Z. Wahrscheinlichkeitstheorie verw. Gebiete 51, 27-38 (1980)

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1980

Local Theorems for Euclidean Motions. I

V.M. Maximov

Institute of Chemical Physics, Acad. of Sciences of the USSR, Vorobyevskoe Chaussee 2⁶, Moscow 117334, USSR

1. Introduction

Let **G** be some topological group, v a probability measure on **G**, v^{*n} the *n*-fold convolution of v. The value $v^{*n}(\mathcal{D})$ is interesting for some applications where \mathcal{D} is any bounded domain in **G**. Every estimate of the value $v^{*n}(\mathcal{D})$, $n \to \infty$ will be called a local theorem (l.t.) on the group **G**. Accordingly the estimate of the value $v^{*n}(\mathcal{D}_1)/v^{*n}(\mathcal{D}_2)$ for any bounded domains \mathcal{D}_1 and \mathcal{D}_2 is called a relation local theorem (r.l.t.). Local theorems have a short history. They have been proved in the case of additive groups \mathbb{R}^1 and \mathbb{R}^d by Shepp [11] and Stone [12] respectively in 1965. Kazdan [5] was the first who began to study r.l.t. for the group of Euclidean plane motions. This result refers to a particular case of a measure v whose support contains four motions \mathcal{A} , \mathcal{A}^{-1} , \mathcal{B} , \mathcal{B}^{-1} . This result was obtained by functional methods and didn't possess a probability character. A r.l.t. has also been proved for local compact unimodal groups by Le Pege [6] and for a wide class of commutative groups by Stone [13].

The first l.t. for the group of Euclidean plane motions was reported in the 3rd Soviet Japanese symposium on probability in 1975 [10]. Independently P. Baldi, Ph. Bougerol, P. Crépel obtained analogous results under wider conditions for Euclidean motions of the *d*-dimensional space \mathbb{R}^d using the Plancherel formula for the Euclidean group of motions [1, 2].

By $\mathbb{M}(d)$ we denote the group of Euclidean motions \mathbb{R}^d .

Some details from [10] were given by the author in [8] and [9], especially with reference to the group $\mathbb{M}(2)$. In particular the concept of "lattice motions" of $\mathbb{M}(2)$ in [9] together with l.t. [1] or with the theorem of the present work give l.t. for any case of measures v on $\mathbb{M}(2)$ with finite support. It is clear that Kazdan's theorem follows from the general cases of l.t. with a finite support of the measure v. The purpose of the present work is to obtain the same [1] by the direct probability method. This method uses a variant of Stone's l.t. [12] applied to independent and nonidentically distributed values and it is sensitive to complementary conditions. In particular, the method can give some other variants of l.t. that do not follow from [1]. They will be obtained in the second part of this work.

2. The Formulation of the Main Result

The group of Euclidean motions $\mathbb{M}(d)$ is the cross-group of the additive group \mathbb{R}^d with the rotations group $\mathbb{SO}(d)$. Every element of this group is uniquely determined by the pair (x, α) , where x is the shift and α is the rotation. The product of the motions is defined by $(x, \alpha)(y, \beta) = (x + y\alpha, \alpha\beta)$, where $\alpha\beta$ is the product of the rotations and $\mathscr{Y}\alpha$ is the image $\mathscr{Y}\in\mathbb{R}^d$ under $\alpha\in\mathbb{SO}(d)$. Let v be a measure defined on $\mathbb{M}(d)$. Taking its natural desintegration we obtain for every $\alpha \in \mathbb{SO}(d)$ the measure $v(\alpha)$ on \mathbb{R}^d and the measure v on $\mathbb{SO}(d)$ which is the conditional distribution v. The random elements $\xi_1, \xi_2, ..., \xi_n, ...$ in $\mathbb{M}(d)$ correspond to the random independent pairs $(x_1, \alpha_1), \ldots, (x_n, \alpha_n), \ldots$ For the pairs $(x_k, \alpha_k), k = 1, 2, ...$ the random values x_k and α_k may be dependent. Then the product $\xi_1 \xi_2 \dots \xi_n$ corresponds to $(x_1 + x_1 \alpha_1 + \dots + x_n \alpha_1 \dots \alpha_{n-1}, \alpha_1 \dots \alpha_n)$. Consequently, the product $\xi_1 \xi_2 \dots \xi_n$ may be reduced to the study of the joint distribution of $\mathscr{G}_n = x_1 + x_2 \alpha_1 + \ldots + x_n \alpha_1 \ldots \alpha_{n-1} \in \mathbb{R}^d$ and $\alpha_1 \alpha_2 \ldots \alpha_n \in \mathbb{SO}(d)$. Under general conditions the product $\alpha_1 \alpha_2 \dots \alpha_n$ converges to the uniform distribution on SO(d) and becomes asymptotically independent with \mathcal{G}_n . Consequently the l.t. in $\mathbb{M}(d)$ is equivalent to the estimate of the probability $\mathbb{P}\{\mathscr{G}_n \in \mathscr{D}\}$. Therefore we will estimate this probability. Let ξ be arbitrary $\mathbb{M}(d)$ - valued random variable having the distribution v determined by the pair (x, α) . By $z(\alpha)$ we denote the conditional variable with fixed α , v - the distribution α , \mathscr{F}_{v} - the distribution x, $v(\alpha)$ – the distribution $x(\alpha)$ and $v'(\alpha)$ – the distribution obtained by symmetrization of $v(\alpha)$.

Theorem (l.t.) Let $\xi_1, \xi_2, ..., \xi_n, ...$ be independent $\mathbb{M}(d)$ – valued random variables with identical distribution v and satisfying the conditions:

1. the n-fold convolution v^{*n} converges weakly as $n \to \infty$ to the uniform distribution on SO(d).

