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On Palm Probabilities 

Peter Jagers 

1. Introduction 

Consider a point process on some space X. If it is known that a certain element 
x~X happens to be one of the points of occurrence of the process, what can be 
said about the rest of the process? This question about conditional probabilities, 
so easily stated in common-sense terms, contains the essence of the problem of 
Palm probabilities. It was first considered by Palm himself [18] for stationary 
point processes on the real line. His reflections were made rigorous by Hin6in [-11] 
and generalized, using analytic tools, by Slivnyak [23] and by Fieger I-4] to not 
necessarily stationary processes, still on the line. More measure theoretic ap- 
proaches have been made, for stationary processes, by Matthes [5-1, Mecke [16], 
Neveu [17] and Leadbetter [-13]; for more general processes on the line by 
Ryll-Nardzewski [-21-1, Papangelou [-19] and Belyaev [-2], and on general spaces 
by Kummer and Matthes [12]. 1 

Here Ryll-Nardzewski's definition and Mecke's results for stationary random 
measures will be taken as starting point for a discussion of Palm measures of not 
necessarily stationary point processes on locally compact second countable 
Hausdorff spaces (though many results are nontopological). Stationary processes, 
infinitely divisible and Poisson processes will be characterized in terms of their 
Palm measures. Some words will be said about limits of Palm measures. The method 
we use applies to general random measures, whatever the value of such generaliza- 
tions be. 

In parts the paper is expository. The characterization given of the Poisson 
process is close to the one obtained by Papangelou and also a consequence of 
Mecke [16, Satz 3.1]. The characterization of infinitely divisible processes is due 
to Kummer and Matthes [12]. 1 

2. Fundamentals 

Let X be a locally compact, second countable Hausdorff space. Denote by 
~K the class of continuous functions X--~ R with compact support, by ~(X) the 
Borel algebra on X and by Y ( X )  the class of integer- or infinite-valued non- 
negative Radon measures (i.e. finite on compact sets) defined on ~(X). Endow 
J~(X) with the vague topology, (the coarsest topology rendering all maps 
Jff(X)~#~--~#f=~f(x)p(dx) for f~fgK continuous), and denote by ~(JV) the 
corresponding Borel algebra on ~ (X). A point process is a measurable map from 
some probability space (O, 50, IP) into (JV(X), ~(JV)). 

1 I am grateful to the referee for bringing that paper to my cognizance. 

2 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26 
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Now consider some point process 4. For any A we define 

4" A = ~ min (4 {x}, I). 
x ~ A  

4" and r coincide if and only if r has no multiple points, i. e. IP {V x ~ X ~ {x} < 1} = 1. 
Throughout the paper we assume that 2 A = E 4" A, A ~ (X), is a Radon measure. 

We have to check that the map T: # ~ #* is measurable. Put ~a(#)-- min (# A, 1), 
A ~ (X). Since M (Jff) coincides with the o--algebra generated by sets of the form 
{#eJV(X); #A~=rj, 1 <-j<n}, n = l ,  2 . . . . .  AjeM(X), [9], each ~/a is measurable. 
Let A e ~  (X) be bounded (= contained in some compact set) and led d be some 
metric metrizing the topology (any locally compact, second countable space is 
metrizable with a complete metric, [-3, p. 294]). Suppose that A,a . . . . .  A,r. is a 
sequence of finer and finer partitions of A into sets with diameter less than 1In. 
The sequence r, 

j = l  

increases and lim ~, (#)= #* A is measurable. Hence 
n---~ (x3 

T-1 {#eJff(X); #Aj=rj, l<jNn}={#eJV'(X); #*A~=ri, 1 <j<n}s~A(JV'). 

If q~ is a suitable function, say measurable X x X ( X ) ~  R+, such that 

. A = j ~0 (x, 4) 4" (dx) 
A 

has a finite expectation for bounded A, then the Radon measure Eq is absolutely 
continuous with respect to 2. (We have that 2A=0 ,  implies that IP {r =0} = 1. 
Therefore lip {r/A = 0} = 1 and E~/A = 0.) By the Radon-Nikodym theorem there 
is a function x ~ E x ~o such that 

e [,p (x, 4) 4" (dx)] = e In (dx)] = ex ~o ,~(dx). 

Note that iflP {4 {x} > 0} is positive, then 

~P {4 {x} > 0} =~P {4* {x} = l}  = E [-4" {x}]  = ~ {x}, 

E [<o (x, 4); ~ {x} > 0] = E [q~ (x, 4) 4" {x}] = E [-n {x}] = E~0,~ {x}.  

Hence, using the elementary definition of the right hand side, 

Ex~o= E [-~o(x, ~) l~{x}>0] .  

