On the Accuracy of Kingman's Heavy Traffic Approximation in the Theory of Queues

Walter A. Rosenkrantz*
Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, USA

I. Introduction

We consider a family of $G I / G I / 1$ queues $Q(\alpha)$, depending on a parameter α, and set $W(n, \alpha)=$ waiting time, excluding service, of the $n^{\text {th }}$ customer, $S(n, \alpha)=$ service time of the $n^{\text {th }}$ customer and $T(n, \alpha)=$ time between arrival of $n^{\text {th }}$ and ($n+1$) st customer. The $n^{\text {th }}$ customer is denoted by $C(n)$ and we assume $C(0)$ arrives at time $t=0$ and finds the server free. Let $U(n, \alpha)=S(n, \alpha)-T(n, \alpha)$ and assume

$$
\begin{equation*}
E(U(n, \alpha))=-\alpha \sigma, \quad V(U(n, \alpha))=\sigma^{2}, \quad \alpha>0 . \tag{1}
\end{equation*}
$$

The "heavy traffic approximation" of Kingman - see $[2,3]$ - is a limit theorem for $(\alpha / \sigma) W(n, \alpha)$ as $\alpha \rightarrow 0, n \rightarrow \infty$ in such a way that $\lim _{n \rightarrow \infty, \alpha \rightarrow 0} \alpha^{2} n=+\infty$. More precisely we have

Theorem 1 (Kingman). $\lim _{n \rightarrow \infty, \alpha \rightarrow 0} P((\alpha / \sigma) W(n, \alpha) \leqq x)=1-e^{-2 x}, 0 \leqq x<\infty$, provided
$\quad \lim \alpha^{2} n=\infty$. $\lim _{n \rightarrow \infty, \alpha \rightarrow 0} \alpha^{2} n=\infty$.

Our main purpose is to present in Theorem 2 below an estimate of the error in Theorem 1 which to the best of our knowledge is new and under certain hypotheses nearly optimal. Let $F_{n, \alpha}(x)=P((\alpha / \sigma) W(n, \alpha) \leqq x)$ and $F(x)=1-e^{-2 x}$ and denote the error by $e(n, \alpha)=\operatorname{Sup}_{0 \leqq x<\infty}\left|F_{n, \alpha}(x)-F(x)\right|$. To simplify matters let us first assume that the normalized random variables $X_{n}=(U(n, \alpha)+\alpha \sigma) / \sigma$ do not depend on α, thus X_{n} form an i.i.d. sequence with $E\left(X_{n}\right)=0, V\left(X_{n}\right)=+1$. The order of magnitude of the error $e(n, \alpha)$ as a function of both α and n depend on the hypotheses we impose on X_{n}. The following conditions indicate some of the possibilities:

$$
\begin{equation*}
R(t)=E\left(e^{t X_{n}}\right) \quad \text { is convergent for }|t|<t_{0} . \tag{2}
\end{equation*}
$$

Remark. This is the hypothesis of Theorem 1 of Komlos-Major-Tusnady [4] which we use later.

$$
\begin{equation*}
E\left(\left|X_{n}\right|^{p}\right)<\infty, \quad p>2 . \tag{3}
\end{equation*}
$$

[^0]Theorem 2. (i) Assume the common moment generating function $R(t)$ of the random variables X_{n} satisfies condition (2) and $\alpha^{2} n=2 \log n$, so $\alpha=(2 \log n / n)^{1 / 2}$, then

$$
e(n, \alpha) \leqq K(\log n)^{3 / 2} n^{-1 / 2}
$$

where K depends only on the distribution of X_{n}.
(ii) Assume condition (3) and $\alpha^{2} n=2 \log n$, then

$$
e(n, \alpha) \leqq K^{\prime}(\log n)^{(p / 2 p+2)} \cdot n^{(2-p) /(2 p+2)}, \quad \text { all } p>2
$$

