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1. Introduction 

The problem of finding necessary and sufficient conditions for the convergence 
to a Brownian motion of summation processes based on an array {X,,~} of 
random variables which are "close" to a martingale difference array was studied 
in the paper [16], "On the functional central limit theorem for martingales". 
The present paper is mainly concerned with some questions left open in [16] 
concerning the case when {X,,i} itself is a martingale difference array, and for 
that case we obtain conditions which are necessary and sufficient for the 
functional central limit theorem in rather general circumstances, the main 
restriction being that the sequence of row-maxima is assumed to be uniformly 
integrable. In particular the sufficient conditions obtained are somewhat weaker 
than the best previously published results, which require that the sequence of 
row-maxima should have uniformly bounded second moments, see [12]. In the 
important special cases when normalization is by means of variances or con- 
ditional variances our results lead to a complete solution to the martingale 
functional central limit problem, and thus in particular to a (partial) generali- 
zation of the Lindeberg-Feller theorem. Furthermore, weak conditions for con- 
vergence to mixtures are obtained. 

As in [16] the proofs are made in two steps. The first one is to reduce the 
problem to the case of bounded martingale differences. In the present paper an 
efficient and rather simple truncation procedure is used to this end. The next 
step is to compare various normalizations (or "time-scales") with a natural time- 
scale given by sums of squares. Other time-scales can then be seen as " random 
changes of time" from the natural time-scale. This point of view is used in [16, 
17] and more fully in [5], and it leads to natural and simple proofs. In fact, if 
one wants to use this approach to prove central limit theorems "starting from 
scratch", the only ingredient which has to be added to this paper is a proof of 
convergence to a Brownian motion for the case when the martingale differences 
are uniformly bounded by constants tending to zero and when the time-scale is 
given by the sum of squares. In this case the customary proofs of finite- 

0044-3719/80/0051/0079/$03.00 



80 H. Rootz6n 

dimensional convergence simplify considerably and moreover, using a Burkhol- 
der-inequality, it is possible to give a very short proof of tightness. 

For further discussion of the central limit problem for martingales we refer 
to the recent papers [9-11, 14] and to the references listed in [16]. 

In the present paper, Section 2 contains most of the necessary notation, and 
the main lemma, Lemma 1, which gives the truncation procedure. Section 3 con- 
tains some sets of necessary and sufficient conditions for convergence to a 
Brownian motion. Finally, the results on convergence to mixtures are contained 
in Section 4. 

2. A Truncation Lemma 

We briefly recall the notation of [16], which we are going to use also in this 
paper. For n = l ,  2 . . . .  , {X,,i}i% a is a sequence of random variables on a 
probability space (f2,, ~ , ,  P,), the sub-sigmaalgebra N,,i of ~ ,  is generated by 

k 

X,, 1 . . . .  ,X,.i ,  and S,(k)= ~ X,. i. Furthermore, G(t); te[0,1]  are stopping 
i = i  j 

times of {~n,i}ie~ which are increasing and right continuous in t a.s., and for 
simplMty it is throughout assumed that 

%(1)< oo a.s. n > l .  

Thus {3,} and {S, o %(0; tel0,  1]} are sequences of random variables in D(0, 1), 
which we take to be endowed with the Skorokhod topology. For brevity we will 
write P instead of In, So% for S, oG, etc., and El(. ) for E{" I]N,,i} when taking 
expectation of variables from the n-th row (Eo(.)=E(-)) .  If E~_I(X,,i)=0, i>2,  
n > 1 then {X,, ~} is a martingale difference array (m.d.a.). 

Let M , =  max [X,,il. In the situations we are interested in M,~e 0, i.e., 
i =<i=<~n(1) 

P ( M , > e ) ~ O ,  Ve>0. From this follows the existence of a sequence {G} of 
constants satisfying 

P ( m , > e , ) ~ O  and G ~ 0  as n ~ o o .  (1) 

The results of this paper will rest on the following simple truncation lemma. 

Lernma 1. Let {X,,i} be a m.d.a., let the constants {e,} satisfy (1), put v, 
=in f{ i>  1; ]X,,i] >e,}/x %(1), and suppose that 

EIX . . . .  t---'0 as n---, oo. (2) 

Then there exists a m.d.a. {~,,i} with [~,,i[<2G a.s. such that, writing S',(k) 
k 

= ~ ~n,i, 
i=1 

sup ]So%(t)-S 'oz . (r)[AO as n--*oo, (3) 
O__<t<l 
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and 
[ ~.(0 ~.(0 I 

sup --~1X2"-i~=l ~2'i ~ 0  as n-+ oo. (4) 
O=<t=<l i 

Further, writing d. for the (random) set of integers between 1 and Zn(1 ) such that 
X., i=0,  

I~.,il&O as n-~co. (5) 
i~Jn 

The conditions (1) and (2) are satisfied for some suitably choosen sequence {e.} /f 
{M~}.~176 1 is uniformly integrable and M~ ~ O. 