More generally, consider an x~X such that IP {4 V~ > 0} > 0 for all neighbourhoods 
V~ of x. Obviously the class S of such x's is the only relevant part of X in the sense 
that lP {~S'=0} =1 - prime for complement: If x~S', there is a neighbourhood 
V~ of x such that IP{~ V~=0} =1. Obviously S' is open: if x~S', then V~=S'. By 
Lindel/Sfs theorem [3, p. 174] S' is covered by a countable number of V~-sets, say 

n = l  

Hence 
IP{~S'=O}>IP{~ u .  V~=O}=IP((~ {4 V.=O})=I. 

n 
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Returning to S we have 

Proposition 1. I f  ~o is bounded and V,(x) is a sequence of neighbourhoods of x 
such that V.(x)+ {x} and IP {~ V,(x)>0} >0  (such a sequence exists if and only if 
x ~ S), then 

limE[(o(x,~)[~V,(x)>O]=Exrp a.s. 2 
n~oo 

provided E[~*A; ~*A>2] =o(2A) as 2A J,0 and the family {qo(., #): #~V'(X)} 
is equicontinuous. 

Proof 

E [q,(x, 0; ~ V~(x) > 0] 
=E[cp(x,~)-  ~ (p(y,~)~*(dy); ~V,(x)>0] 

V,,(x) 

+ E [  ~ ~o(y, #) #*(dy); #V,(x)>0] 
V. (x) 

= E [  ~ {(p(x, r ~)} ~*(dy); r V,(x)=l] 
V~ (x) 

+E[q)(x ,~)-  ~ (P(y,O~*(dy); ~*V,(x)>2]+E[ ~ q)(y,~)~*(dy)]. 
V,,(x) VMx) 

The last expectation obviously equals 

E, q~ 2(dy). 
Vn(x) 

The Lebesgue-Vitali theorem [22, p. 209] yields 

E [ ~ ~o (y, ~) ~* (dy)] 
lim v.(x) =Ex(O a.s. 2 
.~ ~ ,~ v. (x) 

for x E S. The second expression gives (taking 0 < q~ < 1 for simplicity) 

]E[cp(x,0-  ~ ~o(y,#)#*(dy); ~* V,(x)>Z]I<E[~* V,(x); r V,(x)>2]=o(2 ~(x)). 
VMx) 

Next 
IE[ ~ {cp(x,O-q~(y,O} ~*(dy); #*V.(x)=l I 

Vn (x) 

< y~v.(x)SUp uS~l~a)l(p (x, #) - (p (y, /-t) [ 2 V,(x). 
Also 

lP{~ V.(x)> 0} =,~ V.(x)-E [(~* V~(x)- 1); r V,(x)__> 2] 

--,~ V, (x) + o (,~ V. (x)). 

Note. Already the first proviso renders this proposition superficial, For a 
thorough analysis of similar convergences on the line see [3]. 

The second condition is satisfied if ~o is independent of x, like (p(x,/0= 1B(/~) 
for fixed B ~ (~AQ. In this case Ex (p exists and if P = IP ~-1 is the distribution of 
we write Ex q)=P~B. Since all measures on ~(JV) are regular and tight and JV(X) 
is separable, the usual proof for Polish spaces [1, p. 258] applies to show that the 
family {PxB, x~X,  B ~ ( J V ) }  can be so chosen that P~ is for all x a probability 
2* 
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measure on N(JV') and for each B EN(sV) the function x ~-~ P~ B is measurable. In 
the sequel we assume this to be done. 

For ~ with distribution P we also let r denote a point process with distri- 
bution Px, "4 conditioned to have an occurrence at x"  and write lP{~xeB}, 
IP {~eB[ # {x} >0} or P~ {#eB} for P~B. 

In the case of general random measures # there is of course no 4*. But then 
it self could be used to define E~. This approach would even have some advantages 
for the development of the present theory. The link to elementary concepts of 
conditioning would be lost, though. 

Proposition 2. For any ~p : X x .Ar (X)-~ R+ which is measurable with respect 
to the product algebra J3 (X) • ~3 ( ~ )  and such that E~ r exists 

= 

w (x) 

Note. All relations like the one above should be interpreted as a.s. equalities 
with respect to 2. Proposition 2 shows that conditional probabilities of events 
related to the place x of the conditioning occurrence can also be calculated from P~. 
For example it follows that 

lP{~{x}>O[~{x}>O}=l  or if ~(l~)=inf{d(y,x); y~=x,l~(y)>O} 

for some metric d on X, q~s (x, #)= e-s~x(.), s >= O, then 

oo 

e-St  Px { 6x(#)edt} = Ex q~ ~. 
0 

Proof If ~o=1 n, B ~ ( J f f ) ,  the proposition holds by definition and by the 
usual linearity and limit arguments, we can prove it for any measurable function 
of #, ~p(x,/0=0(#). Now let r #)= f(x) O(#). Then since 

E[O(~) ~*(dx)]= ~ O(l~)P~(dl~)2(dx), 
w (x) 

Ex ~o 2 (dx) = E [f(x) O (4) 4" (dx)] = ~ f (x) O (#) P~ (d #) 2(dx), 

and again linearity and monotonicity completes the proof. 

