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1. Introduction 

Let there be given a double sequence 3s of random variables (rv's) 

X l l ,  X12,  . . . ,X l , k , ,  

X21,  X22,  . . . ,  X2,k2, 

Xnl,  Xn2 . . . .  , Xn,kn, 

and a sequence of their row sums 

kn 
S, = Y' X,,k, n~N, 

k=l  

where all these rv's are defined on a common probabili ty space (O, ~ P). 
The problem of the asymptotic behaviour of the probabili ty distributions of 

S,, heN,  is mainly contained in two questions: 
1 ~ which measures can appear as weak limit laws? 
2 ~ which properties of 3s imply the weak convergence of S,, neN,  to the 

specified probabili ty measure? 
Bavly's idea of accompanying laws allows us to find the complete solution to 

this problem for row-wise independent arrays 3s It is based on the fact that the 
characteristic function (chf) of the sum S, can be approximated by a suitably 
constructed, infinitely divisible chf. If we assume some "smallness" conditions on 
3s then these two sequences of ehfs have the same common limit. Of  course, in 
this case the limit law of S,, n~N, must be infinitely divisible. Moreover,  the 
method of the above construction produces necessary and sufficient conditions 
for the weak convergence of the sum distributions given in terms of 3s If  we 
omit the postulate of the independence of the rv's in the same rows, then the 
situation is more complicated (e.g. every probabili ty measure can appear as a 
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limit law). One way to look for limit theorems for dependent rv's is to generalize 
the classical situation i.e. to give such conditions which imply weak convergence 
and which turn out to be known from the classical theory if we apply them to 
independent rv's. An essential step in this direction was made by Brown and 
Eagleson ([1]) by putting to a good use the idea of accompanying laws. Observe 
that with 3s we can associate (non-uniquely) a double array ~ of o-fields: 

~,o=~,l=...=~,k~=~ 
&o=~,~=...=~,k~=~ 

4,o=~,~=...=~,~,=~ 

such that every rv Xnk is ~,k-measurable. The pair (3s 5) will be called a system. 
Because of a certain approximation lemma (see [1] and Lemma 3.2 of [3]) we 
can imitate the classical case by the construction of some "conditional chfs", 
which are defined in terms of conditional quantities of the rv's from 3s with 
respect to the o--fields from ~ and approximate the chfs of S,, neN. If in the 
known necessary and sufficient conditions all mean values are replaced by 
conditional mean values with respect to o-fields from ~ and such obtained 
sequences of rv's are convergent in probability, then these new conditions 
guarantee the convergence of the "conditional chfs". The possibility of such an 
approximation is given by the analogous conditional "smallness" properties. 
The above procedure was first applied for infinitely divisible laws with finite 
variance by Brown and Eagleson in [1]; then it was extended by Klopotowski 
for an arbitrary infinitely divisible law in IRe ([3]). Now we extend the class of 
possible weak limits taking into account mixtures of infinitely divisible laws. 
This extension is maximal; every probability distribution in IR 1, induced by 
some rv on (2, can be trivially decomposed as the mixture of infinitely divisible 
laws. Eagleson in [2] has proved a limit theorem for martingale difference 
sequences with finite variances which generalizes the preceeding situation, giving 
sufficient conditions for weak convergence to mixtures of laws with finite 
variances. The proof of his theorem is based on a very artificial construction 
involving some regular conditional probabilities on 1R ~. A purpose of this note 
is to show that in the case of mixtures the idea of the accompanying laws can 
also be applied. Proofs thereof will be given in the most general case without 
any assumptions about the existence of moments of the rv's and of the mixed 
limit laws. 

2. Mixtures 

For every telR 1 let us define a function g,: 1RI~  ~ as follows 

[(e itx-1 itx ~l+x 2 
g t ( x ) = ] \  - - 1 + 7 ]  x 2 for x4=0 

t- t2/2 for x=0 .  
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The function gt is continuous and bounded on IR 1 i.e. there exists a constant M 
--M~>0 such that Igt(x)l<M for x~lR ~. 

For  the distribution function K of some finite measure on IR a and some 
aeIR ~ the function 

+o~ ( itx ~ 1 + x  2 ) 
(1) (p(t)=exp ira+ ~ e i~X- l - l~xa]  ~ T - d K ( x ) ~ ,  teIR 1, 

is the chf of some infinitely divisible law on IR 1. Conversely, every chf of an 
infinitely divisible law on IR 1 can be uniquely decomposed in the form (1). 