Remarks. (i) If we allow X_{n} to depend on α in such a way that either of the conditions (2) and (3) hold uniformly in α then the conclusion of Theorem 2 remains valid.
(ii) Our original version of Theorem 2 (ii) relied on the Skorokhod embedding theorem as in the author's papers [6] and [7] and yielded a rate of convergence that was at best $(\log n) n^{-1 / 4}$, cf. Dudley [11], Theorem 5.2. The much improved version given here as well as the proof i.e. Theorem 4 are due to S. Csörgö [10] to whom the author is greatly indebted for his most valuable suggestions.
(iii) The error estimate of Theorem 2 allows one to deduce a sort of "large deviations" theorem of which the following is typical:

$$
\begin{aligned}
P\left(W(n, \alpha) \geqq x_{n}\right) & \left.=P\left((\alpha / \sigma) W(n, \alpha) \geqq(\alpha / \sigma) x_{n}\right)\right) \\
& =e^{-\left(2 \alpha x_{n} / \sigma\right)} \pm e(n, \alpha) .
\end{aligned}
$$

If $\lim _{n \rightarrow \infty, \alpha \rightarrow 0} e(n, \alpha) e^{\left(2 \alpha x_{n} / \sigma\right)}=0$ then we have
$\left.1-F_{n, \alpha}\left(\alpha x_{n} / \sigma\right)\right) \sim e^{-2 \alpha x_{n} / \sigma}, \quad$ as $\alpha \rightarrow 0, n \rightarrow \infty$
in such a way that $\alpha^{2} n \rightarrow+\infty$.
This may be regarded as a refinement of the inequalities (24), (25) on p. 146 of [3].

For example if we replace the choice of $\alpha^{2} n=2 \log n$ by $\alpha^{2} n=2 a_{n}$ where $a_{n} \uparrow$ $+\infty$ at a certain rate then our proof yields

Theorem 2'. (i) If $R(t)<\infty,|t|<t_{0}$ then

$$
e(n, \alpha)=O\left(\max \left(a_{n}^{1 / 2}(\log n / n)^{1 / 2}, e^{-a_{n} / a_{n}^{1 / 2}}\right)\right)
$$

provided $a_{n}=O\left(n / \log ^{2} n\right)$ as $n \uparrow+\infty$.
(ii) If $E\left(\left|X_{n}\right|^{p}\right)<\infty, p>2$ then

$$
e(n, \alpha)=O\left(\left(a_{n}\right)^{\left.p /(2 p+2) / n^{(p-2) /(2 p+2)}\right)}\right.
$$

provided $a_{n}<n^{(p-2) / p}$.
We omit the details of the proof as all one has to do is retrace the steps of the proof of Theorem 2 replacing $\log n$ by a_{n}.

II. Proof of Main Theorem

Our first step is to represent $(\alpha / \sigma) W(n, \alpha)$ as a functional of a stochastic process $y_{n, x}(t)$ which converges to the Wiener process with drift, denoted by $x(t)=w(t)$ $-t$. To this end we note that

$$
\begin{align*}
& W(n, \alpha)=\operatorname{Max}_{0 \leqq k \leqq n} Y_{k}(n, \alpha) \quad \text { where } Y_{0}(n, \alpha) \equiv 0 \quad \text { and for } k \geqq 1 \tag{4}\\
& Y_{k}(n, \alpha)=\sum_{i=1}^{k} U(i, \alpha)=\sigma \sum_{i=1}^{k} X_{i}-k \alpha \sigma
\end{align*}
$$

and thus

$$
\begin{equation*}
(\alpha / \sigma) W(n, \alpha)=\operatorname{Max}_{0 \leqq k \leqq n}\left(S_{k}-k \alpha^{2}\right) \quad \text { where } S_{0}=0 \quad \text { and } \quad S_{k}=\sum_{i=1}^{n} \alpha X_{i} \tag{5}
\end{equation*}
$$

Following Prohorov [5] let us define the "random broken line" $y_{n, \alpha}(t)=S_{k}-k \alpha^{2}$ for $t=k \alpha^{2}, 0 \leqq k \leqq n$ and define it for values $k \alpha^{2} \leqq t \leqq(k+1) \alpha^{2}$ by linear inter polation. $y_{n, \alpha}(t)$ is thus a stochastic process with continuous paths whose local maxima are attained at the nodes $k \alpha^{2}$. Hence

$$
\begin{equation*}
F_{n, \alpha}(x)=P\left(\operatorname{Max}_{0 \leqq r \leqq \alpha^{2} n} y_{n, \alpha}(t) \leqq x\right)-\text { see pp. 146-147 of [3]. } \tag{6}
\end{equation*}
$$

