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I. Introduction 

We consider a family of G1/GI/1 queues Q(e), depending on a parameter ~, and 
set W(n, e)= waiting time, excluding service, of the n th customer, S(n, e)=  service 
time of the n th customer and T(n, e)=time between arrival of n th and (n + i ) s t  
customer. The n th customer is denoted by C(n) and we assume C(0) arrives at 
time t = 0 and finds the server free. Let U(n, e)= S(n, e)-T(n, e) and assume 

E(U(n,e))=-ea, V(U(n,e))=a 2, e>0 .  (1) 

The "heavy traffic approximation" of Kingman - see [2, 33 - is a limit theorem 
for (a/a)W(n, e) as e ~ 0 ,  n ~ o o  in such a way that lira e 2 n =  + oo. More 
precisely we have . . . . . .  o 

Theorem 1 (Kingman). lira P((e/a) W(n, e) < x) = 1 - e- 2:,, 0 < x < o% provided 
lira e2 n =  oo. n ~ , ~ 0  

Our main purpose is to present in Theorem 2 below an estimate of the error 
in Theorem 1 which to the best of our knowledge is new and under certain 
hypotheses nearly optimal. Let F,,~(x)=P((e/a)W(n, e)<=x) and F(x)= 1 -e -2x  
and denote the error by e(n, e)=  Sup lF,,~(x)-F(x)l. To simplify matters let us 

O__<x<oo 
first assume that the normalized random variables Xn=(U(n, e)+ea)/a do not 
depend on e, thus X n form an i.i.d, sequence with E(X,)=0, V(X,)= + 1. The 
order of magnitude of the error e(n, e) as a function of both e and n depend on 
the hypotheses we impose on X,. The following conditions indicate some of the 
possibilities' 

R(t) =E(e tx~) is convergent for It] < t 0. (2) 

Remark. This is the hypothesis of Theorem 1 of Komlos-Major-Tusnady [4] 
which we use later. 

E(IX,Ip) < o% p>2 .  (3) 
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Theorem 2. (i) Assume the common moment generating function R(t) o f  the random 
variables X ,  satisfies condition (2) and c~ 2 n = 2 logn, so c~ = (2 log n/n) 1/2, then 

e(n, ~) <-_K(logn) 3/2 n -  1/2 

where K depends only on the distribution of  X , .  

(ii) Assume condition (3) and ~z n = 2 logn, then 

e(n,o:)~K'(logn)(p/2p+2).n(2-P)/(2p+2), all p > 2 .  

Remarks. (i) If  we allow X,  to depend on c~ in such a way that either of the 
conditions (2) and (3) hold uniformly in ~ then the conclusion of Theorem 2 
remains valid. 

(ii) Our original version of Theorem 2 (ii) relied on the Skorokhod embed- 
ding theorem as in the author 's  papers [6] and [7] and yielded a rate of 
convergence that was at best (log n)n-1/4, cf. Dudley [11], Theorem5.2. The 
much improved version given here as well as the proof  i.e. Theorem 4 are due to 
S. Cs6rg5 ]-10] to whom the author is greatly indebted for his most valuable 
suggestions. 

(iii) The error estimate of Theorem2 allows one to deduce a sort of "large 
deviations" theorem of which the following is typical: 

P(W(n,  o:) >= x,) = P((o:/a) W(n, o:) >= (o~/cr) x,,)) 

= e-  (2O~Xn/a) "JI- e(n, ~). 

If lira e(n,~)e(2=x"/~)=O then we have 

1 - F,, =(ex,/cr)) ~ e-  2~x,/r as ~ ~ 0, n --+ oo 

in such a way that ~2n--+ + oo. 
This may be regarded as a refinement of the inequalities (24), (25) on p. 146 of 

[3]. 
For  example if we replace the choice of 0~2n = 2  logn by 0~2n = 2a, where a,T 

+ o0 at a certain rate then our proof  yields 

Theorem 2'. (i) I f R ( t ) <  ~ ,  [tl < t  o then 

e(n, o 0 = O(max(a~/Z(log n/n) 1/2, e-~"/al/2)) 

provided a, = O(n/log z n) as n T + oo. 

(ii) I f  E(]X, IP)< c~, p > 2  then 

e(n, ~) = O((a,) v/(2p +2)In(P- z)/(2p + 2)) 

provided a, < n (p- 2)/p. 