Now let us assume that both the parameters a and K in (1) are random i.e. 
a( ' )  and K(x,.), xeiR 1, are rv's and for a.e. coef2 K(.,co) is bounded, nonde- 
creasing, left continuous, lim K(x, co)=0. Thus we have the family of chfs 

x ~ - o o  

(2) (p(t, co)=exp ira(o))+ S gt(x)dK(x, ~ , tEIR1, 
- oo  

defined for a.e. 6oes Integrating both sides of (2) with respect to P we obtain 
the chf 

(3) O(t)=j~o(t, co)ap(co), teiR 1. 

Its corresponding probability measure is called the mixture of laws given by (2) 
and will be denoted by ~ ' ~ ( a ,  K). If, instead of gt, we use the functions ht, teiR 1, 
defined by 

f(e itx -- 1 -- i t x)/x a for x 4= 0 

for x = 0  

then 

p(t)=!exp{ita(o))+]~h,(x)dK(x, ro)}dP(~o), teiR ~, 

is the chf of the mixture of some infinitely divisible laws with finite variances; it 
will be denoted by ~?v (a, K). 

3. Accompanying Conditional Laws 

For given ~ let us define the a-field ~o = (~ 4 ,  0. Our fundamental assumption 
n = l  

about dgi~(a,K) and ~ is: 

(C.0) 1 ~ a(.) is Y0-measurable, 
2 ~ for every fixed x~iR 1 K(x, .) is Y0-measurable, 
3 ~ K ( +  o% . )=  lim K(xl ") is finite a.e. 

x ~  -t- oo 



104 

Because of 3 ~ all K(x,'), -oo<_x<_+oo, are finite a.e. 
= lira K(x, . )=0.  2 ~ implies the o~0-measurability of K ( +  0%-). 

X~--GO 
In this part we shall consider only systems (~, ~) having 

properties: 

(C.1) ~ Ank+E,,k_ 1 -am*a('); 
k=l 

(c.2) F, / ( G < x )  
k =  I \ nk 

for every x belonging to some countable dense set D ~IR1; 

k. ( Y~ ] .... , K ( + o o , . ) ;  

where 

A,k=En,k_a(X,kI(]Xnk[<=r)), l<k<-k,, hEN, 

Y,k=X,k--A,k, l<k<__kn, heN, 

for arbitrarily fixed z > 0. 
(Here and in the sequel we use the notation 

E,,k_I(X)=E(X[Yn,k_I), P,,k_I(A)=P(AI~,k_I). 

All equalities and inequalities between rv's are considered in the sense "with 
probability one", ~ denotes the convergence almost sure, e .  denotes the 
convergence in probability.) 

Observe that (C.2) implies 

k. y2 ) 
(4) ~,Enk 1 ( ~ I ( a < - r , k < b )  ~ K ( b , . ) - K ( a , . )  

k=l " -  \l+Y,k -- 

for every a, beD. 
We are going to prove that if, in addition, the system (~, ~) satisfies 

(C.4) k=~En'k-1 ~'I+ Y, 2 neN, 

for some o~o-measurable rv 0__< C <  + oo, then for every fixed telR a 

(5) k=iZ En'k-- I \gt(Y"k) l + Y~ ] .... , -~o ~ gt(x)dK(x, ' ) .  

Let us fix a sequence of real numbers G, seN, strictly decreasing to zero. For 
every s e n  we choose a sufficiently large number of points on the real line 

x(0~)<X(l~)<.. < x  (~) �9 m s  

A. Ktopotowski 

Of course K ( -  0% .) 

