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1. Introduction 

Let X(t, co)=X(t) denote the standard Brownian motion process and consider 
the uniform modulus of continuity S(h) say, where 

S(h)= sup [ sup IX(v)-X(u)l] .  
O=<t=<l t<=u<v<t+h 

Sirao's result [8] concerning the large values of S(h) sharpened L6vy's earlier 
result [6]. The Chung-Erd/Ss-Sirao results [1] however settled completely the 
problem of large values of S(h) in RI: 

Theorem 1.1 (Chung-Erd6s-Sirao). With probability one 

( h 1 1 ~ h f  (i) S(h)>h ~ 2log +51og2~+21og3~+.. .+21ogn_ ~ +2log.  

for some arbitrarily small h. 
(ii) for each e > 0 there is a (~ > 0 such that 

2 1  S(h)<-h~( log~+5 1 1 ~+(2+e)  log, _ log 2 ~+21og 3 ~+. . .  +21og,_~ 

for O<h<6. 

Theorem 1.1 above (Theorem 2 in [1]) includes the earlier results of Sirao 
and L6vy. 

In Sect. 3 of this paper we investigate the small values of S(h) as h ~ 0  for 
Brownian motion in R k, k > l .  We obtain some terms of the asymptotic 
expansion for the small values of S(h), complete solution being hindered by 
serious independence difficulties. We then procced in Sect. 4 to examine 
insteed of S(h), the variable 

2(h)= inf [ sup [X (t + s ) -  X (t)[]. 
O_<t_<l O<_s<=h 

We obtain some interesting results from which we deduce the asymptotic 
behaviour of 2(h) as h--+O. We conclude each of Sects. 3 and 4 with a conjecture. 
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2. P r e l i m i n a r i e s  

Throughout  this paper c, Co, c', C a . . . .  will denote a finite positive constant 
whose value is not important and not necessarily the same at different occur- 
rences unless otherwise stated; co + will denote the shifted Brownian path such 
that co+" t ~ X  (t + s, co). Other notations are standard. 

s ' 

The next two definitions will recur frequently in this paper. 

D e f i n i t i o n  2.1. We shall say that a non-negative, continuous and monotone non- 
decreasing function 0(t) belongs to the lower class (or O(t)~L) if with probability 
one there exists ho(co)>0 such that 

S(h)>~(h) for all h<=ho(co ), where ~(t)=t~O(1/t).  

Otherwise 0(t) belongs to the upper class (or 0(t)~ U). 

Definition 2.2. Define 

Sk(X , c~) as the sphere in R k with centre x, radius e; 

Tk(~, co) as the total time spent by the path co in Sk(O, ~) for k_->3; 

Pk(C~, co) as the first passage time out of Sk(o, ~) for k >  1' 

C k as the unit cube in R k. 

Next we state some useful results. 

L e m m a  2.1. Let U and V be standard Gaussian random variables in R k, k > 1 and 
suppose that E(U i V~)=p~i~. Then there is a positive constant c' such that 

P(IUI>~, IVl>e)<c ' exp { - ( 1 - p 2 )  c~2/8}. P([UI >~). 

See Lemma 1.6 in [7]. 

L e m m a  2.2 (Kochen-Stone [5]). Let {E,} be a sequence of events. Then 

(i) 2 , P ( E , ) <  o o ~ P { E ,  occur i.o.} =0. 

~ P(E~C~Ek) 
(ii) Z , P ( E , ) =  + oo and l iminf,  i_--1 k_--t < C1 

n n 

Z Z P(Ej) P(Ek) 
j = l k = l  

~ P { E ,  occur i.o.} >= C~ 1. 

All subsequent results in this section are proved in [2]. 

Lemma 2.3. For almost all co~f2, k>  3 

Tk(e , co) 2 
lim sup 0( 2 (X- -  1 - -  ' 

~ o + loglog p2 

k 2 where Pk is the first positive root of the Bessel function Jr(z) with # = ~ -  . 
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Lemma 2.4. For almost all ~o~f2, k > l 

Pk(~, co) 2 
lim~+o+SUp ~2 loglog~ ~ qk a' 

where qk is the first positive zero of the Bessel function J~(z) with v=k2 - 1. 

Lemma 2.5. P{Tk(c~,Oo)>y}=dkeX p ( - P ~  ) \ 2c~2 y [-l+0(exp(--/~ky)) ] as y--~oo for 

suitable positive constants dk, Pk where Pk is as in Lemma 2.3. 