Proof Define 

~.,i=X.,iI(v.>i)-Ei_ l(X..iI(v.>i)), 

where I is the indicator function, i.e. I(A) is one on A and zero on A c. 
Clearly {r is a m.d.a., and since IX.,~I(v.>i)] <~. by the definition of v. 

we have I~.,il <2e .  a.s. Further 

~(1) 
IS~176 ~ [X.,i-~.,il .  (6) 

i=l 

and by elementary algebra 

2 .-- --~1 2 <2  ~ I{.,~llX.,~-{.,~l+ ~ (X.. _g..~). 2 
i=1 i=1 

<4e. Z IX.,i-~..i[+ Z (X., i -~. , i )  2, (7) 
i=1 i=1 

~ =~(vn(1) t (~n(1)k } 
i-- n,i) >E ~i=1 I X n ' i - - ~ n ' i l > ~  forteEO, 1 ] . N o w , ~ i ~  (X., ~ z ~ E f o r O < ~ < l ,  and 

~.(1) 
hence ~ (Xn, i--~n,i)2~O if 

i=1 
~.(1) 

I X . , , - r  as n--. oo. (8) 
~=1 

Thus, by (6) and (7), the relations (3) and (4) follow if we prove (8). However, 

~(1) ~(1) ~(1) 
IX.,,-~.,,I < ~ [X.,,-X.,~I(v.>i)l+ ~ ]E,_x(X.,,I(v.>i))l, 

i = i  i = i  i=1  

~(I) 
and the first sum on the right equals ~ IX,,iq, which tends to zero in 

i~v  n 

probability by (1) and the definition of %. Moreover, using that { v , > i - 1 }  



82 H. Rootzdn 

e~ . , i -1  and that {X.,~} is a m.d.a., we have that 

E i_ l(Xn, iI(vn>i))=Ei_ l(Xn, iI(vn>i--  1 ) ) - - E i _  l(Xn, iI(vn=i)) 

= - E ~ _  ~(X . . . .  I (v .=i ) ) .  

Hence, 

rn(1) 1:n(1) 

E ~ IEi_~(X.,il(v.>i))l=g ~ IEi_l(X,,,il(v-=i))[ 
i=1 i = i  

rn(1) 

<E ~ IX .... t I(v.=i) 
i=1 

=E]X .... I--~O as n--, oo (9) 

by (2), which proves (8), and thus (3) and (4). Since X . , i = 0  implies that ~.,~= 
- E  i_ l(X.,iI(v. > i)) the relation (5) follows at once from (9). This concludes the 
verification that {~.,~} has the properties stated in the lemma. 

Finally, as noted above, M. P-~0 implies that there exists a sequence {e.} 
satisfying (1), and if furthermore {M.} is uniformly integrable, 

E]X .... r<EM.--~O as n-* oo, 

i.e. (2) holds, which proves the last part of the lemma. [] 

It may be noted that Condition (1) and Condition (2) put different re- 
strictions on the e.-sequence. Of course the first part of (1) says that the e.'s 
should not be too small. On the other hand, (2) is easier to satisfy the smaller the 
e.'s. In fact, suppose {e'.} is another sequence of constants, with e'. <e .  and let v'. 
be defined from e'. in the same way as v. is defined from e., Then IX.,~] <IX .. . .  l, 
and hence EfX .... ]---, 0 implies EIX.,~,I--,0. 

Condition (2) is rather obscure, and for that reason we will use the more 
transparent conditions that {M.} is uniformly integrable or that E M . ~  0 in the 
statements of the theorems in the following sections. However, the theorems of 
course hold also under the somewhat weaker condition (2). 

3. Convergence to a Brownian Motion 

The following concept is important for the first theorem. We will Say that the 
time-scale ~n "takes all relevant values" with respect to an array {X.,i} i f the 
event Xn, i=t=O and 1 <i_<zn(1) implies the event that z.(t)=i for some t610, 1]. 

Theorem 2. Let {X.,i} be a m.d.a., let %(0; t~[0, 1] be stopping times of {~.,~} 
which are increasing and right continuous in t a.s. and suppose that {M.}.~__ ~ is 
uniformly integrable. Then 

Z 2 , (lo) Xn, i ~ t  as n----~oo, 
i~l 
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for t~[0, 1], implies that 

S o z n & B  as n - ~ ,  in D(0, 1), (11) 

where B is a standard Brownian motion. Conversely, if in addition % takes all 
relevant values with respect to {X~,i}, then (11) implies (10). 