2. The distribution \mathscr{F}_{v} on \mathbb{R}^{d} has finite second moments.

3. There exists some number $n_0 > 0$ and a set K, $K \subseteq SO(d)$ of measure $\mathbf{v}(K) > 0$ so that for any $\alpha \in K$ the support of distribution $v^{*n_0}(\alpha)$ does not contain any hyperplanes. In what follows for the sake simplicity we shall suppose $n_0 = 1$.

Then for any bounded Jordan measurable domain $\mathcal{D} \in \mathbb{R}^{d}$,

$$\mathbf{P}\left\{\mathscr{G}_{\mathbf{n}}\in\mathscr{D}\right\} = c\,\operatorname{mes}(\mathscr{D})\,n^{-d/2} + O(n^{-d/2}) \tag{1}$$

where $mes(\mathcal{D})$ is the Lebesgue measure of the domain \mathcal{D} , c is a constant which does not depend on \mathcal{D} and will be evaluated at the end of this paper.

It is easy to see that the formulations of the proposition [1] and our theorem coincide.

The main tool of the direct probability method for studying local properties of the sum \mathscr{S}_n is the reduction to the conditional sums $\mathscr{S}_n(\alpha_1, ..., \alpha_n)$ of independent but not identically distributed random variables where

$$\mathscr{G}_{n}(\alpha_{1},\ldots,\alpha_{n}) = \varepsilon(\alpha_{1}) + \varepsilon(\alpha_{1}) \alpha_{1} + \ldots + \varepsilon(\alpha_{n}) \alpha_{1} \ldots \alpha_{n-1}$$
⁽²⁾

for fixed collections $(\alpha_1, \alpha_2, ..., \alpha_n)$.

For fixed $(\alpha_1, \alpha_2, ..., \alpha_n)$ the conditional variables are independent but not identically distributed. If for the "majority" of these sums the l.t. in \mathbb{R}^d may be

applied, i.e. the value $\mathbf{P}\{\mathscr{G}_n(\alpha_1, ..., \alpha_n) \in \mathscr{D}\}\$ may be effectively estimated, then we have by integration

$$\mathbf{P}\left\{\mathscr{G}_{n}\in\mathscr{D}\right\} = \int \mathbf{P}\left\{\mathscr{G}_{n}(\alpha_{1},\ldots,\alpha_{n})\in\mathscr{D}\right\}\mathbf{v}(d\alpha_{1})\ldots\mathbf{v}(d\alpha_{n}).$$
(3)

In spite of the essential difference of the methods that have been applied here and in [1] they use effectively the same condition 3. For example whenever this condition or analogous ones are absent the l.t. has not yet been proved, if $d \ge 3$ and the measure v has a finite support without additional conditions.

Finally we remark that by virtue of condition 2 we get the following condition 2': the variables $z(\alpha)$, $\alpha \in \mathbb{SO}(d)$ have second moments which are absolutely integrable. The expectation $\mathbf{M} z(\alpha) = m(\alpha)$ has second moments also. We denote the characteristic function of $z(\alpha)$ by $f_{\alpha}(t)$.

3. A Special Formulation of the l.t. in \mathbb{R}^d

To apply the l.t. to the sum (2) we need the following variant of Stone's l.t.

Lemma 1. Let $\xi_1(\tau)$, $\xi_2(\tau), \ldots, \xi_n(\tau), \ldots$ be a sequence of \mathbb{R}^d -valued nonidentically distributed variables depending on the parameter τ on a measurable compact \mathbb{T} with probability measure μ . For any $\tau \in \mathbb{T}$ the variables $\xi_k(\tau)$ are independent and possess second moments with respect to the measure μ . By $f_n(t, \tau_n)$ we denote the characteristic function of the sum $\xi_1(\tau_n) + \ldots + \xi_n(\tau_n)$. If for all n, n > 0 there exists a set $\mathscr{H}_n \subseteq \mathbb{T}, \mu(\mathscr{H}_n) \to 1$ and we have uniformly for any sequence $\{\tau_n\}, \tau_n \in \mathscr{H}_n$:

1) the distribution of the variable $\frac{1}{\sqrt{n}} \{\xi_1(\tau_n) + \ldots + \xi_n(\tau_n) - m(n, \tau)\}$ converges

weakly as $n \rightarrow \infty$ to the normal distribution with mean zero and covariance matrix Ω where

$$m(n,\tau_n) = M \{ \xi_1(\tau_n) + \ldots + \xi_n(\tau_n) \},\$$

2) the integral $\sqrt{n} \int_{b}^{B} |f_{n}(t,\tau_{n})| dt$ tends to zero as $n \to \infty$ for any positive numbers b, B,

3) the integral $\sqrt{n} \int_{\frac{A}{\sqrt{n}} \leq ||t|| \leq b} |f_n(t, \tau_n)| dt$ tends to zero as $n \to \infty, A \to \infty, b \to 0$,

then for any bounded Jordan measurable domain \mathcal{D} and for all sequences $\{\tau_n\}, \tau_n \in \mathscr{H}_n$ we have

$$\mathbf{P}\left\{\xi_{1}(\tau_{n})+\ldots+\xi_{n}(\tau_{n})\in\mathscr{D}\right\}=(\sqrt{n})^{-d}\int_{\mathscr{D}}\mathbf{N}_{\Omega}\left(\frac{\mathscr{Y}}{\sqrt{n}}-\frac{m(n,\tau_{n})}{\sqrt{n}}\right)d\mathscr{Y}$$
$$+o_{n}(A,b,\tau_{n})(\sqrt{n})^{-d},$$
(4)

where $\mathbf{N}_{\Omega}(x)$ is the density of the normal distribution with mean zero and covariance matrix Ω , and the value $o_n(A, b, \tau_n)$ tends to zero uniformly as $n \to \infty$, $A \to \infty$, $b \to 0$.

