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1. Introduction

Let G be some topological group, v a probability measure on G, v*" the n-fold
convolution of v. The value v**(%) is interesting for some applications where &
is any bounded domain in G. Every estimate of the value v¥*(%), n — oo will be
called a local theorem (1.t.) on the group G. Accordingly the estimate of the
value v*"(2,)/v*"(2,) for any bounded domains &, and %, is called a relation
local theorem (r.lt). Local theorems have a short history. They have been
proved in the case of additive groups R' and IR? by Shepp [11] and Stone [12]
respectively in 1965. Kazdan [5] was the first who began to study r.Lt. for the
group of Euclidean plane motions. This result refers to a particular case of a
measure v whose support contains four motions ./, &/ !, 8, #~'. This result
was obtained by functional methods and didn’t possess a probability character.
A r.lt has also been proved for local compact unimodal groups by Le Pege [6]
and for a wide class of commutative groups by Stone [13].

The first Lt. for the group of Euclidean plane motions was reported in the
3rd Soviet Japanese symposium on probability in 1975 [10]. Independently P.
Baldi, Ph. Bougerol, P. Crépel obtained analogous results under wider con-
ditions for Euclidean motions of the d-dimensional space R? using the Plan-
cherel formula for the Euclidean group of motions [1, 2].

By IM(d) we denote the group of Euclidean motions R?.

Some details from [10] were given by the author in [8] and [9], especially with
reference to the groupM(2). In particular the concept of “lattice motions” of M(2)
in [9] together with Lt. [1] or with the theorem of the present work give 1.t.
for any case of measures v on IM(2) with finite support. It is clear that Kazdan’s
theorem follows from the general cases of Lt. with a finite support of the
measure v. The purpose of the present work is to obtain the same [1] by the
direct probability method. This method uses a variant of Stone’s Lt. [12] applied
to independent and nonidentically distributed values and it is sensitive to
complementary conditions. In particular, the method can give some other
variants of Lt. that do not follow from [1]. They will be obtained in the second
part of this work.
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2. The Formulation of the Main Result

The group of Euclidean motions IM(d) is the cross-group of the additive group
R? with the rotations group SO(d). Every element of this group is uniquely
determined by the pair (=, ), where = is the shift and « is the rotation. The
product of the motions is defined by (=, @) (y, f) =(= +y o, «f), where of is the
product of the rotations and g« is the image y€R? under «eSO(d). Let v be a
measure defined on IM(d). Taking its natural desintegration we obtain for every
2eSO(d) the measure v(x) on R? and the measure v on SO(d) which is the
conditional distribution v. The random elements £,,¢,,...,¢,,... in IM(d) cor-
respond to the random independent pairs (z,, ), ..., (%, ®,), .... For the pairs
(%, o), k=1,2, ... the random values #, and &, may be dependent. Then the
product &, &, ... &, corresponds to () +#; 0y +...F 2,00 ... 0, ;... q,) Con-
sequently, the product &, &,...¢, may be reduced to the study of the joint
distribution of & =x, + 2,0, +... +%,%, ... o,_,€R? and o, o, ... 2,€SO(d). Un-
der general conditions the product o, «, ... o, converges to the uniform distribu-
tion on $SO(d) and becomes asymptotically independent with &,. Consequently
the Lt. in M(d) is equivalent to the estimate of the probability P{%eZ}.
Therefore we will estimate this probability. Let ¢ be arbitrary IM(d) - valued
random variable having the distribution v determined by the pair (z, ). By #(«)
we denote the conditional variable with fixed o, v - the distribution o, % - the
distribution #, v(«) - the distribution #(x) and v'(2) - the distribution obtained by
symmetrization of v(x).

Theorem (L.t.) Let &,,&,, ..., &, ... be independent M(d) - valued random variables
with identical distribution v and satisfying the conditions:

1. the n-fold convolution v*" converges weakly as n—oo to the uniform
distribution on SO(d).

2. The distribution F, on R? has finite second moments.

3. There exists some number ny>0 and a set K, K=SO(d) of measure
v(K)>0 so that for any aeK the support of distribution v¥"(a) does not contain
any hyperplanes. In what follows for the sake simplicity we shall suppose ny=1.