Proof It is easy to see that if (10) holds then M , ~ 0 ,  see [13], and hence the 
hypothesis of Lemma i is satisfied. Letting {4~,/} be the m.d.a, defined in the 

lemma, (10) and (4) give that F, 42 e~t, t~[0,1].  Since furthermore n, i 
i = 1  

14~, i[ < 2 ~n ~ 0 it follows from the first part of Lemma 3 of [16] that S' o "c,~ ~ B 
k 

(where as above S',,(k)= ~ 4,,/). By (3) this proves S o zn&B.  
i=1 

Now to the converse. By assumption {M,) is uniformly integrable and, since 
~, is assumed to take all relevant values with respect to {X,,/}, (11) implies that 
M,  e~0. Hence the conditions of Lemma 1 are satisfied, and we can again 
approximate with the array {4~,/}, which by (3) and (11) satisfies S'o'c,~&B. 
Moreover, according to (4), to prove (10) we only have to show that 

~ 2 e 4 . , /= . t ,  as n ~ o o ,  (12) 
i ~ l  

for t~[0, 1]. For this we will modify the proof of the second part of Lemma 3 of 
[16] slightly. No changes are needed in that proof up to the point where 
stopping times ~(i) =-c,(i/n'), 0 < i < n', satisfying 

n' 

{ S ' o r ( i ) - S ' o z ( i - 1 ) } a e ,  1 as n--~ oo, (13) 

are introduced and where -c'(i) is defined as the minimum of z(i) and of 

i n f { k > z ( i - 1 ) ;  /=~/~)+1 4,,/ >1}.  

Further, A~ is the event that r(i)=z'(i), i=  1 . . . . .  n'. It is straight-forward to check 
that since r~(t); t~ [0, 1] takes all relevant values with respect to {X,,/}, 

P(A~)<P(Y,> 1/2)+ P(~, 14,,/1 > 1/2), 
JR 

where Y, is defined in [16], p. 203, 1.16, and J~ is the set of integers between 1 
and ~,(1) such that X, , i=0.  As in [16J Y, e~O and by (5) above ~ 14,,i[~e 0 and 

J .  

hence it follows that P(A c)--* 0 as n--, oo. (At this point there is a gap in the 
proof of Lemma 3 of [16]; however, this can be filled, cf. the acknowledgement.) 

Next, with [ , , i=  ~ ~ , j  set O,=min k; ~2,i > 2  An' and set 0 n 
j =  r ( i -  1 ) +  1 i =  1 

=z(O,). Since 

n' 

{On=k} = U {o,=i,-c(i)=k} 
i = 1  
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and since {O.=i, z(i)=k}e~n, k we have that 0. is a stopping time of {N.,k}k~=l. 
k 

Let ~.,i=~.,iI(O.>i) so that (~.,i} is a m.d.a., put S.(k)= ~ ~.,i, and put ~.,~ 
~'(i) i= 1 

= ~ {.,j. From (13) and P(A.)--~ 1 follows that 
j=z(i--  1)+ 1 

P(~.,i=t=~.,i for some i_<z.(1))-+0 as n-~ oo. (14) 

Furthermore, max ]{.,i] <= Yn+~, I~,,il, and as above the two last terms tend to 
1 <-i <-n' Jn n' 

zero in probability, and hence max [{.,~[~e 0. By definition, E ~2,~___2 
l<_i<n" i=1 

+maxl<~i<=n" ~2n, i - - ~ 2 + ( 1  +2~n)2 SO {i=l ~ '  ~2n, i}  is uniformly integrable and since ~,,i is a 

n' ~'(i) n' 
m.d.a. E E E E .,i ~-z,i= E ~2 < 2 + ( 1 + 2 e . ) 2 .  Now, using the proof in 

i = i  j=z(i-- I)+ i i = i  

[16], p. 204, 1.4 to p. 205, 1.4, with ~,  i, replaced by ~,, i, S', replaced by S, and 
ff,,~ replaced by ~,,i, we have that 

n" ~'(i) 
~ . , ~  1 as n--+ oo. 

i = l  j='c(i-- 1)+ 1 

Together with P(A,)--, 1 and (14) this proves that (12) holds for t = 1. The case 
0 < t < l  follows by dividing by t, and then (12) must hold also for t=0 .  [] 

It should be noted that also when % does not take all relevant values, 
Theorem 2 gives necessary and sufficient conditions for convergence to a Brow- 
nian motion, expressed in terms of sums of squares of the jumps of the 
summation processes S o G (or equivalently, in terms of the square variation of 
S o G). Of course the jumps can - in contrast to the X,,~'s - be retrieved directly 
from the summation process and they seem to be intrinsically more important 
when convergence is considered. 