Lemma 2.6. Tk+2(~,co ) and Pk(c~, co) have precisely the same distribution for k 
=1,2,  .... 

Note that Lemma 2.6 is not true for regions more general than the sphere 
and then only if the Brownian path starts at the centre of the sphere. 

3. The Small Values of S(h) 

Theorem 3.1. I f  tp(t) = (2 log t + C log 2 t) -~ then tp(t)eL for C < 1, and ~p(t)e U for 
C > I .  

Proof. Let R(X;  t, t + h ) =  sup IX(v)-X(u) l  so that 
~<=u<v<t+h 

S(h)= sup R ( X ; t , t + h ) .  
0_<t_<l 

Subdivide the unit interval (0, 1) into subintervals each of length 1/22. Then 

{I } P { S ( 1 ) > 2 } < P  R X ; i / 2 2 , 1 + ~ 2 ) > 2  for some 0 ~ i ~ [ 2  2] . 

Note that the distribution of R(X;  t, t + h) is the same as that of R(h) where R(h) 
= sup IX (v)-  X (u)[ and by the scaling property, that 

O<=u<v<h 

P {R (h) > 2 h ~} = P {R (1) > 2}. 

The tail of the distribution of R(1) was obtained by Feller [4] for Brownian 
motion in R 1 and leads immediately to 

P R X ; i / 2 2 , 1 - b ~ 2 ) > 2  < 2  e-x2/2 for large  2. 

Since there are [22] + 1 such subintervals, we have proved the upper bound half 
of 

Lemma 3.1. There exist positive constants ca, c 2 such that 

c12e ;'2/2<=p{s(1)>)~}<=c22e-;'=/2 as 2--,oc. 
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For the lower bound, define the event Ei={co: IX(1 +i/),2)-X(i/22)1>2}. 
[221 

Then the event {S(1)>2} _~ U Ei where P(Ei) =P{[X(1)I >2} does not depend on 
i. Moreover, i= 

Ii-Jl 
cov (El, E j) = Pij = 1 22 

and 
li-jl  a-p2=(1-pi)0 +&)>- 2~ 

so that Lemma 2.1 gives for any i, j, 

P(Eic~Ej)<c e x p ( - [ i - j l / 8 ) .  P(E,). 

Therefore for each positive integer n, 

[~2] [d~2/n] [22/n] [,~2/n] 

P ~E~>_ Z P(E~.)-c Z P(E,,) Z exp{-l i- j[n/S} 
i=1 i = i  i = i  j = l  

j , i  

and on choosing n sufficiently large we have ~ exp { -  fi-jl n/8} < 1 .  
j = l  
j * i  

For such values of n we have 

[k2] [k2/n] 

P [,.) Ei>--�89 Z P(Ei.)~---�89 P(Ei)" 
i = i  i = l  

P(EI) can be estimated from the tail of the standard normal distribution to 
complete the proof of Lemma 3.1. 

We now proceed to prove Theorem 3.1 in two parts. 

Lower Class 

Define the event F,={~o: S(h,)<h~_l 1 ~(1/h,_ 0}, where h,= e-"~ and 0 < p < � 8 9  
Then the events {Si(h,)<h~_ 1 O(1/h,_l)}, for the independent and identically 
distributed random variables 

Si(h,) = sup R(X;t,t+h), i=0,  1,2 . . . .  [~7-. ]" 
2ihn <t < ( 2 i +  1)hn kArln d 

are independent and have equal probabilities. Moreover since 

p(Fn ) <__ (p {So(h, ) < h~_ l O(1/h, - 1)})[~/2h.1. 

By Lemma 3.1 and the scaling property, 

P {S0(h,) < h,_~ O(1/h,_ 11} 

=P {S(1)<h;} h~_l ~(1/h~_ 1)} < 1 - Co2~e -~./2, 
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n - 1  where 2~ = 1/h,_ 1). Hence 

P(F.) <(1 - Co 2. e-  a~/2)[1/2h.1 =(1 -- U) u 

say, = e u ~og(~-.) < e- u. because log (1 - u) < - u. 