Then for any bounded Jordan measurable domain ZelR®,
P{LeP}=cmes(2)n~*?+0(n"? (1)

where mes(2) is the Lebesgue measure of the domain &, c is a constant which
does not depend on 9 and will be evaluated at the end of this paper.

It is easy to see that the formulations of the proposition [1] and our
theorem coincide.

The main tool of the direct probability method for studying local properties
of the sum & is the reduction to the conditional sums (x,...,o,) of inde-

n

pendent but not identically distributed random variables where
Sty sy =#(og)Faloa) oy +. +xlog) oy oo,y (2)

for fixed collections (o, &5, ..., &,).
For fixed (a,,%,,...,a,) the conditional variables are independent but not
identically distributed. If for the “majority” of these sums the Lt. in R? may be
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applied, i.e. the value P{%(a,,...,0,)e2} may be effectively estimated, then we
have by integration

P{%eD}=[P{L (0, ..., 0,)eD} v(da,) ... v(da,). 3)

In spite of the essential difference of the methods that have been applied here
and in [1] they use effectively the same condition 3. For example whenever this
condition or analogous ones are absent the Lt. has not yet been proved, if d=3
and the measure v has a finite support without additional conditions.

Finally we remark that by virtue of condition2 we get the following
condition 2’: the variables #(0), xeSO(d) have second moments which are
absolutely integrable. The expectation M z(a) =m(x) has second moments also.
We denote the characteristic function of z(e) by f,(¢).

3. A Special Formulation of the Lt. in R?

To apply the L.t. to the sum (2) we need the following variant of Stone’s Lt.

Lemma 1. Let £,(7), £,(x),...,&,(7), ... be a sequence of R%valued nonidentically
distributed variables depending on the parameter t on a measurable compact T
with probability measure u. For any 1€T the variables £,(z) are independent and
possess second moments with respect to the measure . By f,(t,1,) we denote the
characteristic function of the sum &,(t,)+...+¢,(t). If for all n, n>0 there
exists a set A, <M, u(A,)—1 and we have uniformly for any sequence {z,}, 1,€ X,

1) the distribution of the variable —117{él(rn)+...+§n(r,1)—m(n, T)} converges
n

weakly as n— oo to the normal distribution with mean zero and covariance matrix
Q where

m(n, t,)=M{& (t,)+...+ &, (1)},

2) the integral ][ flf(t, 7))l dt tends to zero as n—oo for any positive
numbers b, B,

3) the integral Yn | |f.(t,1,)dt tends to zero as n— o0, A— w0, b—0,

W§ [fell <b

then for any bounded Jordan measurable domain & and for all sequences {t,},
T,€X, we have

|4 — (n"c
P& (1) +.. +E,(5)e2) =(/m) ¢ [ N (%——m ")d
1 ]/ ; 2 ﬂ 1/; Y
o(4,6,7,) /), (4
where Ng(z) is the density of the normal distribution with mean zero and

covariance matrix Q, and the value o0,(A,b,1,) tends to zero uniformly as n— oo,
A-0o0, b0,
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The scheme of Stone’s proof [12] remains valid when applied to the proof of
Lemmal. Since we intend to apply Lemmal to the sum S(x,,...,o) it is
necessary to represent the terms of the sum in accordance with Lemma 1. In
order to do this we take the compact space T =8O (d)® with measure y, where
SO(d)* is equal to a countable product of the group SO(d) and the measure u
is the direct product of the measure v on SO(d). For any t=(«,, a,,...)eT we
construct the sequence of R%valued variables

&i@=x(ay), LD =xa)u, .o, D)= 2(0) oy o %,y ()

which are independent and nonidentically distributed.
Then for any 7€ we can define the random variables

T =gy ) =& (D) o+ &, (1),

We shall apply the equality (4) to the sum %(x;, ..., o). For this it is enough to
verify that the conditions 1), 2), 3) are valid for & («,,...,a,).

