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I. Introduction

We consider a family of GI/GI/1 queues Q(v), depending on a parameter «, and
set W(n, o) =waiting time, excluding service, of the n'™® customer, S(n, «)=service
time of the n' customer and T(n,x)=time between arrival of n™ and (n+1)st
customer. The n'™ customer is denoted by C(n) and we assume C(0) arrives at
time t=0 and finds the server free. Let U(n, o) =S(n, o) — T(n, ) and assume

EUm,o))=—aoc, V(U(®na)=0c? o>0. (1)

The “heavy traffic approximation” of Kingman - see [2, 3] - is a limit theorem
for (o/c) W(n, o) as « —»0, n—o0 in such a way that lim o?n= + c0. More
precisely we have n= 00,20

Theorem 1 (Kingman). lim P((a/o) W(n,0)<x)=1—e"?*, 0<x < 00, provided
lim o?n=oo. o ooan

n—o00,a—~0

Our main purpose is to present in Theorem 2 below an estimate of the error
in Theorem 1 which to the best of our knowledge is new and under certain
hypotheses nearly optimal. Let F, ,(x)=P((¢/o) W(n,«)<x) and F(x)=1—e" 2x
and denote the error by e(n,a)= Sup |F, ,(x)—F(x)|. To simplify matters let us

0=x<o0

first assume that the normalized random variables X, =(U(n, )+ao)/o do not
depend on «, thus X, form an iid. sequence with E(X,)=0, V(X )= +1. The
order of magnitude of the error e(n, ) as a function of both « and »n depend on
the hypotheses we impose on X,. The following conditions indicate some of the
possibilities:

R(t)=E(¢*) is convergent for |t| <t,,. (2)

Remark. This is the hypothesis of Theorem1 of Komlos-Major-Tusnady [4]
which we use later.

E(X |PYy<o, p>2. (3)
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Theorem 2. (i) Assume the common moment generating function R(t) of the random
variables X, satisfies condition (2) and a* n=2logn, so a=(2logn/n)*/?, then

e(n, o) < K(logn)*? n=1/2

where K depends only on the distribution of X,,.
(ii) Assume condition (3) and o* n=2logn, then

e(n, o) SK'(logn)P/2p+2) . y2=p2p+2) gl p>2,

Remarks. (i) If we allow X, to depend on o in such a way that either of the
conditions (2) and (3) hold uniformly in o then the conclusion of Theorem 2
remains valid.

(i) Our original version of Theorem 2 (ii) relied on the Skorokhod embed-
ding theorem as in the author’s papers [6] and [7] and yielded a rate of
convergence that was at best (logn)n~ 4 cf. Dudley [11], Theorem5.2. The
much improved version given here as well as the proof i.c. Theorem 4 are due to
S. Csorgd [10] to whom the author is greatly indebted for his most valuable
suggestions. )

(ili) The error estimate of Theorem2 allows one to deduce a sort of “large
deviations” theorem of which the following is typical:

P(W(n, o)z x,)=P((a/o) W(n, o) 2(a/6) x,))
=g~ (2%xnlo) 4+ o(n, 1),

If lim e(no)e?**/=0 then we have

n-oo,a—0
1 _Fn,«z(fxxn/o-)) ~e Zax"/a-’ as o — 0, n— o0

in such a way that a*n — + oo.
This may be regarded as a refinement of the inequalities (24), (25) on p. 146 of

[31.
For example if we replace the choice of a* n=2logn by «* n=2a, where a,1
+ oo at a certain rate then our proof yields

Theorem 2’. (i) If R(t)< oo, [t| <t, then
e(n, ) = O(max(a}/*(log n/n) %, e=*/a})

provided a,=O(n/log*n) as n1+ co.
(i) If E(X, ") <0, p>2 then

e(n, o) = O((a, )P/ 2P +2utp= D/2p+2)
.

provided a,<n®= 2",

We omit the details of the proof as all one has to do is retrace the steps of
the proof of Theorem 2 replacing logn by a,.
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II. Proof of Main Theorem