Now N- -  ~gel no and u = C o 2~ e-x~/2. But 

(h._ 1~ ( 1 1 ) 
)~2 = \ h. / 2 lOg--h._l + C log 2 

= {1 + O(n o- 1)} {2nP(1 + O(n- 1) + Cp(log n + O(n- 1))} 

=2n~ since p<�89 

Therefore 2 . ~ c  I n ~p and hence 

1 np /,/�89 N u ~ e  .Coq exp{-no- �89  n~ 

where c5 = � 8 9  if C < l .  

Therefore P{F~} < e  . . . .  ~ for large n, so that ~, P(F~) < o% and, by Lemma 2.2, 
n = l  

F~ happens only finitely often. In other words, for almost all co, there exists an 
integer n*(co) such that F~ does not happen for n>n*(co). Notice that 
h,< h <=h~_ 1 implies S(h)> S(h,) and h~_ l O(1/h,_ ~)> h~ O(1/h). Therefore for 
almost all co, there exists h,,(o,)>0 such that S(h)> h ~ 0(l /h)  for all h < h,,(,,). This 
means that O(t)eL for C <  1. 

Upper Class 

Consider two sets of alternate intervals and let 

E l (h )=  { sup R ( X  t, t+h)<h~O(1/h)}, 
i = 0  2ih<=t<(2i+l)h 

[ 3_i 
Ez(h)= ~ { sup R(X;t, t+h)<hiO(1/h)},  

i = 0  (2i+l)h<=t<2(i+lIh 

and 

F(h)={S(h)<h}tp(1/h)} ={ sup R(X; t, t+h)<__h~O(1/h)}. 
O__<t__<l 

Then P{EI(h)}=(P{S(1)<O(1/h)})[2~]+' by the scaling property so that 

Lemma 3.1 gives P{El(h)}>(1-cz2e-Z2/z)[~h 1+1,- where 2=t)(1/h). Hence 
1~-- log (1 -- u) 

P{EI(h)} ~_e2h where l o g ( 1 - u ) ~  - u  so that P(El(h)} >=e -~ where 

3 1 1 1 log ~ + ~ C log 2 ~) 

z h / l\C/2 *0 as h$0 for C > I .  
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Therefore for C>1 ,  P{Ea(h)}-+1 as h ~ 0  and similarly, P{E2(h)} ~ 1  as h--+0. 
Moreover since F(h)~_El(h)r~E2(h), P{F(h)}--+I as h-+0, for C > I .  We have 
thus proved that P{(F(h)) c} -+0 as h~0 so that we can find a sequence h,$O such 

P{(F(h,)) c} <n@. For  such a sequence, X,P{(F(h,))q < oo so that P{(f(h,)) ~ that 

occur for infinitely-many n} = 0  by Lemma 2.2. In other words there exists n0(co ) 
such that F(h,) occurs for all n>no, that is O(t)~U for C > I .  

Remarks I. Although all the arguments given above are for Brownian motion in 
R 1, the corresponding results for the small values of S(h) are also true in R k, 
k > 2. For  instance, applying (2.6) and then (2.3) of [9] we obtain 

P R X;  i/2 2, 1 + 7 - }  > 2  <d~. = for 2 large, 

where X is Brownian motion in R k, k >  1 and d~ is a positive constant which 
depends on k. This together with the tail of the standard multivariate normal 
distribution extends Lemma 3.l to the general form: 

Lemma 3.1.* For Brownian motion in R k, k> 1 there exist positive constants dk, d k 
depending on k such that 

d'k2ke-~2/2<=p{s(1)>2} <_dk2ke -~2/2 as 2~0o .  

Using Lemma 3.1" we obtain the general form of Theorem 3.1 as 

Theorem 3.1.* I f  ~b(t)=(2 log t +  C k log 2 t) ~ then ~,(t)~L for C k < k, and ~b(t)~ U 
for C k > k for Brownian motion in R k, k > 1. 

2. The independence difficulties are such that it seems hopeless to obtain a 
complete characterisation of the growth rate for the small values of S(h). I state 
the 

Conjecture. I f  ~b( t )=(21ogt+log2t+Clog3t)  ~ then O(t)eL for C < - 2 ,  and 
O(t)EU for C > - 2 .  

Sharpening the arguments used in the proof of Theorem 3.1 yields t)(t)~L for 
C <  - 2  and O(t)eU for C > 0 ;  I could only obtain a heuristic argument to show 
that O(t)~U for - 2 < C < 0 .  