1
4. The Normal Convergence of the Sequence — {¥(t,) —M(%(z,))}
n

=

1
Condition 1 will hold for %(a, ..., ,) if the distribution of the sequence 7

n
{Z(1,)—M(%(z,)}, ©,€H, converges to the normal distribution with density
Ny, (#) where #;, are some subsets of SO(d)*, u(#,)—~1. We need the following

auxilliary proposition:

Lemma 2. Let oy, 0,,... be independent SO(d)-valued variables with the same
distribution v. Let f(a) be the linear sum of elements taken from the matrix of
nontrivial irreducible representation of SO(d), a(x) a real function on SO(d) with
[la(x)|dv £ co. Then

1 n

p S am) S ) ©)

tends to zero weakly.

Proof. At first we suppose that a(«) has second moments and we shall prove that
1 n 2
;M{; a(o) £ty .. ak_l)} 0. Y
The sum (7) is equal to

l n
F;Maz(ak)Mfz(ocl...akﬁl)

P Y M) a() f et ) Sty Sy Ty

n 12k<m=n
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Since the function f(x) is continuous, |f(x)|<c, on SO(d). Let us set M a?(x)
=c,, Mla(o)]=c5. Under condition 1) for the measure v it was proved in [7]
that M f(aa, ... o)l <c, A¥ where ¢,, A are constants not depending on o, and in

. 1
addition 0</<1. Therefore the first sum remains less than —c,c? and the
n

1 .
second one is less than 2 Y cje e AN Consequently (7) is true, and

1Zk<m=n

1
;Z a(o) f(oy ... o) tends to zero weakly if Ma?(a)<oo. If Ma?(2)=00 we

can write a(x) =ay(a)+ey(o) where |ay(a)] <N and M | 5| <6. Then the sum (6)
is equal to

n 1 n
%Zl:aN(ock) A CT 1)—{—; ESN(OCk)f(Otl e O 1)

It is proved above that the first sum tends to zero and the second sum is less
n 1 n

than ¢, — > |ey(oy)l. But ¢~ Y len(ey)l tends to ¢; M [ey| which is less than ¢, 8.
n4 1

Since 6 may be chosen arbitrarily we get the required result.

n

1
Lemma 3. Under the conditions of Lemma?2 the value =) a(o) f2(o;... 04 1)
n

1
converges weakly to Ma(a) | f?(«) du where the integral | f*(«)do is taken with
respect to the invariant measure on SO(d).

Proof. The function f?(x) is an element of the tensor square of the correspond-
ing representation. Therefore

[ @)=, +§1: i (@) (8)

where v, is constant, f,(x) are elements of the some irreducible nontrivial
representations SO(d) and | f?(x)du=y, because | f,(x)do=0. Consequently
applying Lemma 2 to the sum (8) we obtain Lemma 3.

By (#,(), ..., x,(x)) we denote the coordinates of the random vector «(e) with
mean zero, and by g(w)=|g;;(w)| we denote the orthogonal matrix of the
rotation weSO(d). The map w—g(w) is continuous and g(w, w,)=g{w,) g(w,),
g(w) is an irreducible representation of SO(d). Let M («) be the covariance
matrix of z(o) and #(e) w be the image of «(«)elR? under weSO(d). Then the
covariance of #(x)w is equal to g(w)" M(«) g(w), where g(w)" is the transposed
matrix. However it follows that the covariance matrix for the random variable

1

Va

{4 —M (1)}, where t=(x,,a,, ...) is equal to

S|

é:l g (0 e o D M) gloy oo )=Q(n; oy, .., 0). )

. . . 1
By virtue of condition 2’ the expectation M {M(a)} = |a;;| exists. Set 623(6 i
+...+0,,). It follows from condition 1, that ¢ >0.
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Lemma 4. The value Q(n;o,,...,0,) converges weakly to ¢l where I is the
identical matrix.
Proof. The coordinates of the vector «(«) w are equal to

ziow)=x1(0) g1 (W) +... +x4(0) g;,(w), j=1,2,....d.