Our first step is to represent (¢/o) W(n, «) as a functional of a stochastic process
Vu.o(t) Which converges to the Wiener process with drift, denoted by x(¢) =w()
—t. To this end we note that

W(n,0)= Max Y, (n,a) where Yy(n,2)=0 and for k=1 @

O0sk=En

Y (n,0)= Z UGi,)=0 Z X,~kaa

i=1 i=1
and thus

n

(/o) W(n,a)= Max (S, —ko®) where S,=0 and S,=) aX,. (5)

0=kzn i=1

Following Prohorov [5] let us define the “random broken line” Vo ol) =S, —ko?

for t=ka?, 0<k=<n and define it for values koa? <t<(k+1)a? by hnear inter
polation. y, ,(¢) is thus a stochastic process with continuous paths whose local
maxima are attained at the nodes ka2, Hence

F, (x)=P( Max y, (t)<x) - see pp. 146-147 of [3]. (6)
O0<t=a2n

It is natural to first estimate an’a(x)——Fn,a(x)l where

F,(x)=P( Sup x(1)<x) (7

0<t<na?
and then estimate |F, (X)) = F(x)| where

F(x)= P( Sup x(H)=x)= P( Sup wt)~t<x)=1—e" (8)
_I<OO St<x
see Karlin-Taylor [1], p.361 for a proof of (8).

To estimate F, (x)—F, ,(x) via the Skorohod embedding as in [6], [7]
requires us to define the “random broken line” x,(f) obtained by putting x,(t)
=x(t) if t=ko® and define x,(t) for other values of ¢ by linear interpolation.
Clearly x,(t)=w,(t)—t, where w,(f) is obtained from the Wiener process by
linearly interpolation at t=kao? k=0,1,...,n. Our problem now is to estimate
e,(n, o), e,(n,«) where

el(nfa)=:0§up I}lﬂ(x)"jaa(xNa (9)
e,(n,o)= §up | (%)= F(x)| (10)

and noting that e(n,«)<e,(n,a)+e,(n, o). It is easiest to begin by obtaining an

estimate for e,(n, ). Let ®(x)= [ (27)~ "> ¢~¥"2dy and recall the tail estimate.

— 0

1-d(x)<cx e ™2 as x »o0,c=2n)~ Y2 (11)
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Shepp, [8], p. 348, has shown that

alL+b al.—b
Pw(ty<at+b, O<t<L) cb( i ) 2‘”’@( e ) (12)
and this clearly implies that
N w*n+x e e {XPR—X
Fn,a(x)=¢(‘m)—e : Q(Om_l/z) (13)
and thus
- a’n+x a?n—x e
eam s sup o)1l sup (o775 ) 1)) a4
2
Now QP(O; :J—zx) > ®(an'’?) and so

a2n

<[1—@(an'?) S (c/an'?)e 2,

a’n+x
1-9
‘ ( ant/? )
where we've used the tail estimate (11).

2
If «*>n=2logn then clearly '1—@(0C n+x)

anl/?

Sc-27 12 pYlogn)~ V2 To es-
timate the second summand in (14) we calculate the sup over the intervals

2
0<x=a*n/2 and («*n/2) <x < oo. On the interval [0, « n/2] P Zﬁoc]/ﬁ and

thus
a*n—x
(d)< ant'? )—1) e’

If x=(a®n/2) then e~ 2*< e~ *"=¢~ 218" =y~ 2 and so

e—aZn/Z =c.2" 1/2n- l(log n)— 1/2.

e,(n,)<n~(logn)~*?* if a*n=2logn. (15)

To estimate e, (n, &) we proceed by first estimating

0=t<na?

P( Sup |x,(t)— x(t)l>8) P Slipzl(wa(t)—w(t))l>8)-

It is not too difficult to show that

P( Sup |(w,(t)—w(t)|>g)<2ne 207 (16)

0=t = na?
see, for example, Lemma 3, p. 546 of [6].
At this point we use an important refinement of the Skorohod embedding
scheme due to Komlos-Major-Tusnady [4] to estimate P( Sup [y, (f)
—x () Ze). 05t<na?
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Theorem 3 (Komlos-Major-Tusnady). Given any sequence of iid. random vari-
ables X ,..., X, satisfying E(X;)=0, V(X,)=1 and condition (2) there exists an
iid. sequence of standard normal random variables Z,,...,Z,, which we may
assume to be defined on the same probability space, such that

£x)-(22)

where C, K, depend only on the distribution of the Xs.