Proposition 3. Any probability measure P on JV'(X) is uniquely determined by 2 
and its Palm probabilities. 

Proof Using an idea of Mecke we shall derive an explicit formula for 

E [0 (0 ]  = S ~ (~) P (d~) 

where P = I P  4 -1 and 0 is any non-negative measurable function on Y ( X )  such 
that 0(0)=0, E [0(0]  < 0% the first zero denoting the zero measure. Let {A,} be 
a countable partition of X in bounded disjoint measurable sets and define 

{ ~ - ' ( p * A , ) - l i f x ~ A , , 1 ~ A , > O  
a(x ,#)=  if x~A. ,  # A , = 0 .  

Then, if # X  > 0, 
0<~ a(x, I~) I~*(dx)< 1 
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and 

O(x, # )=  a(x, #) #*(dx) #4=0 

# = 0  

satisfies ~ t# (x, p) #* (dx) = 1. Hence, with q0 (x, #) = 0 (#) $ (x, #), 

E [0 (4)3 = E [~ 0 (4) O (x, ~) r (dx)] = ~ E~ ~o ~ (dx) = ~ 0 (#) O (x, #) P~ (d#) ~ (dx), 

by Proposition 2. 

Palm-Hin~in equations can of course be expected only for point processes on 
the line. However, if 4 has no multiple points a simple formula for IP{~A=k} 
can be deduced: 

Let q0 be the indicator function of the set {# A = k} for k >_ 1. It holds that 

1P {4 A = k} = E [r A; ~ A = k]/k = E [ ~ ~o (4) r (dx)]/k = E [ I ,co (~) r (dx)]/k 
A A 

= I E~ c# (dx)/k = i IP {ix A = k} 2(dx)/k. 
A A 

Thus 

Proposition 4. I f  ~ has no multiple points and A ~ (X) 

I P { ~ A = k } =  ~P~{#A=k}2(dx) /k  for k = l , 2 ,  .... 
A 

3. The Poisson and Infinitely Divisible Cases 

The Poisson process ~ with intensity 2 is by definition a completely random 
point process (i. e. such that ~ A1 . . . .  ,4 A, are independent as soon as the Aj are 
disjoint) satisfying 

I P { 4 A = k } = ~ e  -~A, k=0,  1,2 . . . .  

for A bounded and ). a non-atomic Radon measure on X. We denote the distri- 
bution of ~ by H z = IP ~- 1, Poisson measure on dV (X), and by A x, x ~ X, the measure 
on Jff(X) that gives only mass one to the measure ex, exA=lA(X). 

In the stationary case, the following elegant characterization of the Poisson 
process is due to Slivnyak [23], Kersten and Matthes [10] and Mecke [16, 
Satz 4.1]. With our definition of the Palm probability it is also a consequence of 
Mecke's Satz 3.1 [16]. 

Proposition 5. Let 2 be a non-atomic Radon measure and 4 a point process with 
E 4*= 2. Then 4 is Poisson with intensity 2 if and only if ~ and ~ + ex have the same 
distribution. 

Note. In convolution notation (formally, if P and Q are two measures on 
W(X)  then 

P*Q(B)=~S1B(#+v)P(d#) Q(dv), BE~(JV))  

we can write Proposition 5: P =H~ if and only if P~ = P .  A~ and 2A = S #* AP(d#) 
is non-atomic. 
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That this last requirement is essential follows from considering two processes 
which place mass k only at some fixed point x, one of them with Poisson probability 
a k e-a/k !, a > 0, the other with geometric probability (1 -  b)b k, 0 < b < 1. 

Proof I. Let A, BeN(X) and assume that ~ is Poisson 4. 

[ H~,A~{#; #B=k} 2(dx)= f IP{~B=k}2(dx)+ ~ IP{~B=k-1} 2(dx) 
A A ' . . B  A n B  

=lP{~B=k} E[~(A\B)] +IP {~B=k-1}  E[~(Ac~B)-] 

=E[~(A \ e ) ;  ~B=k]+]P{~B=k-1} E[~(Ac~B)], 

since ~ (A \ B) and ~B are independent and E ~ = 2 as Poisson processes have no 
multiple points. 

Writing C for A c~ B we obtain 

Hence 

k 
E[~C; ~B=k] =j~lj.= (2C)Sj~ e-ZC (2 (B \(k _j) !c))k- J e-Z(B"c) 

=e_Z , 2C ~ (k-1)(2c)J_l(2(U~.C))k_,_(j_l) 
(k-1)ls=~ j - 1  

=IP { ~ B - k -  1} E[~(AnB)]. 

proving that 

Hz*Ax{#; #B=k} 2(dx)=E[~A; ~B=k], 
A 

H ~  {#; #B = k} = H ~ ,  A~ {#B = k}. 