The scheme of Stone's proof [12] remains valid when applied to the proof of Lemma 1. Since we intend to apply Lemma 1 to the sum $\mathscr{G}_n(\alpha_1, ..., \alpha_n)$ it is necessary to represent the terms of the sum in accordance with Lemma 1. In order to do this we take the compact space $\mathbb{T} = \mathbb{SO}(d)^{\infty}$ with measure μ , where $\mathbb{SO}(d)^{\infty}$ is equal to a countable product of the group $\mathbb{SO}(d)$ and the measure μ is the direct product of the measure \mathbf{v} on $\mathbb{SO}(d)$. For any $\tau = (\alpha_1, \alpha_2, ...) \in \mathbb{T}$ we construct the sequence of \mathbb{R}^d -valued variables

$$\xi_1(\tau) = z(\alpha_1), \qquad \xi_2(\tau) = z(\alpha_2)\alpha_1, \dots, \xi_n(\tau) = z(\alpha_n)\alpha_1 \dots \alpha_{n-1}$$
(5)

which are independent and nonidentically distributed.

Then for any $\tau \in \mathbf{T}$ we can define the random variables

$$\mathscr{G}_n(\tau) = \mathscr{G}_n(\alpha_1, \dots, \alpha_n) = \xi_1(\tau) + \dots + \xi_n(\tau)$$

We shall apply the equality (4) to the sum $\mathscr{G}_n(\alpha_1, ..., \alpha_n)$. For this it is enough to verify that the conditions 1), 2), 3) are valid for $\mathscr{G}_n(\alpha_1, ..., \alpha_n)$.

4. The Normal Convergence of the Sequence $\frac{1}{\sqrt{n}} \{\mathscr{S}_n(\tau_n) - \mathbf{M}(\mathscr{S}_n(\tau_n))\}$

Condition 1 will hold for $\mathscr{G}_n(\alpha_1, ..., \alpha_n)$ if the distribution of the sequence $\frac{1}{\sqrt{n}}$ $\{\mathscr{G}_n(\tau_n) - \mathbf{M}(\mathscr{G}_n(\tau_n))\}, \tau_n \in \mathscr{K}_n$ converges to the normal distribution with density $\mathbf{N}_{\Omega_1}(x)$ where \mathscr{K}_n are some subsets of $\mathbb{SO}(d)^{\infty}, \mu(\mathscr{K}_n) \to 1$. We need the following auxilliary proposition:

Lemma 2. Let $\alpha_1, \alpha_2, \ldots$ be independent $\mathbb{SO}(d)$ -valued variables with the same distribution **v**. Let $f(\alpha)$ be the linear sum of elements taken from the matrix of nontrivial irreducible representation of $\mathbb{SO}(d)$, $a(\alpha)$ a real function on $\mathbb{SO}(d)$ with $\int |a(\alpha)| d\mathbf{v} \leq \infty$. Then

$$\frac{1}{n}\sum_{1}^{n}a(\alpha_{k})f(\alpha_{1}\ldots\alpha_{k-1})$$
(6)

tends to zero weakly.

Proof. At first we suppose that $a(\alpha)$ has second moments and we shall prove that

$$\frac{1}{n^2} \mathbf{M} \left\{ \sum_{1}^{n} a(\alpha_k) f(\alpha_1 \dots \alpha_{k-1}) \right\}^2 \to 0.$$
(7)

The sum (7) is equal to

$$\frac{1}{n^2} \sum_{1}^{n} \mathbf{M} \alpha^2(\alpha_k) \mathbf{M} f^2(\alpha_1 \dots \alpha_{k-1}) \\ + \frac{1}{n^2} \sum_{1 \le k < m \le n} \mathbf{M} \alpha(\alpha_k) a(\alpha_m) f(\alpha_1 \dots \alpha_{k-1}) f(\alpha_1 \dots \alpha_{k-1} \alpha_k \dots \alpha_{m-1}).$$

Since the function $f(\alpha)$ is continuous, $|f(\alpha)| < c_1$ on $\mathbb{SO}(d)$. Let us set $\mathbf{M} a^2(\alpha) = c_2$, $\mathbf{M} |a(\alpha)| = c_3$. Under condition 1) for the measure **v** it was proved in [7] that $|\mathbf{M} f(\alpha \alpha_1 \dots \alpha_k)| < c_4 \lambda^k$ where c_4 , λ are constants not depending on α , and in addition $0 < \lambda < 1$. Therefore the first sum remains less than $\frac{1}{n} c_2 c_1^2$ and the second one is less than $\frac{1}{n^2} \sum_{1 \le k < m \le n} c_3^2 c_1 c_4 \lambda^{m-k}$. Consequently (7) is true, and $\frac{1}{n} \sum a(\alpha_k) f(\alpha_1 \dots \alpha_{k-1})$ tends to zero weakly if $\mathbf{M} a^2(\alpha) < \infty$. If $\mathbf{M} a^2(\alpha) = \infty$ we can write $a(\alpha) = a_N(\alpha) + \varepsilon_N(\alpha)$ where $|a_N(\alpha)| < N$ and $\mathbf{M} |\xi_N| < \delta$. Then the sum (6) is equal to

$$\frac{1}{n}\sum_{1}^{n}a_{N}(\alpha_{k})f(\alpha_{1}\ldots\alpha_{k-1})+\frac{1}{n}\sum_{1}^{n}\varepsilon_{N}(\alpha_{k})f(\alpha_{1}\ldots\alpha_{k-1}).$$

It is proved above that the first sum tends to zero and the second sum is less than $c_1 \frac{1}{n} \sum_{i=1}^{n} |\varepsilon_N(\alpha_k)|$. But $c_1 \frac{1}{n} \sum_{i=1}^{n} |\varepsilon_N(\alpha_k)|$ tends to $c_1 \mathbf{M} |\varepsilon_N|$ which is less than $c_1 \delta$. Since δ may be chosen arbitrarily we get the required result.