the following 
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from the dense set D such that  
(s) a) x{~',~ - c~, Xms'7 + 0r 

b) max ] x~(S) _ xj(S~_ 1] "~ 0, s ~ + o% 
i <=j<--_ms 

c) max [g,(x~ s ) ) - -  ~x (s) ~[ 8 t k  j - - l l  < l ; s ~  sEN. 
1 <j<=ms 

4-0o 

Since the improper  Lebesgue-Stieltjes stochastic integral ~ gt(x)dK(x ,  .) is well 
- o o  

defined for a.e. coat'/, then by the continuity and the boundedness  of gt this 
integral is equal to the improper  Riemann-Stiel t jes one. Therefore  (for fixed t) 

in s + o o  

(6) E gt(x}s)-l)[K(x} ~) , ' ) -K(x~)- l ,  ")] ~ a ~  5 gt (x )dK(x  , .)  
j = l  - c o  

and the integral is an ~o-measurable,  a.e. finite rv. For  the momen t  let us fix 
s eN .  F r o m  (4) 

k = l  j = l  

ms  

. . . .  ' Z gt (x~)-i ) [ K  (x~), .)  - K (xSsf l, ~ )1. 
j=l  

Next,  observe that  for this fixed s and every n e N  

kn ms y 2  k 

(8) ~ E,,k-lWSt j-l) 1-E~TYxz2 - =  ) k=aj= l+Y,k  

) kn ~o ( y  I ~nk itxtS) < 
-- E En, k-1 ~r~t, nk t l~_r  2 ~. j - l = Y n k < X 5  s)) <=gs "C. 

k = l  j = l  \ * - -  *nk 

Finally 

y2 

kn ( ) nk (s) < (s) 

k=i l •  
. . . .  , K ( +  o o , ' ) -  is) . Ktx , ,  s, )+K(xT,.). 

For  every natural  number  s, each of condit ions (6)-(9) determines a P-null  set on 
which this condit ion is not  fulfilled; the same is true of (C.4). The sum N O of 
these sets is a P-null  set. On the set Q \ N  o all sequences of rv's in (6)-(9) are 
pointwise convergent.  (Moreover ,  we can assume that  the rv C is finite on 
f l \N0.  ) It remains to prove that  this is also true for (5) i.e. for every c o a f / \ N  0 

k~ ( y2 k __ ' + 
(10) ~ E " ' k - '  \gt(Y'*k) l + V ; ]  (c~ 5 gt (x)aK(x ,~  �9 

k = l  - - o o  
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Let us fix e > 0. Choose s so large that 
1~ ~s" C < e/8, 
2 ~ K (  + ~ ,  co) - K(x~,~s, co) + I((x(o s), co) < ~/8, 
3 ~ the absolute value of the difference between both sides in (6) at co is less 

than e/2. 
For  this s there exists n~ so large that for n>n~ the absolute value of the 

difference between both sides in (7) and (9) at co is less than e/8. This gives (10). 
From (C.1) and (5), by the continuity of exp, we obtain the final conclusion of 
this part: 

(11) exp i tk~ 1 A,k+E,,k_ ~ 

kn y2  y nk 

.... >exp{ i ta ( . )+ f~g t (x )dK(x , . ) }  ' t~lR 1. 

The idea of the accompanying laws is contained in this  fact. To see this, it 
suffices to take into account a row-wise independent system 3~ and non-random 
a, K. 

For  technical reasons we shall use a property which is very similar to (11) 
and follows from an identical argument: 

Lemma 1. Assumptions (C.0)-(C.4) imply 

(12) exp{--itk~__~l [Ank+En,k_ 1 Id+Y~]][ Ynk ~ ] 

y nk 
- ~ E . , ~ _ ~  g , ( ~  

k=l 

.... ,exp - i r a ( ' ) -  ~ gt(x)dK(x, ' )  , tslR 1. 
-oo 

4. Comments about (C.4) 

Putting 

i Vnk= j- len'j-1 ~1-'[- ~n 2 ]' 

C = K ( +  o%.)+ 1, 

we obtain from (C.3) that 

(13) P(limsup[V,.k > C])=0.  

l <_k<k,, nsN,  
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If we truncate the rv's x,k in the following manner 

X*k=X.kI(V.k<C),  l < k < k . ,  n~N, 

then by the ~ ,k_  1-measurability of V.k--C and I(V.k<= C) we have 

A.k--E.,k_ ~(X.kI(IX.kl<V))=A.kI(V.k < -- C), 

Y * - X *  - A *  = Y,, I(V.k < C), ~k - -  nk nk 

V*-- E En j 

= z (vo ;<c) ,  
j=  l \ l  + Ynj ] 

for l<<_k<_k,, n~N. 
Thus the last equality gives the property (C.4) for (~, ~). Using (13), one can 

easily prove that (Y, ~) satisfies (C.1)-(C.3) and that the limit distributions of S,, 
kn 

n~N, and S* = ~ X,*, neN, are equal. Moreover 
k = l  

exp (i t S,) - exp (i t S*) ~ +  0 

and then by the bounded convergence theorem for a conditional expectation we 
have 

(14) E(exp(i tS , ) lJo)-E(exp(i tS*) lYo)  .... ,0 

5. Approximation 

The following version of a lemma of Brown and Eagleson gives us the possibility 
to approximate the conditional chfs of the accompanying laws. 