4. The Asymptotic Behaviour of ~(h) 

Instead of looking at S(h)= sup [ sup I X ( t + s ) - X ( t ) l ]  let us now consider 
O_<t_<l O<_s<_h 

2(h)= inf [ sup [X(t+s)-X( t )[] .  
O~t__<l O<-s<-h 

Define Pk(X(t), c~, co,+) as the first passage time out of Sk(X, cO, where x =X(t),  
for Brownian motion in R k, k > l "  and Tk(X(t ), ~, co~) as the total time spent in 
Sk(x, ~), where x=X( t ) ,  by Brownian motion in R k, k>3.  Since 

sup [X(t + s) - X(t)[ < c~ IFF Pk(X(t), ~, co, +) > h, (4.1) 
O<_s<_h 
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it follows that inf [ sup IX(t+s)-X(t)h]=c~ IFF 
0Nt__<l O<_s<_h 

sup Pk(X, c~, CO~ +) = h. (4.2) 
x = X ( t )  on path 

0~t<_l 

We first obtain a result from which we can deduce the asymptotic behaviour of 
2(h). Define 

Mk(C0 = Sup {Pk(x, c~, co2): x =X(t)~Ck}, 

Uk(~) = SUp { rk(x , 0:, cot+) : x = X (t)~ Ck}. 

Mk(c 0 2 for k > l, where Pk+ 2 Theorem 4.1. With probability one, ~o+lim c~2 l ~ g  ~_ 1 -p2+2- = 

k 
is the first positive root of the Bessel function Ju(z) with #= ~ -  1. 

The same method of proof gives another interesting result: 

Ok(c0 < 2 f o r  k > 3, where Pk is Theorem 4.2. With probability one, limsup~o+ c~: loges- 1 =Pk - 

k 2 the first positive root of the Bessel function J~(z) with # = ~ -  . 

Proof of Theorem 4.2. Subdivide the unit cube C k into smaller cubes each of side 

length -.1 Each of the n k such cubes in this mesh has an inscribed sphere of 

diameter _1 and a concentric circumscribing sphere of diameter ~ ' .  If N,(co) is the 
H g/ 

total number of cubes of this mesh hit by Brownian motion in R k, k > 3 then 

N~(o))<c' n 2 for n> K*=K*(co) (4.3) 

as proved on p. 360 of [3]. 
For each cube of the mesh hit by Brownian motion, let z i be hitting times 

that  -     andcon  d rthe phe  , ( , such 

Uk(~)<sup(Tk(Xi, c~+~,co~)x i=X(z i ) }  (4.4) 

where sup means the maximum over the finite set of hitting points of cubes of 
xi 

the mesh. 
Consider the sequence c~=e J/l~ j>=2. Clearly (~yc~j+~)-l~(logj)  1 as 

j -~ oo. Define 

�9 ~ j +  1 Fj  = 09 Uk(0()>~-k2 ( 1 - ~ g )  2 log(l/0~j+l ) 

cj= ~o: c~(~)>~7-~ ~ log(1/~j) 
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For each e > 0, there then exists Jl such that 

F/~Gj  for j=>jl. (4.5) 

Moreover 

P(GJ)<PtsupTk(Xi ' eJ+~ 'co+)  :,, p2 c~j21og(l/ej)} 

by (4s Choose n large, equal to (Q/e~) ~ where Q is large enough to satisfy 
k~ 
- - <  e. Since there exists J2(co) such that (Q/ej)~ > K* for j >J2(co), where K* is as Q 
in (4.3), we may apply (4.3) and Lemma 2.5 together with the fact that n=(Q/c~j) ~ 

to obtain P(Gj)<c(Q/c~j).1+o. 6>0.  Hence e(a)< Z ca Q(exp{- j / logj})  ~ 
j = l  j = l  
OO 

converges for 6>0.  This implies by 4.5 that ~ P(Fj) is convergent and Lemma 
j = l  

2.2 further implies that for almost all co, there exists an integer N(co) such that Fj 
does not occur for j >  N(co). In other words, there exists c~j. o with Jo >N(co) such 
that with probability one, 

< 2 ( l + e ) ~ 2 1 o g  _i. 0<~<%~Uk(~) p~ 

Since e is arbitrary, we have proved Theorem 4.2. 
If we subdivide the unit cube C k in the same manner as before, then 

Mk(c~)<supP k xi, ~ + - - ,  co+ for k_> 1, 

where sup means the maximum over the finite set of hitting points x i of the 
Xi 

cubes of the mesh. Considering again the sequence c~j=e-;/~~ using 
arguments similar to those used in the last theorem, and taking note of Lemma 
2.6 gives 

,. Mk(~ ) 2 
L e m m a  4.1. With probability one, nmsup 2 - - - -  ~ for k >>__ 1, where Pk + 2 

=~o+ ~ l o g ~  - 1  ~P;+2 
is as in Theorem 4.1. 