It is natural to first estimate $\left|F_{n, \alpha}(x)-\tilde{F}_{n, \alpha}(x)\right|$ where

$$
\begin{equation*}
\tilde{F}_{n, \alpha}(x)=P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}} x(t) \leqq x\right) \tag{7}
\end{equation*}
$$

and then estimate $\left|\tilde{F}_{n, \alpha}(x)-F(x)\right|$ where

$$
\begin{equation*}
F(x)=P\left(\operatorname{Sup}_{0 \leqq t<\infty} x(t) \leqq x\right)=P\left(\operatorname{Sup}_{0 \leqq t<\infty} w(t)-t \leqq x\right)=1-e^{-2 x}, \tag{8}
\end{equation*}
$$

see Karlin-Taylor [1], p. 361 for a proof of (8).
To estimate $F_{n, \alpha}(x)-\hat{F}_{n, \alpha}(x)$ via the Skorohod embedding as in [6], [7] requires us to define the "random broken line" $x_{\alpha}(t)$ obtained by putting $x_{\alpha}(t)$ $=x(t)$ if $t=k \alpha^{2}$ and define $x_{\alpha}(t)$ for other values of t by linear interpolation. Clearly $x_{\alpha}(t)=w_{\alpha}(t)-t$, where $w_{\alpha}(t)$ is obtained from the Wiener process by linearly interpolation at $t=k \alpha^{2}, k=0,1, \ldots, n$. Our problem now is to estimate $e_{1}(n, \alpha), e_{2}(n, \alpha)$ where

$$
\begin{align*}
& e_{1}(n, \alpha)=\operatorname{Sup}_{0 \leqq x<\infty}\left|F_{n, \alpha}(x)-\tilde{F}_{n, \alpha}(x)\right|, \tag{9}\\
& e_{2}(n, \alpha)=\operatorname{Sup}_{0 \leqq x<\infty}\left|\tilde{F}_{n, \alpha}(x)-F(x)\right| \tag{10}
\end{align*}
$$

and noting that $e(n, \alpha) \leqq e_{1}(n, \alpha)+e_{2}(n, \alpha)$. It is easiest to begin by obtaining an estimate for $e_{2}(n, \alpha)$ Let $\Phi(x)=\int_{-\infty}^{x}(2 \pi)^{-1 / 2} e^{-y^{2} / 2} d y$ and recall the tail estimate.

$$
\begin{equation*}
1-\Phi(x)<c x^{-1} e^{-x^{2} / 2}, \quad \text { as } x \rightarrow \infty, c=(2 \pi)^{-1 / 2} \tag{11}
\end{equation*}
$$

Shepp, [8], p. 348, has shown that

$$
\begin{equation*}
P(w(t)<a t+b, 0 \leqq t \leqq L)=\Phi\left(\frac{a L+b}{L^{1 / 2}}\right)-e^{-2 a b} \Phi\left(\frac{a L-b}{L^{1 / 2}}\right) \tag{12}
\end{equation*}
$$

and this clearly implies that

$$
\begin{equation*}
\tilde{F}_{n, \alpha}(x)=\Phi\left(\frac{\alpha^{2} n+x}{\alpha n^{1 / 2}}\right)-e^{-2 x} \Phi\left(\frac{\alpha^{2} n-x}{\alpha n^{1 / 2}}\right) \tag{13}
\end{equation*}
$$

and thus

$$
\begin{equation*}
e_{2}(n, \alpha) \leqq \operatorname{Sup}_{0 \leqq x<\infty}\left|\Phi\left(\frac{\alpha^{2} n+x}{\alpha n^{1 / 2}}\right)-1\right|+\operatorname{Sup}_{0 \leqq x<\infty}\left|\left(\Phi\left(\frac{\alpha^{2} n-x}{\alpha n^{1 / 2}}\right)-1\right) e^{-2 x}\right| \tag{14}
\end{equation*}
$$

