x~+"-x")] = ~ eiZ'~~ (13) 

[o, 1) 
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for appropriate Z~ and Fx, Zx having orthogonal increments and Fx being the 
spectral measure. 

By a.s. asymptotic A-equidistribution we now understand that a. s. as n--, oo 

P,, ,(x)= ~ a(n,j) l[{Xj}<x]--+x for all xe[0 ,  1], 
j = o  

where a(n,j)>O, and ~ a(n,j)=l for all n. 
j=o 

Similarly a. s. asymptotic B-equidistribution means that a.s. as n--+ 

1 n 
Fb,=~]_ y b j I [ {X j }<xJ~x  forall  xe[0 ,  1], 

' n j = O  

where b, __> 0 for all n, and B, = ~ bj. 
j = O  

It is again (necessary and) sufficient that we show that characteristic functions 
converge a.s.: that a. s. 

(aa,,(m)= ~, a(n,j) ei2rcmXj"+O, (14) 
j = o  

o r  a . s .  
1 n 

Ob,.(m)=--~. j~=ob j ei2"x'--+O, (15) 

in either case for m = 1, 2, .... 
We shall again wish to deal with E I~b,,, (m)[ 2. From (12) and (14) we have 

oo 2 

E]~b~,,(m)] 2=  5 ~,a(n,j)e i2'~~ dFm(O ), 
[0 ,1)  j = O  

and if we again suppose Fm absolutely continuous with dFm(O)/dO<Km< ~ ,  we 
reach 

EI~o,.(m)I2<K~ S 
[o, 1) 

again by Parseval. 

Theorem 5. Suppose that 
absolutely continuous with 

I• a(n,j)e'2'~~ ~ a(n,J) 2 =K,,~, 
j = 0  

(16) 

{X,} satisfies (ID) and for each re= l ,  2, ..., F~ is 
dF=(O)/dO<Km<oo, where K,, is constant. I f  

~" ~, < 0% where ~, = a (n, j)2 then a.s. as n--+ oo 
0 j = O  

Pa,.(x)~x for all xE[0, 1]. 

Theorem 6. Suppose that {X,} satisfies (ID) and for each m = 1, 2 ... .  F,, is absolu- 
tely continuous with dFm(O)/dO<Km<oo, where Km is constant. I f  B,--+oo and 
b,/B,~O as n-+oo, and if 

b b~ 

.=o B. ~ 

then a.s. {X (n)} is asymptotically B-equidistributed. 
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For the proof of Theorem 6 we again use the corollary to Theorem 2; this time 
B puts mass b, at n. 

Remark. If X o = 0 and X,  is the n-th partial sum of a sequence of independent 
and identically distributed random variables, then (ID) is satisfied. Provided that 
the values of the individual summands are not a.s. of the form d + k p, where d is 
real, p is rational, and k = 0, _+ 1, _+2,.. . ,  then the condition on F,, is satisfied: 
note however that this excludes the Weyl situation in which, in effect, our sum- 
mands are equal to a constant irrational number with probability 1, 
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