The same equality holds for sets {#;#Bi=r i, l<=i<=k}, as follows by similar 
arguments, and since the class of such sets is a n-system generating N(JV') it 
follows that H ~  =/ /4"  Ax. 

II. Now suppose that Px--P* Ax. If ~ is a point process with distribution P and 
Ae~(X) 

IP {~A>2}_-<E S l(~A~2~(~) ~*(dx) 
A 

= S P~{#A_>2} 2(dx)=IP {CA>__ 1} 2A<(2A) 2. 
A 

Hence for any e>0 and compact set K c X  there are disjoint sets A1 .... ,A,, 
n 

2As<e, K= U As and 
j = l  

)" lP{3xeK; ~{x}__>2}____~' {~Aj__>2} ____ E~P{~A~>_-2I<~2K. 
j = l  j = l  

By a-compactness it follows that ~ can have no multiple points. But then Pro- 
position 4 yields that for any A ~ ( X ) ,  k= 1, 2 ... 

IP {~A = k} =IP {~A = k -  1} )~A/k. 
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By induction 
1P {~A = k} =IP {~A = 0} (2A)k/k!. 

Summing over k = 0, 1 ... we obtain 

IP{~A=0}=e  -~a 

since IP {~A< ~ }  = 1 for bounded A. By Renyi's theorem [20] it follows already 
from this that ~ is Poisson. However the complete randomness of 4, can also be 
shown directly: 

Let A1, ..., A, be disjoint and bounded, sj>0,  1 <j<n,  

q=exp  - sj~Aj. , 

a = E [ q ] ,  b=E[~A,] ,  f0 (x)= l ,  x>0 .  

E It/(~ An) ~ = afo(b ) 

E [q (~A,) s] = aft(b), 

Then 

and we assume that 
l <=j<=k 

for some functions fs : R+ ---> R+ independent of An. 

Then 
E [17 (~A.) *+ l] = E [ S 17 (~A.) k ~ (dx)] 

A n  

= ~ Extl(~An)k2(dx)= ~ E[I/(~A.+ 1) k] )L(dx) 
An An 

=bj~=oa.= fj(b)=afk+l(b), 

if we define 

~  x_>o. 

Hence 

i=o j ~ f ~ ( b )  
n - 1  

-- Z s j  ~ A j ~  

=E[e J:' J E [e-S"r 

The last equality follows from the special case sa . . . . .  s,_l =0.  Repeating the 
argument concludes the proof. 

It is interesting to observe that a convolution characterization of Palm measure 
applies not only to the Poisson process, but to all non-atomic infinitely divisible 
processes without multiple points [12]. A point process with distribution P is 
said to be infinitely divisible if for all n = 1, 2 . . .  there exist probability measures 
P. on Y ( X )  such that p = p . n .  It is known [13, 15] that ~ is infinitely divisible if 
and only if there is a uniquely determined Borel measure A on J V ( X ) \  {0}, 
called the canonic measure, satisfying 

A {#; # K > I } < ~  
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for all compact K and 

- l ~  = S (1-e-Ul)A(d#) 
N (x) 

for 0 < f ~ K ,  where A can be extended to all of JV" (X) in an arbitrary way. A must 
be non-atomic: if for some #o~JV'(X)\{0}, A{#o} were positive there would 
exist an a~X such that #o{a}>0. Replacing i f  by ~{a} and # f  by #{a} in the 
formula above would contradict the fact that lP{~{a}=0}= 1 (O.Kal!enberg 
pointed this out to me). Also A is Radon on # # ( X ) \  {0}, given therelative topol- 
ogy. Though this space is not generally locally compact, we can define a Poisson 
process S on JV (X) \ {0} with intensity A and extend it to all of Y (X) by setting 
for any outcome ~ {0} = A {0} = 0. Then 

rla= j #AZ(d#), A ~ ( X ) ,  
W (x) 

has the same characteristic functional as 4, E [e ir162 = E  [e inI] and hence the same 
distribution [8]. If P = I P ~  -1 we wish to determine P~: Take A ~ ( X ) ,  B6~3(.#') 
and note that 

2 A =  ~ #AA(d#)=E~A 
x ( x )  

assumed, as usual, to be Radon. Since ~ was assumed without multiple points it 
follows, in an obvious notation, that 

P~ B2(dx)=E [ j" 1B (t/) rl(dx)] 
A A 

= E [  ~ {Sln(rl)#(dx)}Z(d#)]= ~. E[#AI,(q)[Z{#}>O]A(d#) 
w(x) A w(x) 

= ~ E[I,(tl+#)]#AA(d#)= ~ P*Au(B)#AA(d#), 
w ( x )  W ( x )  

where we have used Proposition 5 on ~, and Au is the distribution of a process 
such that IP {~ = #} = 1. 