Lemma 2. Let there be given a a-field Yo C., ~ and a function f :  IR 1 x (2--,112 such 
that f ( t ,  ") is .~o-measurabIe for every t~lR 1, If(t, co)]<__ 1, f(t,o))+O for all t~lR 1 
and a.e. co~f2. For fixed t~lR 1 let U,, W, be sequences of rv's such that 

1 ~ for some .~o-measurable a.e. finite rv C 

IW,-II<C, n~N, 

2 ~  ~-~%1. 

Then 
3 ~ E(exp(it U,)l~o) .... ,f(t ,  .) 

if and only if 

4 ~ E(W, - I  exp( i tU, ) l~ ,~o)~  1. 
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Proof. 4 ~ ~ 3 ~ Since 

I E (exp (i t U,) [ fro) - f  (t,.)1 

IE(exp(it U~)[1 - W,- if(t, ")] I~o)[ 

+ [E(f(t, .)[Wn -1 exp(it Un)- 1] I~o)l 

~E([1 - W,-if(t, .)I [ ~o)+ [E(W~ -1 exp(i t U,)l~o)-  11 

we obtain the result by the following elementary sublemma: 
If X,~-~O,  IX~(<G a.e. for an fro-measurable, a.e. finite rv G, then 

E(IX.llgo) 
Similarly we prove 3 ~  4 ~ 
Applying Lemmas 1 and 2 to 

U.=S., n~N, 

{ k. [ \ 1 + y 2 ] ] [  Y.k ~] W.=exp itkZ I= A.k+E.,k_ , 

y nk + ~ E.,k-1 gt( .k)~--V-Vf ' n~N, 
k=l l+ Y.k 

we obtain: 

Theorem 1. I f  the system (Y~, ~) satisfies (C.0)-(C.4), then for every telR 1 

(15) E(exp( i tS~)L~)-~exp ita(.)+ ~ gt(x)dK(x,.) 
- o o  

if and only if 

(16) E exp it ~ Y~k-- ~ E.,k-l(exp(itY.k)--l) Yo a'~'l. 

Corollary 1. I f  the system (X, ~) satisfies (C.0)-(C.3) then it fulfils (15) if and only 
if each of the equivalent conditions is satisfied: 

t ~ (16) holds for every 3~* given (in the manner described in Sect. 4) by all ~o- 
measurable rv C, K ( + c ~ ) <  C <  +oo;  

2 ~ (16) holds for itS* given by some ~o-measurable rv C, K(+ oo)< C <  + ~ .  

Observe that if (~, ~) satisfies (C.0)-(C.4), then the sequence integrated in (16) 
is bounded and therefore the property 

(17) exp it ~ Y~k-- ~ E.,k-~(exp(i~Y.k)-- 1) ~ ' ~  1 
k =  1 k=  1 

is sufficient for (15) to be satisfied. Then using the .-procedure one can prove: 

Corollary 2. I f  (~, ~) satisfies (C.0)-(C.3) and (17), then it fulfils (15). 
It seems that conditions (16) and (17) have no intuitive meaning (thanks to 

their generality). Now we are going to show that they are implied by the more 

A. Ktopotowski 
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restrictive requirement that the rv's are uniformly asymptotically negligible in 
some sense. In the first place such a property is contained in the following 

Theorem 2. I f  the system (3;, ~) satisfies (C.0)-(C.3) and 

k~ 

(C.5) ~ [E~,k_l(exp(itYnk)--l)l 2 ~ ~ 0 ,  tMR x, 
k = l  

then it satisfies (15). 