Lemma 3. Under the conditions of Lemma 2 the value $\frac{1}{n} \sum_{1}^{n} a(\alpha_k) f^2(\alpha_1 \dots \alpha_{k-1})$ converges weakly to $\mathbf{M} a(\alpha) \int f^2(\alpha) d\alpha$ where the integral $\int f^2(\alpha) d\alpha$ is taken with respect to the invariant measure on $\mathbf{SO}(d)$.

Proof. The function $f^2(\alpha)$ is an element of the tensor square of the corresponding representation. Therefore

$$f^{2}(\alpha) = \gamma_{0} + \sum_{1}^{d} \gamma_{k} f_{k}(\alpha)$$
(8)

where γ_1 is constant, $f_k(\alpha)$ are elements of the some irreducible nontrivial representations $\mathbb{SO}(d)$ and $\int f^2(\alpha) d\alpha = \gamma_0$ because $\int f_k(\alpha) d\alpha = 0$. Consequently applying Lemma 2 to the sum (8) we obtain Lemma 3.

By $(x_1(\alpha), ..., x_n(\alpha))$ we denote the coordinates of the random vector $x(\alpha)$ with mean zero, and by $g(w) = ||g_{ij}(w)||$ we denote the orthogonal matrix of the rotation $w \in \mathbb{SO}(d)$. The map $w \to g(w)$ is continuous and $g(w, w_2) = g(w_1) g(w_2)$, g(w) is an irreducible representation of $\mathbb{SO}(d)$. Let $\mathbf{M}(\alpha)$ be the covariance matrix of $x(\alpha)$ and $x(\alpha)w$ be the image of $x(\alpha) \in \mathbb{R}^d$ under $w \in \mathbb{SO}(d)$. Then the covariance of $x(\alpha)w$ is equal to $g(w)^T M(\alpha) g(w)$, where $g(w)^T$ is the transposed matrix. However it follows that the covariance matrix for the random variable $\frac{1}{\sqrt{n}} \{\mathscr{S}_n - \mathbf{M} \mathscr{S}_n(\tau)\}$, where $\tau = (\alpha_1, \alpha_2, ...)$ is equal to

$$\frac{1}{n}\sum_{k=1}^{n} g^{\mathbf{T}}(\alpha_1 \dots \alpha_{k-1}) \mathbf{M}(\alpha_k) g(\alpha_1 \dots \alpha_{k-1}) = \Omega(n; \alpha_1, \dots, \alpha_n).$$
(9)

By virtue of condition 2' the expectation $\mathbf{M} \{ \mathbf{M}(\alpha) \} = \|\sigma_{ij}\|$ exists. Set $\sigma = \frac{1}{d} (\sigma_{11} + \ldots + \sigma_{dd})$. It follows from condition 1, that $\sigma > 0$.

Lemma 4. The value $\Omega(n; \alpha_1, ..., \alpha_n)$ converges weakly to σII where I is the identical matrix.

Proof. The coordinates of the vector $z(\alpha)$ w are equal to

$$z_j(\alpha, w) = z_1(\alpha) g_{j1}(w) + \ldots + z_d(\alpha) g_{jd}(w), \quad j = 1, 2, \ldots, d.$$

Then the (i, j)-th element of the matrix Ω is equal to

$$\frac{1}{n}\sum_{1}^{n}\left\{\sum_{m,r}M\varkappa_{m}(\alpha_{k})\varkappa_{r}(\alpha_{k})g_{mi}(\alpha_{1}\ldots\alpha_{k-1})g_{rj}(\alpha_{1}\ldots\alpha_{k-1})\right\}.$$
(10)

The functions $g_{ij}(w)$ are the elements of an irreducible non-trivial unitary representation for which the following ortogonal relations are well-known:

$$\int g_{ij}^2(w) \, dw = \frac{1}{d}; \qquad \int g_{mi}(w) \, g_{rj}(w) = 0 \quad \text{if } (m, i) \neq (r, j).$$

The functions $g_{ij}(w)g_{rj}(w)$ are the elements of the tensor square representation of g(w). Therefore to every sum of the kind

$$\frac{1}{n}\sum_{k=1}^{n}M z_{m}(\alpha_{k}) z_{r}(\alpha_{k}) g_{mi}(\alpha_{1} \ldots \alpha_{k-1}) g_{rj}(\alpha_{1} \ldots \alpha_{k-1})$$

Lemmas 2 or 3 may be applied. This proves Lemma 4.

Now we will indicate the set $\mathscr{K}_n \subset \mathbb{SO}(d)^{\infty}$, $\mu(\mathscr{K}_n) \to 1$, for which the distribution of the variable $\frac{1}{\sqrt{n}} \{\mathscr{S}_n(\tau_n) - \mathbf{M}\mathscr{S}_n(\tau_n)\}, \tau_n \in \mathscr{K}_n$ converges weakly and uniformly to the normal distribution $\mathbf{N}_{\Omega_1}(\infty), \Omega_1 = \sigma \mathbf{I}$.

At first we set $\varphi_{\lambda}(x) = \sup_{\substack{w, x_0 \ \|x - x_0\| > 2}} \int_{\|x w\|^2} ||x w||^2 dv(\alpha)$ where $\|x\| = \sqrt{x_1^2 + \ldots + x_d^2}$. Evidently the function is measurable and $\varphi_{\lambda}(\alpha) \leq \int ||x||^2 dv(\alpha)$.