However for any B 

Af,(B) #A A(d#)= ~ #A A(d#)< 2A 
R 

and the term on the left is a measure in A. Hence for some probability measure 
P(x) on {#*; # # 0, # ~JV (X)} such that P(x) (13) is measurable in x it holds that 

#A A (d#) = ~ P(x) (B) 2 (dx) 
B A 

and 
P~=P*P(x). 

A more suggestive notation might be P(x)= A~, since P(x) is obtained from A as 
P~ from P. Only A need not be probability measure. Still, for the converse, Pro- 
position 3 applies, and if {P(x), xsX,  2} is given we can define A by 

A (B) = ~ ~ ~ (x, #) P(x)(d#) 2(dx), 
X B  
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B ~ sV ( X ) \  {0}, A {0} = O. Then, by an obvious extension of Proposition 4, 

A {#K >= 1} = ~ ~ P(x) {#K = n} 2 (dx)/n 
n = l K  

< ~ P(x){pK~ 1} 2(dx)<AK< oo 
t;  

i fK  ~ X  is compact. This means that A could serve as a canonic measure. However 
writing for O< s, O<=fe%: 

cp (s)= E [e-s~oC] 

we see by the definition of Palm measure that 

Since ~o (0) = 1 

(p' (s)= - E [~ e-s~.rf(x) ~ (dx)] 

= -  S[ I e-s"~ P*P(x)(d#)]f(x)2(dx) 
x x ( x )  

= -q~(s) ~ j e-'~'-rf(x) P(x)(d#) 2(dx) 
x w(x) 

=--q~(s) ~ e- '#r#fA(d#) .  
w (x) 

_ ~ ~o'(s) , 
-- logE [ e - e l i  = - logo# (1) = ~ 3 ~ j  -as  

= ~ (1-e-"~ 
W(X) 

completing the proof  of 

Proposition 6. Assume P to be the distribution of an atomless point process 
without multiple points. Then P is infinitely divisible if and only if there is a family 
{P(x); x e X }  of probability measures on {#*; # e ~ ( X ) \  {0}} such that for each 
B e ~  (X )  the function x--> P(x)(B) is measurable and 

P~=P*P(x). 

4. The Stationary Case 

Suppose, in this section only, that X is an Abelian topological group with 
operation + and unit 0. Define for x~X,  T~: ~ ( X ) ~  sV (X) by T~pA = #(A + x). 
Then T~ -1 = T_ x and T O is the identity operator. A process ~ is said to be stationary 
if T x ~ has the same distribution for all x. 

Proposition 7. I f  P is the distribution of a stationary point process ~ then there 
is a probability measure pO (usually called the Palm measure of the process) such 
that P~ T x= po almost everywhere (2). 

Proof Since T ~ * = ( T ~ ) *  stationarity of ~ implies the same for 4*. Thus 2 
must be Haar  measure and we write 2(dx)=dx. Let Bs~(sV) .  If we can prove 
that ~f(x)P~ T xBdx has the same value for all f__>0 such that ~f (x )dx= 1, the 
proposition follows. Therefore, let f and g be two such functions. Exactly like 
Mecke [16, Satz 2.1] we obtain a chain of equalities using in each step the definition 
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of Palm measure, the stationarity of 4, substitutions like z = x -  y in Haar  integrals 
or the relation Sf(Y) Tx12(dY)=Sf(Y-X)12(dy) : 

S f (x)  P~ T_ x B dx  = E [S f (x )  1B (Tx 4) 4" (dx)] 

= E [SS f (x )  g (y) in (Tx 4) 4" (dx) dy] 

= E [S~ f (x )  g (y) 1 n (T~+, r Ty 4" (dx) dy] 

= E [IS f ( x -  y) g (y) 1, (Yx 4) 4" (dx) dy] 

= E [SS f ( z )  g ( x -  z) 1 n (T~ 4) 4" (dx) dz] 

= e [IS f (z)  g (x) 1, (T~+~ 4) T~ 4" (dx) dz] 

= E [SS f (z)  g (x) 1• (Tx 4) 4" (dx) dz] 

= E [S g(x) 1,(T~O ~* (dx)]= S g(x) P ~ T_~ B dx.  

Note. The proof also shows that pO has the form 

P~ IS/(x)  1.(T~ 4) #*(dx)] 

where f is any non-negative function with Haar  integral one. In particular if 
K ~ ( X )  is some set such that 2K < Go and B = {12; 12A = k}, then 

P~ {12A=k}=E[~ * {y6K;  ~(A + y)=k}] /2K.  