To make this precise, let t . , l= in f{ te [0 ,  1]; r.(t).t=z.(t-)} and define re- 
cursively t.,~+l=inf{t~(t.,~, 1]; % ( t ) + G ( t - ) } ,  defining the infimum to be o9 if 
the set within brackets is empty. The jump of S o % at t. i is then J?. ~--S o %(t.,~) 
- So%( t . , i - )  for t . , i<oe and )? . , i=0  for t . , i=oe.  If {)?.,i} is a m.d.a, and 

co {max[X.,~l}.= ~ is uniformly integrable, then by Theorem 2 the convergence of 
S o % t o  a Brownian motion is equivalent to 

E 2~  (15) n,i~t as r/-~. oo, 
{i; tn, i <=t} 

for tel0,  1]. That {2,,~} is a m.d.a, follows e.g. if for all n the stopping-time r,(1) 
is regular for {X,,i}i~__ ~ (or equivalently, if {X .... (1)^ i}i~ 1 is La-convergent). 

One, more restrictive, condition which ensures this is 

~(1) 
supE  ~ e (16) X.,i<oo, 

n i=1 
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since it implies that {X., ~.(~)^ i}~=a is L2-convergent. Furthermore, it follows that 
~.(1)  

E E X.2,i-=E E ~,i and thus that {max ix~,~l}~=l is uniformly integrable. Thus, 
i = 1  i i 

assuming (16), the condition (15) is necessary and sufficient for S o %d~B, and in 
fact it can be shown that the conditions together imply that the difference 

~.(1)  

between ~ X2i and the sum of squares in (15) tend to zero in probability and 
i =  1 l:(t) 

that hence also ~ X ~ , i L  t, te[O, lJ. The latter result is proved by Giinssler and 
~=1 

H~iusler in the paper mentioned in the acknowledgement, so we will not discuss 
it further here but will instead give a direct derivation of necessary and sufficient 
conditions for S o z, ~ B for the cases when normalization is made by variances 
or by conditional variances. 

Theorem3. Let {X.,i} be a m.d.a, and let %(0; t~[-0, 1] be stopping times of 
{~.,i}i~= 1 which are increasing and right continuous in t a.s. and which satisfy 

~.(t) 

Ei_l(xZ, i ) ~ t  as n---~oo, t~[0, 1]. (17) 
i = 1  

Then S o ~ . ~ B  as n--~ 0% in D(O, 1), if and only if both M L 0 and 

~,,(1) 

2 (18) E~_l(X.,iI(]Xn,~]>d))~O as n--+oo, 
i = l  

for some d > O. 

Remark 4. The proof below shows that if S o z. ~ B then 

r~(1)  

Ei_I(X.,il(]X.,~]>d))P-~o as n---~ oo, Vd>0, (19) 
i ~ 1  

and it is easy to show that if (19) holds then S o % & B  (see e.g. [5]). Hence, 
assuming (17), also ~ conditional Lindeberg condition" (19) is necessary and 
sufficient for S o z. & B. 

Proof. We first prove that the conditions are sufficient to ensure S o v. e-,B. Put 
k 

X'. ,z=X.,~I([X.,i]<d)-E,_~(X.,zI([X.,z[<d)) and let S'.(k)= ~, X'.,~, Straight- 
i = l  

forward calculations show that sup ]Soz . ( t ) -S 'oz . ( t ) [~0  and that 
max IX'.,il~O. Now, 0_<t_<~ 

1 =<i -< ~n(1) 

El ,2 - -  2 l ( X n . i ) - - E  i _ l ( X n ,  i I(IX.,zl < d))-  E, 2_ l(X., ~ I(IX.,il <d)) 

and 

E 2 _ 1 ( X . , i I ( I X . , I I < = d ) ) = E z 1 ( x . , ~ I ( I X .  il >d)) ~<Er 2 , _ _ l ( X . , ~ l ( I X . , ~ l > d )  
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v.(t) 
and hence, by (17) and (18), ~ E i ,2 _~(X.,~)e~t for te[0,1J.  It follows that 

i = l  ~,~(t) 
X' .2~ t ,  for t~[0, 1] (cf. [5, 12]) and then by Theorem 2 that S'o z . & B ,  and 

i=1 
hence S o % & B. 