Then the (i, j)-th element of the matrix Q is equal to

I |

; {Z Mz, (o) %, () 8mi 0y - oty 1) 8pj(0ty - 0 1)} (10)
The functions g;;(w) are the elements of an irreducible non-trivial unitary
representation for which the following ortogonal relations are well-known:

1
[eiwydw=2s [guw) ;W) =0 if (m.)+(r,))

The functions g;;(w)g,;(w) are the elements of the tensor square repre-
sentation of g(w). Therefore to every sum of the kind

1 n

n Z M (o) 2, (%) 8oty - O 1) 8 (00q o 0 1)

k=1

Lemmas 2 or 3 may be applied. This proves Lemma 4.

Now we will indicate the set 4, < SO(d)*, u(A,)—1, for which the distribu-

1

Vn
iformly to the normal distribution Ny, (=), 2, =¢IL

At first we set ¢,(«)=sup | [z w|?dv(e) where ||| =)/ 2z1+... +22.

W, 20 (oo > 2

Evidently the function is measurable and ¢,(0) < { [l ? dv(2).

Since the right hand side of the inequality is integrable in v, we have for all
A>0, [ @,(x) dv=¢(4)<c where the constant ¢ does not depend on . For any «
the function ¢,(x) decreases to zero as A— co. Consequently ¢(4)—0 as 41— o0,

tion of the variable {Z(t,)—M(z,)}, 1,64, converges weakly and un-

1 n

and there exists a sequence Ay, @{4y) =¢y]0. Since the sum - Y @)= e()inp
1

measure, we may define the sets Ay, Ay <Ay =SO(d)®, u(Ay)T1 such that for

L . . I

any (o, %,,...)e#, the following inequality holds: lim sup Y, 0 () Sey_ ;.
k=1

In virtue of the decreasing ¢,(«) as A — oo for any a and t=(0y, a,,...)eAy We

1z . .
have lim sup P Y Oumn(t)<ey,, for any integer N, m>0 or limsup
k=1

1 - . . .
= Y @ () =0. This implies that

(']

. " \ 12
lim=) { lzl|*dv(og)ay ... o Slimsup =Y @, (o) =0.
BT e—mdas o1 || > £ VA no
fl (11)
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The last inequality holds for arbitrary but fixed ¥}, any ¢>0 and from some
positive integer N, on.
The right-hand side of the inequality (11) is a necessary and sufficient

1
condition for the convergence in the weak sense of — {¥,(7,) —MY(1,)} to the
normal distribution under 7,4, ﬁ

1
On the other hand the covariance matrix from Lemma 4 ]7— {F(,)
n
—MJY(z,)} converges to 2, =01l Since the normal distribution with zero is de-
termined by the covariance matrix uniquely and u(#,)—1 as N — oo, condition
1) of Lemma 1 for the variables (5) is satisfied.

1
Remark. 1t is well-known by [4] that the distribution 17—9; converges weakly to
n
the normal one with density Ny(2). The matrix Q was defined in [4], too. On
other hand we have
1 1
G == 1) —MZ (1)} + —=MIF(7)
n n

Vn Vn

for any collection (2, &5, ...} =1.

1
It was shown above that the distribution — {¥(r,)—MY(1,)}, t,€X,

1/’

converges to the normal one with density N, (). The distribution of the

=

) 1 T
variable —— MY, (1) =—= ) w() «; ... o, ; converges to the normal distribution
n n

with the density Ny, (=) [4] since by condition 2'. the value of | |#(a)|?dv is
bounded, and the random variables ¢, «,,... are independent with common
distribution v, satisfying condition 1. Consequently Ny(z)=Nj, , o (2). This
equality will be used to calculate the constant ¢ in the theorem.

5. Proof of Conditions 2), 3) for the Sum S(«,...,,)
To check conditions 2), 3) for the sum “(«,,...,o,) we need the following
proposition.

Lemma 5. Let [ (t) be the characteristic function of the variable x(e). Put w,
=(aty... o)~ Y, wo — the identity of SO(d). Then for any segment [b,B], 0<b<B
there exists 0, 0<8<1 such that the inequality

M{H lfak(rwk_l)l}w"

holds uniformly for any te[b, B] as n— 0.