Since the right hand side of the inequality is integrable in v, we have for all $\lambda > 0$, $\int \varphi_{\lambda}(\alpha) d\mathbf{v} = \varphi(\lambda) < c$ where the constant c does not depend on λ . For any α the function $\varphi_{\lambda}(\alpha)$ decreases to zero as $\lambda \to \infty$. Consequently $\varphi(\lambda) \to 0$ as $\lambda \to \infty$, and there exists a sequence λ_{N} , $\varphi(\lambda_{N}) = \varepsilon_{N} \downarrow 0$. Since the sum $\frac{1}{n} \sum_{1}^{n} \varphi_{\lambda}(\alpha) \to \varphi(\lambda)$ in μ measure, we may define the sets \mathscr{K}_{N} , $\mathscr{K}_{N} \subset \mathscr{K}_{N+1} \subset SO(d)^{\infty}$, $\mu(\mathscr{K}_{N}) \uparrow 1$ such that for any $(\alpha_{1}, \alpha_{2}, \ldots) \in \mathscr{K}_{N}$ the following inequality holds: $\limsup \frac{1}{n} \sum_{k=1}^{n} \varphi_{\lambda_{n}}(\alpha_{k}) \leq \varepsilon_{N-1}$. In virtue of the decreasing $\varphi_{\lambda}(\alpha) = \varepsilon_{N+m}$ for any α and $\tau = (\alpha_{1}, \alpha_{2}, \ldots) \in \mathscr{K}_{N}$ we have $\limsup \frac{1}{n} \sum_{k=1}^{n} \varphi_{\ln n}(\alpha_{k}) < \varepsilon_{N+m}$ for any integer N, m > 0 or $\limsup \frac{1}{n} \sum_{k=1}^{n} \varphi_{\ln n}(\alpha_{k}) = 0$. This implies that

$$\lim \frac{1}{n} \sum_{1}^{n} \int_{\|x-m(\alpha_{k})\alpha_{1}\dots\alpha_{k-1}\| > \varepsilon \sqrt{n}} \|x\|^{2} d\nu(\alpha_{k})\alpha_{1}\dots\alpha_{k-1} \leq \lim \sup \frac{1}{n} \sum_{1}^{n} \varphi_{\ln n}(\alpha_{k}) = 0.$$
(11)

The last inequality holds for arbitrary but fixed \mathscr{K}_N , any $\varepsilon > 0$ and from some positive integer N_{ε} on.

The right-hand side of the inequality (11) is a necessary and sufficient condition for the convergence in the weak sense of $\frac{1}{\sqrt{n}} \{\mathscr{S}_n(\tau_n) - \mathbf{M}\mathscr{S}_n(\tau_n)\}$ to the normal distribution under $\tau_n \in \mathscr{K}_N$.

On the other hand the covariance matrix from Lemma 4 $\frac{1}{\sqrt{n}} \{\mathscr{S}_n(\tau_n) - \mathbf{M}\mathscr{S}_n(\tau_n)\}$ converges to $\Omega_1 = \sigma \mathbf{II}$. Since the normal distribution with zero is determined by the covariance matrix uniquely and $\mu(\mathscr{K}_N) \to 1$ as $N \to \infty$, condition 1) of Lemma 1 for the variables (5) is satisfied.

Remark. It is well-known by [4] that the distribution $\frac{1}{\sqrt{n}} \mathscr{S}_n$ converges weakly to the normal one with density $N_{\Omega}(x)$. The matrix Ω was defined in [4], too. On other hand we have

$$\mathscr{S}_{n} = \frac{1}{\sqrt{n}} \{\mathscr{S}_{n}(\tau) - \mathbf{M}\mathscr{S}_{n}(\tau)\} + \frac{1}{\sqrt{n}} \mathbf{M}\mathscr{S}_{n}(\tau)$$

for any collection $(\alpha_1, \alpha_2, ...) = \tau$.

It was shown above that the distribution $\frac{1}{\sqrt{n}} \{\mathscr{S}_n(\tau_n) - \mathbf{M}\mathscr{S}_n(\tau_n)\}, \tau_n \in \mathscr{K}_n$ converges to the normal one with density $\mathbf{N}_{\Omega_1}(x)$. The distribution of the variable $\frac{1}{\sqrt{n}} \mathbf{M}\mathscr{S}_n(\tau) = \frac{1}{\sqrt{n}} \sum \mathfrak{M}(\alpha_k) \alpha_1 \dots \alpha_{k-1}$ converges to the normal distribution with the density $\mathbf{N}_{\Omega_2}(x)$ [4] since by condition 2'. the value of $\int ||\mathfrak{M}(\alpha)||^2 d\mathbf{v}$ is bounded, and the random variables $\alpha_1, \alpha_2, \dots$ are independent with common distribution \mathbf{v} , satisfying condition 1. Consequently $\mathbf{N}_{\Omega}(x) = \mathbf{N}_{\Omega_1 + \Omega_2}(x)$. This equality will be used to calculate the constant c in the theorem.

5. Proof of Conditions 2), 3) for the Sum $\mathscr{S}_r(\alpha_1, \ldots, \alpha_n)$

To check conditions 2), 3) for the sum $\mathcal{G}_n(\alpha_1, ..., \alpha_n)$ we need the following proposition.

Lemma 5. Let $f_{\alpha}(t)$ be the characteristic function of the variable $\alpha(\alpha)$. Put $w_k = (\alpha_1 \dots \alpha_k)^{-1}$, w_0 – the identity of $\mathbb{SO}(d)$. Then for any segment [b, B], 0 < b < B there exists θ , $0 < \theta < 1$ such that the inequality

$$\mathbf{M}\left\{\prod_{k=1}^{n}|f_{\alpha_{k}}(tw_{k-1})|\right\} < \theta^{n}$$

holds uniformly for any $t \in [b, B]$ as $n \to \infty$.