We omit the details of the proof  as all one has to do is retrace the steps of 
the proof  of Theorem 2 replacing log n by a,. 
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II. Proof  of  Main Theorem 

Our first step is to represent (c~/~) W(n, c 0 as a functional of a stochastic process 
y.,~(t) which converges to the Wiener process with drift, denoted by x(t)=w(t) 
- t .  To this end we note that 

W(n,c~)= Max Yk(n,c~) where Yo(n,:O-O 
O<_k<n 

k k 

Yk(n,c~)=- ~ U(i, cQ=a ~ X i - k o ~ r  
i = 1  i = 1  

and thus 

and for k >  1 (4) 

n 
(a/a) W(n. c~) = Max (S k -  k cd) where S O = 0 and S k = ~ c~ Xi. (5) 

O<-k<-'n i ~ t  

Following Prohorov [5] let us define the "random broken line" y., ~(t)--S k - k  ~2 
for t=ko: 2, O<_k<n and define it for values kcd<_t<_(k+l)cd by linear inter 
polation, y.,~(t) is thus a stochastic process with continuous paths whose local 
maxima are attained at the nodes k c~ 2. Hence 

F,,~(x)=P( Max y,,,~(t)<x) - see pp. 146-147 of [3]. (6) 
O<t<_~2n 

It is natural to first estimate IF.,~(x)-P.,~(x)[ where 

F.,~(x)=p( Sup x(t)<=~) (7) 
0 --< t < n~x 2 

and then estimate [Fn,~(x)-F(x)] where 

F(x)=P( Sup x(t)<=x)=P( Sup w ( t ) - t < x ) = - l - e  -2x, (8) 
0 ~ t < o o  0 < t < c c  

see Karlin-Taylor [1], p. 361 for a proof of (8). 
To estimate Fn,~(x)-F~,~(x ) via the Skorohod embedding as in E63, [7] 

requires us to define the "random broken line" x~(t) obtained by putting x~(t) 
=x(t) if t=-k~ 2 and define x~(t) for other values of t by linear interpolation. 
Clearly x~(t)=w~(t)-t, where w~(t) is obtained from the Wiener process by 
linearly interpolation at t = k  ~2 k=0 ,  1,..., n. Our problem now is to estimate 
el(n, ~), e2(n, ~) where 

el(n,c~)--- Sup If.,~(x)-F.,~(x)l, (9) 
O < x < o o  

e2(n,~)= Sup ]/?.,~(x)-F(x)l (10) 
O < x < o o  

and noting that e(n, cQ<e:(n, c 0 +e2(n , ~). it is easiest to begin by obtaining an 
x 

estimate for e2(n , cQ. Let @(x)= j" (2To)-1/2 e-y2/2 dy and recall the tail estimate. 
- - o 3  

1 - ~ ( x ) < c x - :  e -~2/2, as x --*o% c=(27z) -:/2. (11) 
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Shepp, [8], p. 348, has shown that 

[aL + b'~_e-2ab ~ [aL-b'~ 
P(w(t)<at+b'O<t<L)=q~\ L1/Z ] ~ L 1/2 ] (12) 

and this clearly implies that 

/o~2n+ x \  [c~2n-x] 
P,,,(x)= ~ ~-~25-)  - e -  2X ~b \ ~ 5 -  ! (13) 

and thus 

~b[cdn+x]-I  + Sup / / e2n-x~  e -zx.  
o Sup _ t~b ~ n ~ Z  ) - 1) (14) e2 (n~  ~ )  ~_~ 

<=x<oo \ ~n 1/z ] oz~<~ I 

[ ~  n + x 
Now ,~ t ~ n ~ g - )  > ~(c~ n~/2 ) and so 

0~- n -}- X ~2n 
-cb <]l_~(c~nl/2)[<(c/c~na/2)e 2,  

where we've used the tail estimate (11). 

1 lc~2n+x\ < c - 2  1/2 If e2n=21ogn then clearly - ~ b [ ~ )  - n-l(1ogn) -1/2. To es- 

timate the second summand in (14) we calculate the sup over the intervals 
~21" / - -  X 1 / - -  

0 <- x < c~ 2 n/2 and (cd n/2) < x < oQ. On the interval [0, ~2 n/2] ~ > 5c~ ]/n and 
thus 

[ ( ~  ~-)-1)/~ - x \  \ e-2x =c~n I / z <  c e_aZn/2=c. 2-i /2 n-1(log n)-1/2 

If x > (~2 n/2) then e-  2x <~ e -  ~2n = e -  2 logn = g / -  2 and s o  

ez(n, cO~n-l(logn) -1/2 if ~2n=21ogn. (15) 

To estimate e~ (n, c~) we proceed by first estimating 

P( Sup ]xdO-x(t)l>O=P( Sup I(w~(t)-w(t))l>O. 
0 < t  < n g ;  0 -<t ~<ng 2 

It is not too difficult to show that 

P( Sup I(%(O-w(t)l>e)<2ne -2(~/~)~, (16) 
O < t < n ~  2 

see, for example, Lemma 3, p. 546 of [6]. 
At this point we use an important refinement of the Skorohod embedding 

scheme due to Komlos-Major-Tusnady [4] to estimate P( Sup [y,,,(t) 
-x~( t ) l>0 .  o~,_<,=z 
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Theorem 3 (Komlos-Major-Tusnady). Given any sequence of i.i.d, random vari- 
ables X1, . . . , X  n satisfying E(Xi)=0, V(XI)=I and condition (2) there exists an 
i.i.d, sequence of standard normal random variables Z1 , . . . ,Zn ,  which we may 
assume to be defined on the same probability space, such that 

where C, K, 2 depend only on the distribution of the Xi's. 