The proof of necessity is somewhat more complicated. We first consider the 

particular timescale z'.(t) = inf  k; ~ E i_ ~ (X~.,i) > t and prove that 
i ~ l  

~ ( 1 )  

i f S o z ' . & B  then ~ E~_ z (X.,~ I(I Xn,  il > d ) )  R if+ 0 .  ( 2 0 )  
i = 1  

Clearly z'. takes all relevant values, and since z'.(1) is a stopping time 

vf,(1) z~,(1) 
2 2 E max X. ,~<E E X. ,~=E Z Ei- 1(X2i) < 1 , ,  : 

1<_i<-~:;~(1) i= 1 i= 1 

so { max [X.,~[}.~I is uniformly integrable. By Theorem2 it follows that 
1 _--<i =<~;,(1) 

~ ( 1 )  r~,,(1) 

X2,~ R_e+ 1, and thus, since as above E ~, X.2,~ =< 1 and since the sum is positive, 
i = 1  i = 1  

that X 2 is uniformly integrable. Further, max [X.,~I~P 0 and thus n, i 
n = l  1--< i--<z;~(1) 

z~(1) z~,(1) z~( ' )  

X2.,~I([X.,~I>d) P~o. Since 0_< ~ 2 _ X.,gI(IX.,~I>d)<- ~ 2 Xn,  i, 
i = 1  i = 1  i = 1  

~,(1) ~,(1) 

E ~ E~_~(X2.,~l(lX.,~l>d))=E ~ xe.,~l(lX.,~l>d)~O 
i = 1  i = 1  

as  /'/~)- o0~ 

which proves (20). 
Next, from (17) follows that max E~_ I(X. z,i) ~e 0 and that P(%(1) > z'.(1-e)) 

1 <i<'Cn(1 ) 
~;~(t) 

-*1 for e>0,  and hence ~ E~_,(X 2,i)~e t for 0 < t < l .  Thus, since 

~;,(t) i= 1 ~;~(0__~1 2 t P~* 0 
Ei_ I(X 2, i) is increasing in t we have sup Ei_ I(X., i ) -  for e > 0 

i = 1  0<t__<l--~ i 

~,,(t)~l 2 t and similarly it follows from (17) that  oSUpl i~. EI_I (X . , i ) -  ~ 0 .  Hence, 

writing A.(e) = { z . ( t -  e) < z'. (t) < z.(t + e); t6 [e, 1 - e]}, 

P(A.(e))-+I as n ~ o o ,  Ve>0, (21) 

and thus there exists a sequence {e,} of constants such that e.$0 and 
P(A.(e.))-+I. For e > 0  and N with e / 2 > l / N  and n large enough to make 
2 ~. < 1/N we have the inclusion 
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{ sup JSozn(t)-Soz'(t))>6 } 
O=<t=<l-~ 

c ~ ; ~ (i/N) < k A.(~.)w ~ sup 
i= 0 j = z . ( i / N ) +  1 

= < %(0  + 2 ) /N)  A z . (1  6 . (22) 

(Here we have assumed %(0)=0; a further small argument shows that this can 
be done without loss of generality.) Now, using Lemma 4 of [3] and Cauchy's 
inequality on the m.d.a. {X.,j l(z.(i/N) <j)} gives that for 0_< i _< N -  3 

P (sup{j=~(i/~)+lX.,j ; r.(i/N)<k<=%((i+2)/N)/x~'.(l)}>6 ) 

v~(1) 2 )1/2 
<46 -1 E ~ X.,j P(IS(L,((i+2)/N)A~'(1)) 

j =  v;n(i/N) + 1 

- S(z~(i/g)) I > 6/4) w2 

<=4 6 -I  P([S(z.((i + 2)/N) A z'.(1))- S(z.(i/N))l > 6/4) ~/2. (23) 

By (17) and the assumption that S o z . & B  

P(IS(%((i + 2)/N)/x z'. (1)) - S(z.(i/N)) I > 6/4) 

---~2(1-r O<_i<N-3, (24) 

where 4~ and r are the standard normal distribution and density functions, 
respectively. Since P(A~.(e))~O it follows from (22)-(24) and Boole's inequality 
that 

o ! l imsupP(  sup ISoz.(t)-S ~.(t)[>6) 
n~oo 0 < t < l - s  

_-<46-~N-{44,(6~)}1/2~0 as N~co, 

and hence S o ~ . & B  implies that So~'~&B as n-+ co, in D(0, l - e ) .  
Clearly (20) holds also if D (0, 1) is replaced by D(0, 1 -  e) and thus 