Proof. For $\alpha \in K$ (see condition 3.) the support of the distribution $v(\alpha)$ does not contain any hyperplane. Thus, if $\alpha \in K$, then the function $|f_{\alpha}(t)|$ may be equal to $\mathbb{1}$

only for the points laying on some lines t_{α} passing through the origin \mathbb{O} . Let β be a random variable on $\mathbb{SO}(d)$ with distribution **v**. The convergence of \mathbf{v}^{*n} to the uniform distribution on $\mathbb{SO}(d)$ involves the convergence of $(\mathbf{v}w)^{*n}$ to one under fixed $w \in \mathbb{SO}(d)$. Then $\mathbf{M}_{\beta} | f_{\alpha}(t \beta w) | < 1$, since the distribution $v(\alpha)$ must be degenerate in the contrary case. Thus $\mathbf{M}_{\beta} | f_{\alpha}(t \beta w) | = v(t, \alpha, w) < 1$ for $t \neq 0$, $\alpha \in K$, $v(t, \alpha, w)$ is a continuous function and $\sup_{w} v(t, \alpha, w) = v(t, \alpha) < 1$, $\mathbf{M}_{\alpha} v(t, \alpha) = v(t) < 1$

for $t \neq 0, \alpha \in K$.

Hence we can find a θ_1 , $0 < \theta_1 < 1$ such that $v(t) < \theta_1$ for all $t \in [b, B]$. Since $|f_{\alpha}(t)| \leq 1$ we have the following inequalities:

$$\mathbf{M}\left\{\prod_{k=1}^{n}|f_{\alpha_{k}}(t\,w_{k-1})|\right\} \leq \mathbf{M}\left\{\prod_{k=1}^{\left[n/2\right]}|f_{\alpha_{2k}}(t\,w_{2k-1})|\right\}$$
(12)

and

$$\mathbf{M}_{\alpha_{2k}}(\mathbf{M}_{2k-1} | f_{\alpha_{2k}}(t \, \alpha_{2k-1}^{-1} \cdot \alpha_{2k-2}^{-1} \dots \alpha_{1}^{-1}) | \\
= \mathbf{M}_{\alpha_{2k}} v(t, \alpha_{2k}, w_{2k-2}) \leq \mathbf{M}_{\alpha_{2k}} v(t, \alpha_{2k}) = v(t) < \theta_{1}.$$
(13)

We remark that the random pairs $(\alpha_{2k}, \alpha_{2k-1})$ and $(\alpha_{2m}, \alpha_{2m-1})$ are independent for any integers k, m, $k \neq m$. Thus it follows from (13) and $\mathbf{M}_{\alpha}\mathbf{M}_{\beta}|f_{\alpha}(t\beta w| < \theta_{1})$ that the right of (12) can be estimated recursively, i.e.

$$\mathbf{M}\left\{\prod_{k=1}^{[n/2]} |f_{\alpha_{2k}}(t \, w_{2k-1})|\right\} \leq \mathbf{M}\left\{\prod_{k=1}^{[n/2]-1} |f_{\alpha_{2k}}(t \, w_{2k-1})|\right\} \theta_{1} \leq \ldots \leq \theta_{1}^{[n/2]}.$$

This completes the proof.

To verify that condition 2) is fulfilled for the sum $\mathscr{G}_n(\alpha_1, \ldots, \alpha_n)$ it suffices to show that

$$\mathbf{M}\left\{\sqrt{n}\int_{b\leq ||t||\leq B}\prod |f_{\alpha_k}(tw_{k-1})|\,dt\right\}\to 0.$$

But by Lemma 5 this value is less than $\theta^n \sqrt{n(B-b)}$, $0 < \theta < 1$ and consequently it tends to zero. To verify that condition 3) is fulfilled it is enough to show that

$$\sqrt{n} \mathbf{M} \left\{ \int_{\frac{A}{n} \leq ||t|| \leq b} \prod |f_{\alpha_k}(t w_{k-1})| dt \right\}$$

tends to zero as $n, A \to \infty$, $b \to 0$. For this we put $\mathbf{M}|f_{\alpha}(t)|=u(t)$, $u(tw_{i}) = \max_{w} u(tw)$. We know that the variables α_{k} , k=1, 2, ... are independent and distributed identically, hence we have

$$\mathbf{M}\prod_{k=1}^{n}|f_{\alpha_{k}}(t\,w_{k-1})| \leq \left\{\mathbf{M}\prod_{k=1}^{n-1}|f_{\alpha_{k}}(t\,w_{k-1})|\right\}u(t\,w_{t}) \leq u^{n}(t\,w_{t}).$$
(14)

It is regrettable that the function u(t) cannot be a characteristic function. However, $\{\mathbf{M}|f_{\alpha}(t)|\}^2 = u(t)^2 \leq \mathbf{M}|f_{\alpha}(t)|^2 = \mathbf{U}(t)$ where $\mathbf{U}(t)$ is the characteristic function of the distribution $\int v'(\alpha) d\mathbf{v}$. This distribution has finite second moments and by condition 3) does not contain any hyperplanes. Hence it follows that for some neighbourhood of zero we have the estimate

$$\mathbf{U}(t) < 1 - c \|t\|^2$$
.

Since ||t|| = ||tw|| for any rotation $w \in \mathbb{SO}(d)$, we also have

$$\mathbf{U}(t\,w_t) < 1 - c \,\|t\|^2. \tag{15}$$

Consequently it follows from (14) and (15) that

$$\sqrt{n} \mathbf{M}_{\frac{A}{\sqrt{n}} \leq \|t\| \leq b} \prod |f_{\alpha}(t w_{k-1})| dt \leq \sqrt{n} \int_{\frac{A}{\sqrt{n}} \leq \|t\| \leq b} \mathbf{U}^{[n/2]}(t) dt.$$
(16)

According to (15) standard tools can be applied to estimate the integral of the power of the characteristic function in the segment $[A/\sqrt{n}, b]$. In that case we obtain $\sqrt{n} \int \mathbf{U}^{[n/2]}(t) dt \to 0$ as $n, A \to \infty, b \to 0$.

Consequently, this completes the proof of condition 3) for the sum $\mathscr{S}_n(\alpha_1, \ldots, \alpha_n)$.