This gives the usual frequency interpretation - on the line we can choose K = [0, 1]. 

It is interesting that a converse holds, as in the Poisson case. 

Proposition 8. I f  2 is translation invariant and P~ T ~ is the same for almost all x, 
then ~ is stationary. 

Note. Propositions 7 and 8 in process formulation have the following attrac- 
tive form: 

Let 2 = E 4*. Then ~ is stationary if and only if almost all T~ ~ (with respect to 2) 
have the same distribution and 2 is Haar  measure. 

Proof Write P~ T_ x = p0 and 2 (dx)= d x. First note that, q~ (x, 12)=> 0, 

~0 (x, 12) pO (d12) d x = ~ q~ (x, T~ 12) Px (d 12) d x = E [S q~ (x, T~ 4) ~* (d x)] 

by Proposition 2. Also observe that if ~9(x, 12) is the function defined in the proof  
of Proposition 3, then 6) (12) = ~0(x,T ~ 12) is independent of x. Now let O: ~/'(X)--+ R + 
satisfy O(0)=0 and take y~X.  Then, 

e [0 (T~ 03 = E [S 0 (T~ T~_ ~ 4) ~ (x, T~ T_~ 4) 4" (dx)] 

= j" O (Ty_~12) ~9(x, T_x12) P~ 

= S O (Ty_ ~ 12) 6) (12) nO (d12) dx = S 0 (T~ 12) 6) (12) nO (d12) dz, 

independently of y after the substitution z = y -  x. Since E [O (Ty 4)] is independent 
of y for arbitrary 8 such that O(0)> 0 stationarity follows. 

May be it is worthwhile to point out again that the condition on 2 is necessary. 
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5. Superpositions of Point Processes 

If 41, 42  . . . .  , 4, are point processes, their superposition is by definition the sum 
41 + 42 + " "  + 4,. We shall study Palm measures of superpositions of independent 
process. Since addition of independent point processes corresponds to convo- 
lution of their distributions, this amounts to an analysis of the relation between 
the convolution operation and Palm conditioning. The basic result is the "differen- 
tiation rule" of Proposition 9, due in the stationary case to Mecke [16]. 

Let 4 and r/ be two independent point processes on x with distributions P 
and Q. As always we assume that 2=E4" and K=E~* are Radon measures. The 
study of 4+~/ given 4{x}+~/{x}>0 is somewhat complicated by the fact that 
(4 + ~/)* may differ from 4*+ q*. However the following holds: 

Lemma. For 4 and t 1 as above ]P{4+r/)*=4*+~/*}---1 /f and only if 4 and ~1 
have no joint atoms. 

Note. 4 has an atom at x if lP {4 {x} > 0} > 0. 

Proof The necessity of the condition is obvious. For the sufficiency assume 
first that 4 has no atoms. Let e > 0  be given. Each x s X  has a neighbourhood Vx 
such that ]P{4* V~_> 1} <e. By Lindel~Sfs theorem a countable number {V~}~ of 
these cover X. Defining 

AI=V~, Ak=Vk \ U V . ,  k = l ,  2 . . . .  
n<k  

we obtain a measurable partition of X into disjoint sets and for B bounded 

IP {3xeB; 4" Ix} + r/* {x} > 2} =IP {3xeB; 4" (x} = q* (x} = 1} 

< I P ( U  {4*Ak> 1, r/* Ak c~ B >  1 } )< ZIP  {4*Ak > 1} P{rl*Ak n B> 1} 
k k 

<e ~IP {q* A k n B >  l} <eKB< ~ .  
k 

It follows that 4" +q* can have no multiple points in B and by ~-compactness 
none at all. 

Now to the general case. Let S be the set of atoms of 4 and B again bounded 

a, {3 x B; 4" (x} + (x} __> 2} 
<_IP {3x~B \ S ;  4" {x} + q* {x} > 2} +IP {3xeB ~ S; 4" {x} + q* {x} > 2}. 

To both these entities the preceding argument is applicable, 4 has no atom in 
B \ S, t /none in B n S. 

Proposition 9. Let ~ and r 1 with distributions P and Q have no joint atoms and 
2 = E 4 " ,  ~c=Eq*, v=E(4 +q)*. Then 

(P , Q)~ v(dx)= P~ , Q 2(dx) + P , Q~ tc(dx). 

Note. This has the following interpretation: (4 +t/)~ is distributed like 4~ + q 
with probability 2(dx)/v (dx) and like 4 + q~ with probability x(dx)/v(dx). Observe 
that 2+ tc=v .  
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Proof. Let B~N(;ff )  and assume ~ and r/independent 

(P .  Q), (B) v (d x) = E [1B (4 + ~/) (g + r/)* (dx)] 

= E [ 1~ (4 + q) (4* (d x) + t/* (dx))] = E [1~ (4 + ~/) 4" (dx)] + E [ 1~ (4 + r/) r/* (dx)] 

= ~ E[1 , (~+#)4*(dx) ]  Q(d#)+ j E[1,(#+rl)  rl*(dx)] P(d#) 
W (x) ~r (x) 

=Px* Q(B) 2(dx) + P * Q~(B) tc(dx). 