Now $\Phi\left(\frac{\alpha^{2} n+x}{\alpha n^{1 / 2}}\right) \geqq \Phi\left(\alpha n^{1 / 2}\right)$ and so

$$
\left|1-\Phi\left(\frac{\alpha^{2} n+x}{\alpha n^{1 / 2}}\right)\right| \leqq\left|1-\Phi\left(\alpha n^{1 / 2}\right)\right| \leqq\left(c / \alpha n^{1 / 2}\right) e^{-\frac{\alpha^{2} n}{2}},
$$

where we've used the tail estimate (11).
If $\alpha^{2} n=2 \log n$ then clearly $\left|1-\Phi\left(\frac{\alpha^{2} n+x}{\alpha n^{1 / 2}}\right)\right| \leqq c \cdot 2^{-1 / 2} n^{-1}(\log n)^{-1 / 2}$. To estimate the second summand in (14) we calculate the sup over the intervals $0 \leqq x \leqq \alpha^{2} n / 2$ and $\left(\alpha^{2} n / 2\right) \leqq x<\infty$. On the interval $\left[0, \alpha^{2} n / 2\right] \frac{\alpha^{2} n-x}{\alpha n^{1 / 2}} \geqq \frac{1}{2} \alpha \sqrt{n}$ and thus

$$
\left|\left(\Phi\left(\frac{\alpha^{2} n-x}{\alpha n^{1 / 2}}\right)-1\right) e^{-2 x}\right| \leqq \frac{c}{\alpha n^{1 / 2}} e^{-\alpha^{2} n / 2}=c \cdot 2^{-1 / 2} n^{-1}(\log n)^{-1 / 2}
$$

If $x \geqq\left(\alpha^{2} n / 2\right)$ then $e^{-2 x} \leqq e^{-\alpha^{2} n}=e^{-2 \log n}=n^{-2}$ and so

$$
\begin{equation*}
e_{2}(n, \alpha) \leqq n^{-1}(\log n)^{-1 / 2} \quad \text { if } \alpha^{2} n=2 \log n \tag{15}
\end{equation*}
$$

To estimate $e_{1}(n, \alpha)$ we proceed by first estimating

$$
P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}}\left|x_{\alpha}(t)-x(t)\right|>\varepsilon\right)=P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}}\left|\left(w_{\alpha}(t)-w(t)\right)\right|>\varepsilon\right) .
$$

It is not too difficult to show that

$$
\begin{equation*}
P\left(\operatorname{Sup}_{0 \leqq t \leq n \alpha^{2}} \mid\left(\mathrm{W}_{a}(t)-w(t) \mid>\varepsilon\right)<2 n e^{-2(\varepsilon / \alpha)^{2}}\right. \tag{16}
\end{equation*}
$$

see, for example, Lemma 3, p. 546 of [6].
At this point we use an important refinement of the Skorohod embedding scheme due to Komlos-Major-Tusnady [4] to estimate $P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}} \mid y_{n, x}(t)\right.$ $-x_{\alpha}(t) \mid \geqq \varepsilon$).

Theorem 3 (Komlos-Major-Tusnady). Given any sequence of i.i.d. random variables X_{1}, \ldots, X_{n} satisfying $E\left(X_{i}\right)=0, V\left(X_{i}\right)=1$ and condition (2) there exists an i.i.d. sequence of standard normal random variables Z_{1}, \ldots, Z_{n}, which we may assume to be defined on the same probability space, such that

$$
\begin{equation*}
P\left(\operatorname{Max}_{1 \leqq k \leqq n}\left|\left(\sum_{i=1}^{k} X_{i}\right)-\left(\sum_{i=1}^{k} Z_{i}\right)\right|>C \log n+x\right)<K e^{-\lambda x} \tag{17}
\end{equation*}
$$