6. Essen's Inequality for the Sum $\mathcal{S}_n(\alpha_1, \ldots, \alpha_n)$.

Let $\xi_1, \xi_2, ..., \xi_n, ...$ be a sequence of random variables which are independent and identically distributed in \mathbb{R}^d . In the paper by Esseen [3] the following inequality was obtained for the sum $\mathscr{S}_n = \xi_1 + ... + \xi_n$

$$\sup_{x \in \mathbb{R}^d} \mathbf{P}\{\mathscr{S}_n \in \Sigma_r + x\} = c(d, r) \left\{ \sup_{u \ge r} u^{-2} \sum_{1}^n \chi_k(u) \right\}^{-d/2}$$
(17)

where Σ_r is the sphere of radius *r* with the centre at the origin; c(d, r) is a constant depending only on *d* and *r*, \mathbf{P}_k is the distribution of ξ_k , $\chi_k(u) = \inf_{\|t\|=1} \int_{\|x\|| < u} (t, x)^2 d\mathbf{P}'_k$ where the distribution \mathbf{P}'_k is obtained by symmetrization of \mathbf{P}_k . Let us apply the inequality (17) to the sum

$$\mathscr{S}_n(w; \alpha_1, \ldots, \alpha_n) = x_1(\alpha_1) w_1 + \ldots + x_n(\alpha_n) w_n$$

where the rotations w_1, \ldots, w_n are arbitrary but fixed. Since for any rotation $w \in \mathbb{SO}(d)$ the equality $(v(\alpha) w)' = v'(\alpha) w$ holds, we shall have

$$\inf_{\|t\| = 1} \int_{\|x\| \le \lambda_0} (t, x)^2 d(v(\alpha) \tau)' = \inf_{\|t\| = 1} \int_{\|x\| \le \lambda_0} (t \tau^{-1}, x)^2 dv'(\alpha)$$

$$= \inf_{\|t\| = 1} \int_{\|x\| \le \lambda_0} (t, x)^2 dv'(\alpha).$$
(18)

Thus Esseen's inequality for the sum $\mathscr{L}_n(w; \alpha_1, ..., \alpha_n)$ does not depend on the arbitrary rotations $w_1, ..., w_n \in \mathbb{SO}(d)$. The function $\psi(\alpha, \lambda)$ $= \inf_{\|t\|=1} \int_{\|x\| \le \lambda} (t, x)^2 dv'(\alpha)$ is measurable with respect to α and is decreasing with respect to λ for every fixed α . By condition 3. if $\alpha \in K$ then $\lim_{\lambda \to \infty} \inf \psi(\alpha, \lambda) > 0$. Consequently we can find a subset $K_0 \subset K$ with positive measure $\mathbf{v}(K_0) = p_0 > 0$ and some λ_0 such that simultaneously for all $\alpha \in K_0$, $\lambda \ge 0$ the inequality

$$\inf_{\|t\|=1} \int_{\|x\|<\lambda} (t,x)^2 \, dv'(\alpha) \ge \delta_0 > 0$$
(19)

is fulfilled.

Lemma 6. Let us suppose that among $\alpha_1, \ldots, \alpha_n$ the value $\alpha_k \in K_0$ is taken on $p_0 n/2$ times at least. Then there exists a sphere Σ_r and a constant $c(p_0, \delta, d, r)$ such that

$$\sup_{x\in\mathbb{R}^d} \mathbf{P}\{\mathscr{S}_n(\alpha_1,\ldots,\alpha_n)\in\Sigma_r+x\} < c(p_0,\,\delta,\,d,\,r)\,n^{-d/2}.$$

In fact this can be obtained by employing (18) and (19) in the inequality (17) for the sum $\mathcal{G}_n(\alpha_1, \ldots, \alpha_n)$.

The next lemma follows from the preceding one.

Lemma 7. Under the conditions of Lemma 6 for any bounded domain \mathcal{D} in \mathbb{R}^d there exists a constant $c(\mathcal{D}, p_0, \delta, d)$ such that

$$\sup_{x \in \mathbb{R}^d} \mathbf{P}\{\mathscr{S}_n(\alpha_1, \dots, \alpha_n) \in \mathscr{D} + x\} \leq c(\cdot) n^{-d/2}.$$
(20)

Furthermore the measure of all trajectories $(\alpha_1, ..., \alpha_n)$ for which the inequality (20) may not be true is less than $\exp\{-c(p_0)n\}$ and the constant $c(p_0) > 0$ depends only on p_0 .

Proof. In fact any bounded domain \mathscr{D} of diameter L may be covered by the finite number of spheres of the radius r. This number depends only on L and r. Consequently we can apply Lemma 6. The second part of Lemma 7 follows by elementary combinatorial estimations.

7. The Proof of the Theorem

It follows from above that we can define some sequence of sets $\mathscr{K}_n \subset \mathbb{SO}(d)^{\infty}$, $\mu(\mathscr{K}_n) \to 1$ as $n \to \infty$ such that the conditions of Lemma 1 are fulfilled for the sum $\mathscr{S}_n(\alpha_1, \ldots, \alpha_n)$ if $\tau_n = (\alpha_1, \ldots, \alpha_n, \ldots) \in \mathscr{K}_n$. Then for every number *n* we shall represent the compact $\mathbb{SO}(d)^{\infty}$ as the sum of the sets \mathscr{K}_n , \mathscr{L}_n and \mathscr{E}_n where \mathscr{L}_n is a set of τ such that $\tau = (\alpha_1, \ldots, \alpha_n, \ldots) \in \mathbb{SO}(d)^{\infty}$, so that the value $\alpha_k \in K_0$ is taken on less than $p_0 n/2$ times among the *n* first components, \mathscr{E}_n is the rest of the elements $\mathbb{SO}(d)$. It is obvious that $\mu(\mathscr{E}_n) \leq \varepsilon_n$. By virtue of Lemma 7 we have $\mu(\mathscr{L}_n) < \exp(-c(p_0)n)$. It is clear from the foregoing definition of the measure μ on $\mathbb{SO}(d)^{\infty}$ that integral (3) can be written

$$\mathbf{P}\left\{\mathscr{S}_{n}\in\mathscr{D}\right\} = \int \mathbf{P}\left\{\mathscr{S}_{n}(\tau)\in\mathscr{D}\right\} d\mu = \int_{\mathscr{K}_{n}} + \int_{\mathscr{L}_{n}} + \int_{\mathscr{S}_{n}} + \int_{\mathscr{S}_{n}}.$$
(21)