~(I - e )  

Ei_1(X~,~I(lX.,iI>d)~O as n---~ oo, 
i=1 

for all a > 0. Now 

E Ei-~(X.~,~(tX.,il>d)) < E ~i- 2 l(X.,,I(lX..il>d)) 
i=1 i = l  

~.(t) 

+ E Ei-,(X~,i) e---~O+l-(1-e) =e, 
i= ~;,(1-- e)+ 1 

and since e > 0  is arbitrary, (18) follows. Finally, using (23) and (24) it is not 
difficult to show that there is a sequence e,.L0 of constants, with 
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~,~(1) 

max IX,,ile-+O, and since ~ Ei_l(X2,1)~O it follows from Re- 
1 <--i<~'Cn(1 --en) i=vn(1- -en)+  1 

sup f ~ ~ 0, mark 4 that t.)i=vn(1-an)+lXn'i; % ( 1 - e , ) < k < % ( 1 ) ( ~  and hence M-~e0 

a s  /I---->o0. [ ]  

In the case of independence and non-random time-scales the condition (19) 
reduces to the Lindeberg condition and hence Theorem 3 is an extension of the 
Lindeberg-Feller Theorem from independence to dependence. In the general 
case normalization is made with conditional means and variances, which of 
course reduce to ordinary means and variances in the classical case. One change 
is however made from the classical setup; the u.a.n.-condition 
maxP([X,,i[>O--~O, for all e>0,  which does not seem to be useful in the 

dependent case is replaced by the requirement that the entire summation 
process S o z,(t); tE[0, 1] converges. 

Sometimes it might be desirable to replace the random normalizations of 
Theorems 2 and 3 by non-random normalizations. The next theorem gives 
conditions for this when normalization is made by variances. We omit its proof, 
since it is analogous to the proof of Theorem 4, but simpler. 

Theorem 5. Let {X,,i} be a m.d.a, and let z,(t); t~[0, 1] be deterministic functions 
which are increasing and right continuous and which satisfy 

~n(t) 

2 2 EXn, i -~t  as n--~oo, tel0,  1]. (25) 
i=1 

Then S o % A B as n--+ oe, in D(O, 1), if and only if 

~,,(t) 
2 P X , , i - ~ t  as n--,oe, tel0,  1]. (26) 

i ~ l  

Remark 6. The theorem still holds if (26) is replaced by (17) and (19) together; in 
fact assuming (25) these conditions are equivalent. Furthermore in this situation 
also the ordinary Lindeberg condition holds (cf. [12, 18]). [] 

That (25) and (26) are sufficient to ensure convergence to a Brownian motion 
is of course well known, see e.g. [12] or [18]. Also, Theorem 5 generalizes known 
results from the central limit theory for independent summands, cf. [8], p. 143. 

4. Convergence to Mixtures 

It has recently been noted by several authors, e.g. [5, 6, 9, 10, 17] that theorems 
on convergence to a Brownian motion often can be extended to give conditions 
for convergence to mixtures of Brownian motions. The most direct and elegant 
way to do this seems to be via "a random change of time". This method is used 
to some extent in [17] and is more fully developed in [5, 10]. It has also been 
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much used to prove "random indices limit theorems", see e.g. [1, 2, 15]. Here we 
will use it together with the truncation procedure given in Lemma 1 to prove a 
theorem which generalizes many of the results from both these areas. It should 
be noted that in the theorem it is not assumed that t/H(t ) is a stopping time, and 
that all random variables are supposed to be defined on the same probability 
space. 

Theorem6. Let {X,,i} be a m.d.a., let the random processes tl,(t); t~[0, 1] be 
integer valued, increasing, and right continuous in t a.s., and assume that the ~,,i 's 
are nested, i.e. N , , i c N , +  a,i, n> 1, i> 1. I f  there exists a sequence {(,} of stopping 
times with lim P ( ( ,>q , (1 ) )=  1 and with 

n ~ c ~  

E max [X,,il-~0 as n ~ o o  (27) 
1 <i  <(n 

and if 

. . ( - )  

2 X ~ , i A ~  as n---,oe, in D(0,1), (28) 
i = 1  

for some random process tl~D(O , 1), then 

S otl, , Z X~,, & (B otl, tl) as n-+ Go, (29) 
i = 1  

in D(O, 1) x D(0, 1), where B is a Brownian motion independent of tl. Further, if t 1 is 
non-random then the requirement that the sigma-algebras are nested can be 
deleted. 