This theorem permits us to assume that the " random broken lines" yn,,(t) 
and X~(t) are defined on the same probability space; more precisely, if we set S k 

k k 

= ~ eY~ and Tk= ~ e Zi, then X~(t) is obviously identical in law to the 
i=1  i=1  

"random broken line" X ~ ( t ) = T k - k ~  2 at t = k c d  and defining X~(t) for other 
values of t by linear interpolation. Hence 

P( Sup ]y. ,~(t)-$~(t) t>c~(Clogn+x))  
O <_t <~no~2 

= P( Max IS k - Tkl > ~(C log n + x)) 
l <k<=n 

k 

--,(Max x 0- 
\1  <-k<-n[ \ i=  1 i _  

By an abuse of notation we write 

P( Sup [y . ,~( t ) -x~( t ) l>c~(Clogn+x)<Ke -;'x. (18) 
O<<t<_nct2 

Set ffn,~(x)=P( Sup x~(t)<x), let x--=fl logn in (18) and put e(n,~)--~(C 
O~t <net 2 

+fl)logn. Then from (18) we get 

P( Sup tY,,=(t)- X=(t)[ > a(n, ~)) < K n- xe (19) 
O~t<n~. 2 

where fl can be chosen to be arbitrarily large. An immediate consequence of (19) 
is the estimate 

F,,, =(x - e(n, o:)) - K n-  ~ ~ < Fn, ~,(x) <= F,, ~,(x + e(n, o:)) + K n-  ze (20) 

Similarly estimate (16) yields the inequalities 

/~n, ~(X + C) -- 2 n e-  2 (e/~) 2 ~ ]~n, a(x) ~ if'n, a( x -- g) q" 2 n e-  2 (~/~)~ 

Setting cdn=21ogn and combining estimates (15), (16), (19) and (20) leads to the 
result that 

IF,, ~(x) - F(x)[ ~ 2 3 / 2 ( C  + fl) (log n) 3/2 n -  1/2 q_ K n- ~a 

+ 2 n e-  2 (c + ~)Oog,)2 + e2 (n, 7), 
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where the right hand side is independent of x and is clearly of O(logn)3/2n - 1/z) 
order of magnitude, provided/~ is chosen large enough. 

To prove Theorem 2(ii) we make use of the following Theorem which is a 
consequence of Theorem 4 of [4] and Theorem 2 of [9]. 

Theorem 4. Let H(x) > O, x > 0 be a non decreasing continuous function such that 

(i)  H(x) /x  2+~ is non decreasing for some e>0 .  
(ii) log H(x)/x is non decreasing and 

(iii) E(]H(Xi)[)< ~ where the X i are an i.i.d, sequence with E(XI)---0, E(X 2) 
~ 1 ,  

Then there exists an i.i.d, sequence of standard normal random variables 
Z~ . . . .  , Z ,  which we may assume to be defined on the same probability space, such 
that 

for all x,  such that H - l ( n ) < x ,  <ci  ] /n logn  where c1, c2, c 3 depend only on the 
underlying distribution of the {Xi}. 

To apply this result to Theorem 2(ii) we set H(x)=xP, p > 2  with H - l ( x )  
=x  ~/p and x, chosen so that n~/P<x~<cx(nlogn). With this choice it is easy to 
show that c 2 n / H ( c 3 x , ) < k n x ;  v and in particular if one chooses x, 
= n3/(2  + 2v)/(logn)1/(2 + 2p). Then estimate (18) becomes 

P( Sup [y,,~(t) x~(t)l>e,)<k(logn)P{Z+ZP)/n ~p-z)/(zp+2) (23) 
O ~ t ~_ nct 2 

where e, = (log n) v/(2 + 2 p)  n(1 - p)/(2 + 2 p)  p > 2. 

Concluding Remarks. The referee has inquired if anything can be said about the 
size of the constants K , K " o f  Theorem2.  If the original Skorohod embedding 
were used then Theorem 2(ii) in the case p = 4  would become 
e(n,~)<K(logn)i/2n -1Is where K < 3 5 .  However  the rate of convergence as 
p ~ is no better than n -~/4, up to logarithmic terms via this method. Note 
that the asymptotic rate via the K - M - T  method is n-5/2, up to logarithmic 
terms. Unfortunately the size of the constants C, K, 2 in Theorem3 are at 
present unknown, according to Cs6rg6 [10]. 
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