By induction we get 

Proposition 10. Let t]1, P2 .. . .  , P, be probability measures on ~ ( X ) ,  such that if 
~j and ~k have distributions Pj and Pk they have no joint atoms, 1 <=j<k<=n. Set 
2k=E4~ , l<_k<_n, 2 = E ( ~ 1 + ' " + 4 , ) * ,  fk=d2k/d2. Then 

�9 = 

x k=l j~-k 

almost everywhere (2). 

Here [ I*  Pk is the convolution product P~ �9 P2 * '"* P~. Note that each "~k is ab- 
k = l  

solutely continuous with respect to 2 and that the fk can be so chosen that the 
differentiation rule holds for all x. In the next section we assume this to be done. 

6. Limit Results 

If P~, P are probability measures on Y (X) endowed with its vague topology 
we write P~ '~, P for the weak convergence of P. towards P (~ ~p dP, --+ ~ ~p dP for 
all continuous bounded ~p: ~Ar(X)-+ R). Similarly, if 4, has distribution P, and 4 
distribution P, ~, TM , ~ means that P, '~ ~ P. By z(P) or ~(O we denote the 
characteristic functional defined on cgr: 

z(P) (f)=~ eiuI P(d#)=E [e ir =Z(4) (f) 

if P = IP ~- 1, f ~  cooK. A continuity theorem holds: P. - w ~ p if and only if Z (P,) ---* Z (P) 
pointwise [8]. Of course Laplace transforms can be used as well [-9]. 

In applications, like in queuing theory, it is often taken for granted that the 
convergence 4, ~ ~ enhances a similar convergence of conditioned processes: 
4,~ tends to 4~. Simple examples show that this cannot hold generally - for any 
sensible definition of the conditioned process. We shall use the result of the pre- 
ceding section to make some remarks about conditioned convergence in the classi- 
cal situation of superpositions of processes in a triangular array {4,1, 4,2, ..., ~,r,} 
n = l ,  2,. . .  of independent point processes. 

Proposition 11. Assume that 4,k is distributed according to P,k,for each n no two 
~.j, 4.k have joint atoms and ~.1, ..., ~,,, are independent, 

rn 

4.= 
k = l  
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has distribution 
rn 

P.= H* P.k, 
k = l  

�9 ~nk=E~*nk,  2 , = E ~ * ,  fnk=d~,nk /d ,~n ,  Pn " ' P .  

Then, if for x ~ S ~ (X) P(x)  is a probability measure on X (X) and 

rn 

lim ~ f.k(X) z(P.kx)/z(P.k)----z(P(x)), 
n~oo k = l  

it holds that 
P.x '~ , P . P ( x )  

for all x~S,  provided f.g has been chosen as required in the note after Proposi- 
tion 10. 

The proof is a direct consequence of Proposition 10 and the continuity theorem: 
rn 

= 5". �9 H z(P k)L (x) 
k = l  j ~ : k  

rn 

= X (P.) ~ fnk (X) Z (P.k~)/X (P.k) ~ Z (P) Z (P (x)). 
k = l  

If the triangular array is infinitesimal, that is 

lim max IP{~.kK=>I}=O 
n ~ o o  l <-k<<-rn 

for all compact sets K, then the limit law P must be infinitely divisible. Moreover, 
if its process satisfies the conditions of Proposition 6, P. = P* P (x) for some family 
P(x). Thus in this case we find that under the conditions of Proposition 11 
P.x w , p~, x~S ,  provided both the P(x)  are the same. 

Let us now assume that the infinitesimal triangular array is also conditionally 
infinitesimal: for all compact K c X  and x e S  

lim max IP {~.k (K \ {x}) > 11 ~.k {X} > 0} = 0, 
n ~ o o  l <-k<-rn 

and assume that, x ~ S, 

,}im  =Jl ix} > 0} =pAx), 

j = 1, 2 . . . .  uniformly in k. 

Then for any fecgK 
lim )~ (P.k) (1)= 1, 

n ~ o o  

lim Z (P.k~)(f) = ~ Pj (x) e is~x)j = Z (P (x)) (f) ,  
n ~  j = l  

if P (x) {# ~ JV" (X);/~ = j  ex} = pj (x), both limits holding uniformly in k, 1 _<_ k < r.. 