P(Max

1=2kzn

>Clogn+x)<Ke”1’C (17)

This theorem permits us to assume that the “random broken lines” y, (1)
and X _(t) are defined on the same probability space; more precisely, if we set S,
k k

=Y aY, and T,= )Y «Z, then X,(f) is obviously identical in law to the
i=1 i=1

“random broken line” X (t)=T,~ko* at t=ka® and defining X (¢) for other

values of t by linear interpolation. Hence

P( Sup |y, (0)—X,(0)i>a(Clogn+x))

0=<rZna?
=P(Max |S,— 1] >a(Clogn+x))
12k=n
k
(Max (Z X) (Z Zi)]>Clogn+x)<Ke‘“.
12kZn| \j= =1

By an abuse of notation we write

P( Sup |y, ()—x,(0)>x(Clogn+x)<Ke **. (18)

0=t=<na?
Set F AX)=P( Sup x,(t)<x), let x=p logn in (18 and put en,o)=a(C

0=t =<na?

+ f)logn. Then from (18) we get
P( Sup 1y, ()= X, (O Ze(m 0) <Kn* (19)

0=t <na?

where f can be chosen to be arbitrarily large. An immediate consequence of (19)
is the estimate

F,(x—e(no)—Kn " <F, () <F, (x+e(n )+ Kn~*. (20)
Similarly estimate (16) yields the inequalities
F, (x+e)—2ne 26 <F (x)<F, (x—¢)+2ne 26",

Setting a*n=2logn and combining estimates (15), (16), (19) and (20) leads to the
result that

IF, ()~ F(x)| £2%2(C+ p)(logn)**n= 112+ Kn~*

—_ 2
+2ne = 2CHAUen? Lo (),
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where the right hand side is independent of x and is clearly of O(logn)*2n~1'/2)
order of magnitude, provided f is chosen large enough.

To prove Theorem 2(if) we make use of the following Theorem which is a
consequence of Theorem 4 of [4] and Theorem 2 of [9].

Theorem 4. Let H(x)>0, x>0 be a non decreasing continuous function such that

(i) H(x)/x>"* is non decreasing for some &>0.
(i) log H(x)/x is non decreasing and
(iii) E(|H(X,)|)<co where the X, are an iid. sequence with E(X;)=0, E(X})
= 1’
Then there exists an iid. sequence of standard normal random variables
Z.,...,Z, which we may assume to be defined on the same probability space, such

that
(£x)-(22)

for all x, such that H™'(n)<x,<c,/nlogn where cy, c,, ¢, depend only on the
underlying distribution of the {X}.

P(Max

15ksn

>xn) <c,n/H(cy x,), (22)

To apply this result to Theorem 2(i1) we set H(x)=x%,p>2 with H™'(x)
=x!7 and x, chosen so that n'’” <x,<c,(nlogn). With this choice it is easy to
show that c¢,n/H(cyx,)<knx,? and in particular if one chooses x
=n3/2+2P) /(logn)!/?*+2P) Then estimate (18) becomes

H

P( Sup y,,(0) x,(0]>¢,) <k(logn)?*2P)jn(r=2/CEp+2) (23)

0=t=Zna
where g, =(logn)P/? *20 =PI +20 =7

Concluding Remarks. The referee has inquired if anything can be said about the
size of the constants K, K’ of Theorem 2. If the original Skorohod embedding
were used then Theorem 2(ii) in the case p=4 would become
e(n,®) £ K(logn)'?n~ 1> where K <35. However the rate of convergence as
p — o is no better than n~ %, up to logarithmic terms via this method. Note
that the asymptotic rate via the K —M — T method is n= '/, up to logarithmic
terms. Unfortunately the size of the constants C, K, A in Theorem3 are at
present unknown, according to Csorgd [10].
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