where C, K, λ depend only on the distribution of the X_{i} 's.
This theorem permits us to assume that the "random broken lines" $y_{n, \alpha}(t)$ and $X_{\alpha}(t)$ are defined on the same probability space; more precisely, if we set S_{k} $=\sum_{i=1}^{k} \alpha Y_{i}$ and $T_{k}=\sum_{i=1}^{k} \alpha Z_{i}$, then $X_{\alpha}(t)$ is obviously identical in law to the "random broken line" $\hat{X}_{\alpha}(t)=T_{k}-k \alpha^{2}$ at $t=k \alpha^{2}$ and defining $\hat{X}_{\alpha}(t)$ for other values of t by linear interpolation. Hence

$$
\begin{aligned}
& P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}}\left|y_{n, \alpha}(t)-\hat{X}_{\alpha}(t)\right|>\alpha(C \log n+x)\right) \\
& \quad=P\left(\underset{1 \leqq k \leqq n}{\operatorname{Max}}\left|S_{k}-T_{k}\right|>\alpha(C \log n+x)\right) \\
& \quad=P\left(\operatorname{Max}_{1 \leqq k \leqq n}\left|\left(\sum_{i=1}^{k} X_{i}\right)-\left(\sum_{i=1}^{k} Z_{i}\right)\right|>C \log n+x\right)<K e^{-\lambda x} .
\end{aligned}
$$

By an abuse of notation we write

$$
\begin{equation*}
P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}}\left|y_{n, \alpha}(t)-x_{\alpha}(t)\right|>\alpha(C \log n+x)<K e^{-\lambda x}\right. \tag{18}
\end{equation*}
$$

Set $\hat{F}_{n, \alpha}(x)=P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}} x_{\alpha}(t)<x\right)$, let $x=\beta \log n$ in (18) and put $\varepsilon(n, \alpha)=\alpha(C$ $+\beta) \log n$. Then from (18) we get

$$
\begin{equation*}
P\left(\operatorname{Sup}_{0 \leqq t \leqq n \alpha^{2}}\left|y_{n, \alpha}(t)-X_{\alpha}(t)\right| \geqq \varepsilon(n, \alpha)\right) \leqq K n^{-\lambda \beta} \tag{19}
\end{equation*}
$$

where β can be chosen to be arbitrarily large. An immediate consequence of (19) is the estimate

$$
\begin{equation*}
\widehat{F}_{n, \alpha}(x-\varepsilon(n, \alpha))-K n^{-\lambda \beta} \leqq F_{n, \alpha}(x) \leqq \widehat{F}_{n, \alpha}(x+\varepsilon(n, \alpha))+K n^{-\lambda \beta} . \tag{20}
\end{equation*}
$$

Similarly estimate (16) yields the inequalities

$$
\tilde{F}_{n, \alpha}(x+\varepsilon)-2 n e^{-2(\varepsilon / \alpha)^{2}} \leqq \hat{F}_{n, \alpha}(x) \leqq \tilde{F}_{n, \alpha}(x-\varepsilon)+2 n e^{-2(\varepsilon / \alpha)^{2}} .
$$

Setting $\alpha^{2} n=2 \log n$ and combining estimates (15), (16), (19) and (20) leads to the result that

$$
\begin{aligned}
& \left|F_{n, \alpha}(x)-F(x)\right| \leqq 2^{3 / 2}(C+\beta)(\log n)^{3 / 2} n^{-1 / 2}+K n^{-\lambda \beta} \\
& +2 n e^{-2(C+\beta)(\log n)^{2}}+e_{2}(n, \alpha),
\end{aligned}
$$

where the right hand side is independent of x and is clearly of $\left.O(\log n)^{3 / 2} n^{-1 / 2}\right)$ order of magnitude, provided β is chosen large enough.

To prove Theorem 2(ii) we make use of the following Theorem which is a consequence of Theorem 4 of [4] and Theorem 2 of [9].