Proof. For aeK (see condition 3.) the support of the distribution v(x) does not
contain any hyperplane. Thus, if «€X, then the function | £, ()| may be equal to 1
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only for the points laying on some lines t, passing through the origin ©O. Let
be a random variable on SO(d) with distribution v. The convergence of v*" to
the uniform distribution on $O(d) involves the convergence of (vw)*" to one
under fixed weSO(d). Then M, |f,(t fw)| <1, since the distribution v(x) must be
degenerate in the contrary case. Thus My|f,(t f w)|=v(t,a,w) <1 for 10, 0eKk,
v(t, o, w) is a continuous function and sup v(t, o, w)=0(t, ) <1, M, v(t, ) =v(t) <1

for t+0, aek.
Hence we can find a 0,, 0<0, <1 such that v(f)<8, for all te[b, B]. Since
£, (] =1 we have the following inequalities:

n [n/2]
M{ T o= {11 14,00 1)
and

Ma2k(M2k— 1 |fr;z2k(l “fki 1 O‘z‘kl; PRERR-TY I

=M,,, v(t, 031, War_ ) SM,, v(t, a5,) =0v() <0,.

T2k

(13)

We remark that the random pairs (x,,, @y, ;) and (x,,,, %,,_,) are inde-
pendent for any integers k, m, k#m. Thus it follows from (13) and
M, M, | f,(t Bw| <0, that the right hand side of (12) can be estimated recursively,
Le.

[r/2] [n/2]1-1
M { n | fopse (E Wy 1)]} =M { H | fonse (E Wy 1)'} 0,67
k=1 k=1
This completes the proof.
To verify that condition 2) is fulfilled for the sum (a,, ..., a,) it suffices to
show that

M{/n [ [Tl ewe)lde 0,

b= |it|| =B

But by Lemma 5 this value is less than 6" ]/E(B —b), 0<0<1 and consequently it
tends to zero. To verify that condition 3) is fulfilled it is enough to show that

VaM{, [ Tl (tw)lde)

A<ty so
n

tends to zero as nm,A—o, b—0. For this we put M|f (9)=u(t), u(tw,)
=max u(tw). We know that the variables o, k=1,2, ... are independent and

distributed identically, hence we have

M ] |J;k(twk_1>|§{M I lfakawk_l)l}u(tw,)gu"(rw,). (14)

It is regrettable that the function u(f) cannot be a characteristic function.
However, {M|f,0)}2=u()><M|f,(t)>*=U(r) where U(z) is the characteristic
function of the distribution [v/(x)dv. This distribution has finite second mo-
ments and by condition 3) does not contain any hyperplanes. Hence it follows
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that for some neighbourhood of zero we have the estimate
U@ <1l—cjt)*

Since ||t} =|tw| for any rotation weSO(d), we also have

U(tWt)<1—CHtH2. (15)
Consequently it follows from (14) and (15) that
VM # 14w, )ldt<yn | § U™2\(1) dt. (16)
sl =b e

According to (15) standard tools can be applied to estimate the integral of the
power of the characteristic function in the segment [A/ﬂ, b]. In that case we
obtain ]/ﬁ [u(1)dt -0 as n, A - 0, b—0.

Consequently, this completes the proof of condition 3) for the sum
Fo(otg, o, a).

6. Essen’s Inequality for the Sum % (o, ..., o).

Let £4,¢,,...,¢,, ... be a sequence of random variables which are independent
and identically distributed in IR% In the paper by Esseen [3] the following
inequality was obtained for the sum &, =¢,+... +¢,

n —df2
sup P{FeX +z}=c(d,r) {sup u=*y Xk(u)} : 17
zeR4 uzr 1

where X, is the sphere of radius » with the centre at the origin; c(d,7) is a
constant depending only on d and r, P, is the distribution of &, x,(u)