Proof Applying the above definition of 3;* we obtain 

tE,, k_ t(exp(it Y ~ ) -  1)12 =I(V~k < C)INn, k_ l(exp(it Y, k ) -- 1)12 

< [E,,k- 1 (exp( it Y,k)- 1)12 

and thus we may assume (C.4) for (3;, ~). 
Repeating the arguments used in the proof of Theorem 3.4 of [3] we can 

prove that 
a) the sequence in (C.5) is bounded from above by 2(M2+t)  �9 C and then we 

have 

k~ 

(18) ~ E(lE.,k_l(exp(itY.k)_l)12lYo) . . . .  )0, 
k = l  

b) the following inequality holds 

exp i tk~=l Y,k-- k~= lE,,k-1 (exp(it 11,k) -- 1) -- 1 o~0 

k~ 

<�89  C) ~, E([E,,k_l(exp(itYnk)--l)la{~O), neN.  
k=l 

Then (18) implies the required result. 
Now let us assume that (3;, ~) is strongly conditionally infinitesimal i.e. for 

every e > 0 

(C.6) max P~,k_ l(]Xnk[ > e ) ~ 0 .  
1 Gk <-kn 

Observe that if (C.6) is satisfied for every element of some sequence G, seN, 
strictly decreasing to zero, then (3;, ~) is strongly conditionally infinitesimal. 

This condition implies 

(19) max [ A n k [ - ~ 0  , "c>0; 
1 <--k<--kn 

max P~,k_l(lY, k[>e) .... ~0, ~>0. 
1 <=k<=k~ 

The last limit is equivalent to 

lYn  
max E~,k_ 1 \ l + y ~ ]  a~,o,  

1 _-<k _-<k~ 
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which, with (C.3), gives 

k ~ [  / y2 ]]2 

Z I_En'k-a [ I+Y,Z]J  ~ 0 .  
k = l  

In (3) we have proved that if 

(20) max IA,k r <= 1/2, neN,  
1 <-k<-kn 

then for every telR 1 there exists a constant ~(t)>0, independent of k and n, such 
that 

IE"k-l(exp(i t  Y'k)-- 1)l <rl(t)En'k-1 ~1 + I12 ]" 

Because of (19) we can assume (20), eventually applying a construction similar to 
the .-procedure. Therefore we have obtained: 

Theorem 3. I f  the system (Y, 5) satisfies (C.0)-(C.3) and (C.6), then (15) holds. 

Integrating both sides in (15) we obtain the final result of this part: 

Theorem 4. I f  the system (3i, 5) satisfies (C.0)-(C.3) and at least one of conditions 
(17), (C.5) or (C.6)., then its row sums S,, n~N, converge in distribution to 
vC/ia~ (a, K). 

A. Klopotowski  

6. Weaker Assumptions 

It would be unfortunate if, when proving limit theorems for mixtures, we had to 
assume almost sure convergence in our conditions, while for pure infinitely 
divisible laws we have criteria involving the weaker convergence in probability 
of relative sequences. Eagleson in E2J has shown how we can weaken the 
assumptions of Theorem 4. Using his method we can prove: 

Theorem 5. I f  the system (~, 5) satisfies (C.0) and 

(C.7) max P,,k_l(IX,k]>e ) P---,0, e>0,  
1 <=k<_k~ 

(C.8) k=12 Ank+E,,k-1 \ I + Y , ~ ] J  ,a( .) ,  

(C.9) 2 E,,k-1 I(Y,k<X) e---'K(x,') 
k = l  

for every x belonging to some countable dense set D ~ IR 1, 

(C.IO) ~ E.,k_ , P - ~ K ( + ~ , ' ) ,  
k = l  

then its row sums S,, neN,  converge in law to J/tix(a, K). 
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Proof. It suffices to show that every subsequence {S,~} c {S,} contains a further 
subsequence {S,~ } which is convergent in law to Jgix(a, K). Of course we may 
consider only the' case of {S,,~} = {Sn}. Observe that in (C.8)-(C.10) we have only 
countably many conditions; the same is true for (C.7) as we have remarked 
above. Then using the diagonal method we can choose a subsequencc 
{S,~} c{S,} such that all these conditions are fulfilled with the convergence 
almost sure and Theorem 4 implies the conclusion. 

7. Case 

In this 
variance. 