Since 
rn 

~ f . k ( X ) = l  a.s. 2., 
k = l  
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say for x~S. ,  we have for x ~ S n  lim sup S. that 

p.~ w ~P*P(x), 

if P. w , p  and the condition of no joint atoms is satisfied. In particular, if the 
array has asymptotically no multiple points in the sense that P~ (x)= 0 for j > 0, i.e. 

lim max IP{4.k{X}>2[~.k{X}>O}=O 
n ~ o o  l <-k<-rn 

for x ~ S, then it follows that 
P~-+ P * A~ 

for x ~ S n l i m  sup S. as above. Thus when P is Poisson measure, and only then, 
P.x ~ P~. However P is H~ if and only if for all compact K c X and bounded 
A z ~ ( X )  such that 2(OA)=0, # for "boundary of", 

rn 

~ IP{~ .kK>2}-~0 ,  (1) 
k = l  

rn 

~,IP {~.k A= I}--+ 2A (2) 
k = l  

[8, 9]. Combining these facts we obtain 

Proposition 12. Let {4.1, 4.2 . . . . .  4.r.} be an infinitesimal array of independent 
point processes such that, for fixed n, no two ~.j, ~.k have joint atoms, (1) and (2) are 
satisfied, and for any compact set K 

lim max IP{~.kK>_2l~.k{X}>O}=O , x6S .  
n ~ o ~  l <-k<_rn 

Then r. 
~= ~ .  w,4 

k = l  

where 4 is Poisson with intensity 2, and for x ~ S n  lira sup S. 

I f  lira E 4~ A = 0 implies that 2A = O, the convergence holds almost everywhere (2) 

on S. 

Proof The last assertion is easily checked, 

2 (lim sup S.)'= lim 2 S 
k ~ o o  m = k  / 

and, 2. = E ~*, 

,z. s < 2 . ( s . ) = 0  
~ m = k  

for n > k. The rest follows from 

IP {4nk {X} >=Z[ ~nk {X} >O} <=IP {~.k K>=Zl ~nk {x} >O} 
and 

IP {4.k(K \ {x})> 11 Ga {x} >0} <IP {~.k K > 2 I  g.k {x} >0}.  

The explicit reference to Palm distributions in the conditions for Proposition 12 
can of course be suppressed, for example using the following argument: 
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For  any compact  K c X assume that 

lim max sup {E[~,kA; ~ ,kK>2] /2 ,kA;  A e ~ ( X ) ,  bounded} = 0 .  
n ~ o o  i <k<-rn 

There is a n  S n k  with full I~nk m e a s u r e  such that 

IP{~,,kK>21#{xI>O}<supE[r ~,,kK>2]/2,,kA 

for x~S,, k. Obviously 

lira max IP {~.k K >  21~ {x} >O}=O 
n ~ o o  l <k<=rn 

rn 

for x e l i m  sup 0 S,k. 
k = l  

7. Conditioning upon more Knowledge 

Let us denote by ~,k the random product measure ~* • ... x ~* k times on X k 
and define the higher moment  measure 2k=E~ *k. For q~:xk•  
Exl x .. . . . . . .  q~ can be defined as before: 

ExI ~2 ...... k q) 2k (dxa d x  2 . . . .  , d X k )  = E [q~ (xa, X 2 . . . .  , Xk, ~) ~,k (dXl dx2 . . . . .  dXk)]. 

Px~ x2 ...... ~ is defined exactly as with k--1 and it is easy to check that 

(P~ . . . . . . . .  ) . . . .  = P ~  . . . . . . .  ~ + ~  

and since 
~pAAx(d#)=O 

if xg~A repeated use of Proposition 9 yields 

H ~  ~2 ....... = II~ * Ax~ * A~ *...* A~ ,  

provided xl, x2 . . . .  , xk are all different. 

Using 

Pxl .. . . . . . .  k(rl, r2, .2., rk) =IP{~{xj}=rj ,  l<__j<=klr >0,  1 <__j<=k}, 

we can define the conditional distribution, given complete knowledge about  the 
number  of points in xl, x2, ..., Xk: 

IP{~eBI ~{xj} =r j ,  1 < j < k }  Px . . . . . . . .  (rl, r2 ... rk) 2k(dXl dx2 ... dXk) 

= E  [1B(~ ) 1~; ~xJ~='i, 1 _-<j_-<k/(~) ~*k(dxl dx2 , . . . ,  dXk)]. 

And it is not difficult to verify that the distribution of the places of occurrences of 
a point process ~, that is ~*'s distribution, together with the mass distributions on 
places of occurrences, that is the Px~ . . . . . . . .  k ( r l ,  r2, .. . ,  rk), determine the distri- 
bution of the whole process. 

Let us end by noting that E . . . . . . . . .  could also be defined via a process ~ 
which assigns to sets A ~ Xk the number  

~*k {(X1 ' X2, ... ' X k ) ~ A ;  all xj are different}. 

F rom some points of view such an approach would be attractive. 
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