By Lemma 6 and the evident inequality $0 \leq \mathbf{P}\{\mathscr{G}_n(\tau) \in \mathscr{D}\} \leq 1$ we have

$$\int_{\mathscr{K}_n} = (\sqrt{n})^{-d} \int_{\mathscr{K}_n} (\int_{\mathscr{D}} \mathbf{N}_{\Omega_1}(\cdot) \, dy) \, d\mu + (\int \theta_n(\cdot) \, d\mu) \, n^{-d/2}.$$

Since θ_n tends to zero uniformly on \mathscr{K}_n as $n \to \infty$ the second integral is less than $\varepsilon'_n n^{-d/2}$ where $\varepsilon'_n \to 0$.

It is obvious that

$$\int_{\mathcal{X}_n} = n^{-d/2} \mathbf{M}_{\tau}(\cdot) - n^{-d/2} \int_{\mathcal{X}_n + \mathscr{E}_n}, \quad \text{where } \int_{\mathcal{X}_n + \mathscr{E}_n} \mathbf{N}_{\Omega_1}(0) \operatorname{mes} \mathscr{D} \cdot \varepsilon_n'', \varepsilon_n'' \to 0.$$

To evaluate $M_{\tau}(\cdot)$ it suffices to change the integration order and to note that $\operatorname{mes}(\mathscr{D})$ and $\mathbf{N}_{\Omega_1}(x)$ are bounded. Therefore

$$\mathbf{M}_{\mathfrak{r}}(\,\cdot\,) = \operatorname{mes} \mathscr{D} \cdot \left\{ \lim_{n} \mathbf{M}_{\mathfrak{r}} \left[N_{\Omega_{1}} \left(\frac{\mathbf{M} \mathscr{L}_{n}(\tau)}{\sqrt{n}} \right) \right] \right\} + \varepsilon_{n}^{\prime\prime\prime}, \qquad \varepsilon_{n}^{\prime\prime\prime} \to 0$$

Thus we obtain

$$\mathbf{P}\{\mathscr{G}_{n}\in\mathscr{D}\} = \operatorname{mes}\,\mathscr{D}\{\lim_{n}\mathbf{M}_{\tau}[\cdot]\}\,n^{-d/2} + o_{n}(1)\,n^{-d/2}.$$

According to the remark above the distribution of the variable $\mathbf{M} \frac{\mathscr{G}_n(\tau)}{\sqrt{n}}$ converges uniformly to the normal distribution with the density $\mathbf{N}_{\Omega}(x)$. Consequently the constant $\lim_{n} \mathbf{M}_{\tau} \left[\mathbf{N}_{\Omega_1} \left(\frac{\mathbf{M}\mathscr{G}_n(\tau_n)}{\sqrt{n}} \right) \right] = c$ is equal to $\int_{\mathbb{R}^d} \mathbf{N}_{\Omega_1}(x) \mathbf{N}_{\Omega_2}(x) dx = \mathbf{N}_{\Omega}(0)$, where $\mathbf{N}_{\Omega}(x)$ is the density of the limit distribution of $\frac{1}{\sqrt{n}} \mathscr{G}_n$. Thus the theorem is proved.

References

- Baldi, P., Bougerol, Ph., Crepel, P.: Théorème central limit local sur les déplacements de R^d. C.R. Acad. Sci. Paris, Sér. A 283, 53-55 (1976)
- 2. Bougerol, Ph.: Thèse 3^{ème} cycle. Université Paris VII (1977)
- Esseen, C.G.: On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 9, 290-308 (1968)
- Gorostiza, L.: The central limit theorem for random motions of d-dimensional euclidean space. Ann. of Probability 1, 603-612 (1973)
- 5. Kazdan, D.A.: A uniform distribution in the plane. Trudy Moskov Mat. Obšč. 14, 299-305 (1965)
- Le Page, E.: Théorèmes quotients pour certaines marches aleatoires. C. R. Acad. Sci. Paris, Sér. A 279, 69-72 (1974)
- 7. Maximov, V.M.: On the applicability of the central Limit theorem to sums of the form $\sum f(\xi_1...\xi_i)$. Izv. Vysš. Učebn. Zaved. Matematika **12**, 61–71 (1970)
- Maximov, V.M.: Uniform distribution of points and a local theorem for random motions. Soviet Math. Dokl. 18, 67-70 (1977)
- 9. Maximov, V.M.: A local theorem for lattice motions of the euclidean plane. Soviet Math. Dokl. 18, 1545-1549 (1977)
- Maximov, V.M., Tutubalin, V.N.: On the integral and local theorem in groups of Motions. 3rd Soviet Japanese Symposium. Proceedings. Tastikent 91-92 (1975) (in Russian)

- 11. Shepp, L.A.: A local limit theorem. Ann. Math. Statist. 35, 419-423 (1964)
- Stone, Ch.J.: A local limit theorem for nonlattice multidimensional distribution functions. Ann. Math. Statist. 36, 546–551 (1965)
- 13. Stone, Ch.J.: Ratio limit theorems for random walks on groups. Trans. Amer. Math. Soc. 125, 86-100 (1966)

Received August 18, 1977; in revised form June 1, 1979