Theorem 6. I f  the system (Y~, q~) satisfies (C.0) and 

kn 

(CAD ~ B.k-~=+ a('), 
k = l  

kn 

(C.12) ~, En, k_l(Z2kI(Znk<X)) . . . .  ,K(x ,  ") 
k = l  

for every x belonging to some countable dense subset D c IR 1, 

(C.13) there exists an o~o-measurable rv 0 < C < + oo such that 

P limsup I(Znk)>C =0, 
\ n ~ o v  k - -  

of Finite Variances 

part we shall consider only systems (3;, ~) with all rv's having finite 

then each of the conditions 

(CA4) exp i tk~ Znk--k~_ E, ,k_l(exp(i tZ,  k)--l) .... ' 1, t~lR 1, 

kn 

(C.15) ~ IEn,k_l(exp(itZnk)--l)12 ~ O ,  t~lR 1, 
k = l  

(C.16) max P~,~_l(IZnkl > e ) ..... ,0, ~>0, 
1 -<k<=k~ 

(C.17) max E~,k_l(Z2k) .... *0, 
1 <=k<=kn 

is sufficient for 

[ +~ ] E(exp(itS,)[~o) .... ,exp i ta( . )+ ~ h~(x)dK(x,.) , telR 1 
- o o  

and hence for the convergence in law of S., n~N, to ~y~x(a,K). 

where 

Bnk=En, k_ l(Xnk), l <-k%kn, n~N, 

Znk=Xnk-Bnk  , 1 <k<_k~, n~N, 
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Theorem 7. I f  the system (3i, ~) satisfies (C.0) and 

kn 

(C.18) ~ B.k I'---~a('), 
k = l  

kn 

(C.19) ~ En,k_l(ZZkI(Znk<X)) P---*K(x, ") 
k = l  

for every x belonging to some countable dense set D ~IR 1, 

(C.20) there exists an ~o-measurable a.e. finite rv C>O such that 

l imP l(Z.Zk)> C =0,  
n~o~ k 

then each of the conditions 

(C.21) max P.,~_l(I/.kl >0 P----~ 0, ~ > 0 ,  
1 <k<-kn 

1~' ( Z  2 ~ P------~ 0 (C.22) max ~,,k- 1 t ,kJ--  , 
1 <=k<=kn 

is sufficient for the convergence in law of S,, n~N, to ~ ( a ,  K). 

We omit the proofs of these theorems because they are very similar to the 
previous ones. 

After these general considerations we shall give some comments about a 
special case of mixtures. 

Let us assume that for almost every 

{~ for t_<0 
K(t, ~o)= 

(co) > 0  for t>0 .  

Then JV(a, t l ) = ~ ( a , K ) = J ~ ( a , K )  is a mixture of normal distributions on 
IR 1 with the chf 

~ t  2 (p( t )=Eexp[i ta( ' ) -g  q(')l, t sIR1. 

Conditions (C.1)-(C.3) in this case are equivalent to 

(CN.1) ~= A,k + E,,k_ ~ - ~ a ( . ) ,  
k 1 

k, { ",k I~PY I>e) ~ 0 ,  e>0, (CN.2) k=lZ E..k-~ \1 + Y.] " .k, 

(CN.3) k=l y' E.,~_I tl  + g.~ ! 
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Condition (CN.2) is equivalent to 

k~ 
(CN.4) ~ P,,k_l(lY,,kl>e) .... ,0, a>0. 

k = l  

One can easily prove that 

Theorem 8. I f  the system (Y., qd) satisfies (C.0) and 

k .  

(CN.5) y ~ P , , k _ I ( I X , ~ [ > 0 ~ 0 ,  ~>0, 
k = l  

k .  

(CN.6) ~. E.,k_~(X.kI(iX.kl<e)) .... ,a(.), e>0, 
k = l  

k~ 

(CN.7) Z E.,k-I(X~kI([X.k[ <--e) 
k = l  

k~ 

- ~ [_g.,k_~(X.kI(IX.kl<O)lZ-a~rl('), e>0, 

then S,, n~tN, converges in law to ./g'(a, q). 

We can prove more, namely, that under the assumption (C.6) conditions 
(CN.5)-(CN.7) are equivalent to (CN.1)-(CN.3). If we put the convergence in 
probability into (CN.5)-(CN.7), then the conclusion also holds. 

If all rv's of the system (3r 5) have finite variances then the straight 
reformulation of Theorems 6 and 7 gives sufficient conditions, which improve 
the results obtained in [-2]. 

I wish to than Prof. Sgsiada and Lidia for encouragement which were distinct and dear. 
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