Theorem 4. Let $H(x)>0, x>0$ be a non decreasing continuous function such that
(i) $H(x) / x^{2+\varepsilon}$ is non decreasing for some $\varepsilon>0$.
(ii) $\log H(x) / x$ is non decreasing and
(iii) $E\left(\left|H\left(X_{i}\right)\right|\right)<\infty$ where the X_{i} are an i.i.d. sequence with $E\left(X_{i}\right)=0, E\left(X_{i}^{2}\right)$ $=1$,

Then there exists an i.i.d. sequence of standard normal random variables Z_{1}, \ldots, Z_{n} which we may assume to be defined on the same probability space, such that

$$
\begin{equation*}
P\left(\operatorname{Max}_{1 \leqq k \leqq n}\left|\left(\sum_{i=1}^{k} X_{i}\right)-\left(\sum_{i=1}^{k} Z_{i}\right)\right|>x_{n}\right)<c_{2} n / H\left(c_{3} x_{n}\right), \tag{22}
\end{equation*}
$$

for all x_{n} such that $H^{-1}(n)<x_{n}<c_{1} \sqrt{n \log n}$ where c_{1}, c_{2}, c_{3} depend only on the underlying distribution of the $\left\{X_{i}\right\}$.

To apply this result to Theorem 2(ii) we set $H(x)=x^{p}, p>2$ with $H^{-1}(x)$ $=x^{1 / p}$ and x_{n} chosen so that $n^{1 / p}<x_{n}<c_{1}(n \log n)$. With this choice it is easy to show that $c_{2} n / H\left(c_{3} x_{n}\right)<k n x_{n}^{-p}$ and in particular if one chooses x_{n} $=n^{3 /(2+2 p)}(\log n)^{1 /(2+2 p)}$. Then estimate (18) becomes

$$
\begin{equation*}
P\left(\operatorname{Sup}_{0 \leqq t \leq n \alpha^{2}}\left|y_{n, \alpha}(t) \quad x_{\alpha}(t)\right|>\varepsilon_{n}\right)<k(\log n)^{p(2+2 p)} / n^{(p-2) /(2 p+2)} \tag{23}
\end{equation*}
$$

where $\varepsilon_{n}=(\log n)^{p /(2+2 p)} n^{(1-p) /(2+2 p)}, \quad p>2$.
Concluding Remarks. The referee has inquired if anything can be said about the size of the constants K, K^{\prime} of Theorem 2. If the original Skorohod embedding were used then Theorem 2(ii) in the case $p=4$ would become $e(n, \alpha) \leqq K(\log n)^{1 / 2} n^{-1 / 5}$ where $K \leqq 35$. However the rate of convergence as $p \rightarrow \infty$ is no better than $n^{-1 / 4}$, up to logarithmic terms via this method. Note that the asymptotic rate via the $K-M-T$ method is $n^{-1 / 2}$, up to logarithmic terms. Unfortunately the size of the constants C, K, λ in Theorem 3 are at present unknown, according to Csörgö [10].

References

1. Karlin, H., Taylor, S.J.: A First Course in Stochastic Processes. New York: Academic Press 1975
2. Kingman, J.F.C.: On Queues in Heavy Traffic. J. Roy. Statist. Soc., ser. B, 24, 383-392 (1962)
3. Kingman, J.F.C.: The Heavy Traffic Approximation in the Theory of Queues. Proc. Sympos. Congestion Theory. Chapel Hill: University of North Carolina Press, pp. 137-169, 1965
4. Komlos, J., Major, P., Tusnady, G.: An approximation of partial sums of independent random variables and the sample DF. II. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34, 33-58 (1976)
5. Prohorov, Y.: Convergence of random Processes and limit theorems in Probability. Theor. Probability Appl. 1, 157-214 (1956)
6. Rosenkrantz, W.: On rates of convergence for the invariance principle. Trans. Amer. Math. Soc. 129, 542-552 (1967)
7. Rosenkrantz, W.: A rate of convergence for the Von Mises Statistic. Trans. Amer. Math. Soc. 139, 329-337 (1.969)
8. Shepp, L.: Radon-Nikodym Derivatives of Gaussian Measures. Ann. Math. Statist. 37, 321-354 (1966)
9. Major, P.: The Approximation of Partial Sums of Independent RV's. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 213-220 (1976)
10. Csörgö, S.: (Private communication, 5/24/79).
11. Dudley, R.M.: Speeds of Metric Probability Convergence. Z. Wahrscheinlichkeitstheorie 22, 323-332 (1972)

Received May 1, 1979

[^0]: * This research was supported by the Air Force office of scientific research contract F 49620-79-C0209