Remark 7. The condition (27) can be stated in the following equivalent way, 
which may be easier to check; "for each e > 0  there exists a sequence {(,} of 
stopping times with l i m s u p P ( ( > 1 1 . ( 1 ) ) > l - e  and with E max ]X.,~[--~0". 

tt~(t) n~oo 1 _-<i<~ 

Further, since ~ X.2~ is increasing in t also t/(t) is increasing, and hence if 
i = 1  

~/E C(0, 1) a.s. then (28) is equivalent to 

~,,(t) 

X2, i&tl(t) as n ~ o o ,  for t~[0,1].  (28)' 
i = 1  

Corollary 8. Let {X,,i} be a m.d.a, with the sigma-algebras N~,i nested and let {r/~} 
be a sequence of integer valued random variables. Further assume that there is a 
sequence ((,} of stopping times with lim P(~_>t/~)= 1 and with 

tin ricO0 
P 

E max IX,, i[ ~ 0, and that ~ X~, i--~ tl, for some random variable r I. Then 
i <=i~,~ i =  I 

P X,,i<=x - + ~ ( x  dFn(t) as n--*oo, 
i - -  
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where F. is the distribution function of 17, and 

P ~ X., i X:,ib < X  , > 0  - ~ ( x )  as n~oo.  
i _  / k i  = 1 

I f  tl is a constant, the condition that the sigma-algebras are nested can be deleted. 
i 

Proof. Since lim P(~ .>  ~.(1))= 1 it is enough to prove that (29) holds with ~.(.)  

replaced by ~ . ( ' )A ~., and since (28) holds also after this replacement we may 
during the proof assume that ~.(1)__<~.. Thus, by switching over to a suitable 
sequence of martingale differences for i>ff., we without loss of generality 

k 

assume that, writing M . = m a x  IX..~[, E M . ~ O ,  that ~ X.2~ .... , oo as k ~  o% 
1 ~ i  i = 1  

for each n, and that still the sigma-algebras are nested. 
t" b 

Let "c,(t)=inf~k; ~ X 2 > t~  be the natural time-scale of {X,,/} and define n, i ( i = 1  ) 
z ; l ( k ) = i n f { t > 0 ;  %(t)>k}. It can be seen that IS (k ) -So%or21(k) I<M,  and 
that 

n,,(t) ~t~(t) 

2 ~ < ~2  ~ < (30)  X . , I -  M" o q.(t) ~, X 2 
: ~ -  n , i ,  

i ~ l  i = l  

for te[0,  1]. Hence (29) follows if we prove 

(S o z. o z 21 o ~., z21 o ~) & (B o ~, q) (31) 

in D(O, l) x D(0, 1). 
To do this we first show that the sequence {So%(t); t__>0}.%~ of random 

variables in D(0, oo) given the topology of [19] is R6nyi-mixing with limiting 
distribution that of a Brownian motion. This follows if we show that 

S o % & B  in D(0, oo), (32) 

with respect to P( .  IA) i f P ( A ) > 0  and AeN.o,i o for some (no, io), cf. [15] and [2], 
i 

p. 139. However, x__<i_-<~omaX j=~l X.,~ <io .M,  
P( ' IA)> 0 ' and since the sigma-algebras 

are nested the array {X',,,i } defined for n>n o by X',, , i=X,,il(i>io) is a m.d.a. 
k 

with respect to P(" [A). Writing S',(k)= ~ X~, i, it follows easily from Theorem 2 
i = 1  

that S'o'c,,&B in D(O, T) under P(.fA),  for all T>0 ,  which is equivalent to 
S'o'c,,&B in D(O, ~)  under P(" IA), and then (32) follows. 

From (28) and (30) we have that %-~o~ / ,~ /  in D(0, 1) and since Soz ,  is 
R6nyi-mixing, Theorem 4.5 of 1-2] gives that 

(S o ~., r 21 o q.) & (B, q) (33) 

in D(0, oo) x D(0, 1), with B and q independent. Since B is continuous a.s. (31), 
and thus (29), now follows from Theorem 3.1 of [19]. Further, above the 
condition that the sigma-algebras are nested was only used to get joint con- 
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vergence in (33). If t/is non-random this is automatic, and the condition can be 
deleted. 

Finally, Corollary 8 follows by introducing the time-scale 

t/,(t) = inf  k; X~, X~,/ 
i = 1  "~ 

and then applying the theorem. [] 

The conditions of the theorem above can of course easily be replaced by 
various others, e.g. conditions analogous to those of Theorems 3 and 5, or by 
somewhat weaker versions of (28) which still permit deducing joint convergence 
in (33), e.g. in the manner of [9]. The convergence in probability in (28) is as 
noted only used to go from marginal to joint convergence in (33) and is not 
necessary, as is easily seen by example. Clearly (33) is sufficient for the result of 
the theorem, and it may well be necessary too, see [7]. 