Let us now consider, instead of smaller cubes, small spheres each of radius 
1 

eo/n centred on the points (il/n, i2/n, ...) of the lattice of side - .  If N,(S)(co) is the 
t'l 

total number of small spheres hit by Brownian motion in R k, k__> 1, then 

N(,S)(co)>Cl n for n > K , = K , ( c o )  (4.6) 

again by the result on p. 360 of 1-3] and the fact that (4.6) holds trivially for k 
1 - 2 e  o 1 

=1,2. Define b j = - - .  Then b /b j+~=l+_ .  Let xr, x s be hitting points of 
2j  j 

two different small spheres. Then Sk(Xr, bj) and Sk(x~,bj) are disjoint if n<=j. 
Choose n=j and let j , = K , + I .  Then for all j>__j,, Sk(X~,bj) and Sk(x~,bj) are 
disjoint for xr, x~ hitting points of two distinct spheres. Therefore by the strong 
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Markov property, 

are independent, where z i are hitting times such that X(zi)=x i are hitting points 
of different small spheres. P(Aij)~ c b} 1- ~) as j ~  oo, by Lemma 2.5. Define 

{ 2 (1 -2 e )  2 } 
E j =  co:Mk(bj)< p2+2 bj_llog(1/bj_l) , 

D j = { o :  Mk(ba)<~O--b21og(1/bj);. 
Pk+2 J 

Then for each e>0,  there exists Ja such that EjcDj for J>Jl >J.. Since P(Dj) 

=P{0A~j}  it follows from (4.6) and the fact that n=j that 
i 

p(Di)<( l_c( l_-2eo] l -~  c~j 
\ 2j ] 1 "  

Clearly P(Dj)<clexp(-coj ~) for j--.oo. Hence ~ P(Dj)< ~ c2exp(-coj ~) 
j = l  j = l  oo 

which converges for e>0.  Therefore ~ P(Ej) is convergent. We conclude, by 
i = l  

Lemma 2.2, that there exists bjo with jo>N(o)) such that 

2(1 - 2 0 b 2 log(i/b). 0 < b < b j o  ~ Mk(b)> pk2+2 

Since e is arbitrary we have proved that with probability one, 

Mk(b) 
=> ? for k___l, liminfb2 log b i 

b~O+ Pk+2 

where Pk+2 is as in Theorem4.1. This result with Lemma4.1 completes the 
proof of Theorem 4.1. 

We conclude from (4.1) and (4.2) that 

sup Pk (X, ~, C0~ +) 
inf [ sup IX(t+s)-X(t)[] x=x(t) 

lim 0_<t~ 10<_s~h =C' h ; 0 (h/log h- 1)~ = c IFF lim o _<t __< 1 ~;0 ~2 logr  1 

where c, c' are positive constants with c2= 1/c'. 
2 

Since a.s. the second limit exists and equals .z~ we have proved 
Pk+2 

Theorem 4.3. lim 2(h) Pk+2 h;0 (h/logh-1) ~ -  2 * ' a.s., where Pk+2 is the first positive root of 

function J,(z) with p- - -2 -  1. Finally we state a the Bessel 
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Conjec ture .  With probability one, lira U~(c~) 2 for k >_3, where Pk is the 
~ 0 + ~ 2 1 o g ~ - ~  p~ ~ -- 

=_k_  2 first positive root of the Bessel function Ju(z) with t~ 2 " 

This  con j ec tu r e  c a n n o t  be  p r o v e d  by  us ing  the c o n n e c t i o n  b e t w e e n  P~_ 2 a n d  
T k. N o t e  h o w e v e r  that ,  wi th  p r o b a b i l i t y  one,  

2 U~(~) U~(~) 2 
< l i m i n f  2 ~ l i m s u p  2 . - 1- ~ 

p2+2 ~ o +  C~ 1ogcC 1 -  ~ 0 +  ~ log~ Pk 

for k > 3 by  T h e o r e m  4.2 a n d  the  o b v i o u s  i n e q u a l i t y  Tk(C~, C0)_-->Pk(C~, CO). 
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