= inf | (t,2)” dP, where the distribution P! is obtained by symmetrization
Hell=1 o <u

of P,. Let us apply the inequality (17) to the sum
FWs oy, ., 0) =2 (@) wi+... +2,(0,)w,

where th.e rotations wy, ..., w, are arbitrary but fixed. Since for any rotation
weS0(d) the gquality (v(«) w)' =v'(2) w holds, we shall have

inf [ (t2)?dMery= inf | (7 L2)?dv(w)

ltll=1 2| <0 lell=1 jjej <o

= inf [ t2)?dv (). (18)

lell=1 =] <40

Thus Esseen’s inequality for the sum %(w;a,,...,«,) does not depend
on the arbitrary rotations Wi oo, w,€80(d). The function ¢(a, 4)

= inf [ (t,2)*dv(e) is measurable with respect to « and is decreasing
fltl=1 {224

with respect to A for every fixed a. By condition 3. if €K then lim inf(x, 4)>0.

A= o0
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Consequently we can find a subset K,= K with positive measure v(K,)=p,>0
and some 4, such that simultaneously for all xeK,, A=0 the inequality

inf [ (2 dv(@)28,>0 (19)

It =1 lz|l <4
is fulfilled.

Lemma 6. Let us suppose that among o, ..., o, the value o, €K, is taken on p,n/2
times at least. Then there exists a sphere X, and a constant c(p,, 9. d, r) such that

sup P{Z(ay,...,a)eX, +z} <c(py, 6,d, r)n= 42

zelRd

In fact this can be obtained by employing (18) and (19) in the inequality (17) for
the sum “(ay, ..., o)

The next lemma follows from the preceding one.

Lemma 7. Under the conditions of Lemma 6 for any bounded domain & in R?
there exists a constant c(2, p,, 6, d) such that

sup P{S (o}, ..., 0 )€D+2}<c(+)n 2 (20)
zelR4
Furthermore the measure of all trajectories (o, ..., ,) for which the inequality

(20) may not be true is less than exp { —c(p,) n} and the constant c(p,)>0 depends
only on p.

Proof. In fact any bounded domain 2 of diameter L may be covered by the
finite number of spheres of the radius r. This number depends only on L and r.
Consequently we can apply Lemma 6. The second part of Lemma 7 follows by
elementary combinatorial estimations.

7. The Proof of the Theorem

It follows from above that we can define some sequence of sets
H, =SO(d)™, u(#,)—1 as n—oo such that the conditions of Lemmal are
fulfilled for the sum S(«y,...,a,) if t,=(ay,...,q,,...)€X,. Then for every
number n we shall represent the compact SO(d)* as the sum of the sets 7, Z,
and &, where %, is a set of = such that t=(a, ..., a,,...)eSO(d)*, so that the
value o, €K, is taken on less than p,n/2 times among the n first components, &,
is the rest of the elements SO(d). It is obvious that u(&,)=<e,. By virtue of
Lemma 7 we have u(%,) <exp(—c(po) n). It is clear from the foregoing definition
of the measure u on SO(d)* that integral (3) can be written

P{%eP}=[P{%()eP}du= [+ |+ |. (21)
Hn

P En

By Lemma 6 and the evident inequality 0=SP{%,(1)e2} =1 we have

y;=<1/£)*dy§ (;NQI(-)dy)dm(je,,(.)du)n—d/z.
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Since 0, tends to zero uniformly on &, as n— oo the second integral is less than
e, n~%?* where ¢, —0.
It 1s obvious that

f=n="""M,()-n"%* [ , where | Ng,(0)mesZ-e,, ¢ —0.

Hw Ln+bn Ln+En

To evaluate M () it suffices to change the integration order and to note that
mes (%) and Ny, (=) are bounded. Therefore

M M%(T) i 1
M. (:)=mesZ-<lim M, [NQl (——)] +¢,, ¢, —0.

Vn
Thus we obtain

P{%ecP}=mes 2 {limM_ [ -]} n= ¥ +o0, (1)n" 92

S0
Vn
verges uniformly to the normal distribution with the density Ny(z).

MY, .
Consequently the constant lim M, [NQ1 (ﬁ)]zc 1s  equal to

; =

| Ny, () Ny, (z) dz=Ny(0), where N (=) is the density of the limit distribution
R4

According to the remark above the distribution of the variable M

con-

1
of — &,. Thus the theorem is proved.

7
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