By truncating a n d  recentering it is possible to use Theorem 6 to prove 
central limit theorems also for arrays which are close to being m.d.a.'s. The 
following corollary, which improves on a result of 1-13], contains one set of 
conditions for this. 

Corollary 9. The conclusions of Theorem 6 and Corollary 8 hold also if the 
requirements that {X,,i} is a m.d.a, and that E max IX,,/] ~ 0  are replaced by the 

1 <_i<_~ 

following condition; that there exist constants d, d, with d,>d>O for n> l such 
that 

d. logd. P( max IX,,,/L>d)--*O as n ~ o o  (34) 
1 -<i<r 

and such that 

~n 

IE/_I(X.,/I(IX.,~I~d.))I&O a s  n ~ , o o .  (35) 
i = 1  

Proof. Since the modified version of Corollary 8 follows from the modified 
version of Theorem 6 in the same way as above, we will only prove the latter. 
Put X',,/=X,,iI([X,,/[<d,)-Ei_I(X,,~I([X,,/I<d,)), so that {X;,~} is a m.d.a. 

k 

and let as usual S',(k)= ~ X',,i. Since P({,>t/,(1))--+ 1 we have by (34) and (35) 
i = 1  

that sup IS o rl,(t)-S'o t/,(t)] &0 .  Further, by arguments similar to the proof of 
o ~<t< 1 ]~.(t) n.(t) 

(4) of Lemma 1 above, 0_<t_<lsup i~1X2"'i-i~l X"2'i ~ 0 ,  and hence the corollary 

follows from Theorem 6 if we show that 

E max IX'.,it-+0 as n ~ c ~ .  (36) 
1 < i  ~r 

For brevity put I,,i=l(d<lXn,/l<d,)= and 1~,= max ]X,,/II,, i and note that 

{E/_ I(M,)}F= 1 is a martingale. Further let c=e / (e - l )  and let K > 0  be arbitrary. 
Then inequality VII: (3.7) of [4], with xj replaced by KE/ 1(~/) gives that 
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E max  Ei_l(lX.,ilI,,,i)<E max  Ei_l(M.) 
1 <=i<=~n I <--_i<={~ 

<c/K+cE:VI, log  + KM~ 

<c/K+cd, log + (d,K) E max I,,i, 
1 < i < ~  

where l o g + x = 0 v l o g x .  Clearly EM~<d.E max I~.~ and E max I., i 
l <_i<_(n l <=i<={n 

< P (  max IX..~l>d), so writing X'.'~=X..~I(IX.,~I<d)-E~_~(X.,~I(IX..~[<d)) 
l_<i--<(n 

we have 

E max [X'.,i-X'~,iJ 

<=c/K+d.(l+clog+d.K)P( max IX.,il>d)--*c/K, as n - * o o ,  
1 < i < r  

! KS! by (34). Since K is arbitrary this shows that E max jX,,,i-- ~,i -~0. 
l <i<=~n 

Further, from (34) and (35) follows that max IX'.,i[&O, and hence also 
1 < i<G~ 

/t ~ t! H max IX~,iJ ~ 0. Since [X.,il =< 2 d this implies that E max IX~,i[ -~ 0 and hence 
1 <i<{,~ l < i < { n  

(36) holds.  [ ]  

The  condi t ions  for convergence  in [13] do not  include the existence of  the 
b o u n d i n g  s topp ing  t imes  {~.}. U n d e r  the condi t ions  of  T h e o r e m  1 of  [13] it is 

e a s y t o f i n d s u c h s t o p p i n g t i m e s ,  o n e c a n e . g ,  t a k e ~ , - i n f { k ;  ~ X 2  > 1 + @  n,i  
i = 1  

However ,  T h e o r e m  2 of  that  p a p e r  is incor rec t ly  stated,  as can be seen f rom the 
fol lowing example ,  where  we use the  no t a t i on  of  [131. Let  X,,~; i = 1 , 2 ,  .., be  
i ndependen t  and  let Xn, ~ = 1In with p robab i l i t y  n/(n+ 1) and  - 1  o therwise  and  
let k , = i n f { i ;  X,,~+ 1 = -  1} An. Then  it is easy to see tha t  the condi t ions  of  the 

kn 

theorem are satisfied, with o-2=0 (take e . g . d . = d = 2 ) ,  but ~ X..~ does not 
converge to zero as it should by the theorem. ~= ~ 
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