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1. Introduction 

Let G be some topological group, v a probability measure on (13, v*" the n-fold 
convolution of v. The value v*"(~) is interesting for some applications where 
is any bounded domain in ~ .  Every estimate of the value v*" (~), n ~ oe will be 
called a local theorem (1.t.) on the group IIL Accordingly the estimate of the 
value v*"(@l)/v*"(@2) for any bounded domains 91 and @a is called a relation 
local theorem (r.l.t.). Local theorems have a short history. They have been 
proved in the case of additive groups IR 1 and IR d by Shepp [11] and Stone [12] 
respectively in 1965. Kazdan [5] was the first who began to study r.l.t, for the 
group of Euclidean plane motions. This result refers to a particular case of a 
measure v whose support contains four motions ~ ,  d - 1 ,  N, ~ - 1 .  This result 
was obtained by functional methods and didn't possess a probability character. 
A r.l.t, has also been proved for local compact unimodal groups by Le Pege [6] 
and for a wide class of commutative groups by Stone [13]. 

The first 1.t. for the group of Euclidean plane motions was reported in the 
3rd Soviet Japanese symposium on probability in 1975 [10]. Independently P. 
Baldi, Ph. Bougerol0 P. Cr6pel obtained analogous results under wider con- 
ditions for Euclidean motions of the d-dimensional space IR d using the Plan- 
cherel formula for the Euclidean group of motions [1, 2]. 

By IM(d) we denote the group of Euclidean motions IR d. 
Some details from [10] were given by the author in [8] and [9], especially with 

reference to the group IM(2). In particular the concept of"lattice motions" oflM(2) 
in [9] together with 1.t. [1] or with the theorem of the present work give 1.t. 
for any case of measures v on IM(2) with finite support. It is clear that Kazdan's 
theorem follows from the general cases of 1.t. with a finite support of the 
measure v. The purpose of the present work is to obtain the same [1] by the 
direct probability method. This method uses a variant of Stone's 1.t. [12] applied 
to independent and nonidentically distributed values and it is sensitive to 
complementary conditions. In particular, the method can give some other 
variants of 1.t. that do not follow from [1]. They will be obtained in the second 
part of this work. 
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2. The Formulation of the Main Result 

The group of Euclidean motions IM(d) is the cross-group of the additive group 
IRd with the rotations group NO(d). Every element of this group is uniquely 
determined by the pair (~v, e), where x is the shift and ~ is the rotation. The 
product of the motions is defined by (a~, e ) ( y , / ~ ) = ( ~ + ~ ,  c~/~), where e/~ is the 
product of the rotations and y e  is the image ~r under e~NO(d). Let v be a 
measure defined on lM(d). Taking its natural desintegration we obtain for every 
c~eNq)(d) the measure v(~) on IRd and the measure v on NO(d) which is the 
conditional distribution v. The random elements 4i, 42,-.., 4n,-.. in lM(d) cor- 
respond to the random independent pairs (~1, ~1), ..., (~,, c~,), .... For the pairs 
(~k, ek), k =  1, 2 . . . .  the random values ~k and c~ k may be dependent. Then the 
product 41 42..- ~, corresponds to (~1 +'~1 ~1 + . . .  +~,  ~1... ~,- 1, ~1..- ~,). Con- 
sequently, the product ~ 42... 4, may be reduced to the study of the joint 
distribution of ~ =~1 "~-'~2 (X1 - ~ " '  "~-'~n ~1"'" an-  1 ~lRd and cq 0~2 ... e, eg�9 Un- 
der general conditions the product el c(2.-, c~, converges to the uniform distribu- 
tion on NO(d) and becomes asymptotically independent with ~ .  Consequently 
the 1.t. in IlvI(d) is equivalent to the estimate of the probability P { ~ e ~ } .  
Therefore we will estimate this probability. Let 4 be arbitrary IM(d) - valued 
random variable having the distribution v determined by the pair (~, c 0. By ,~(e) 
we denote the conditional variable with fixed e, v - the distribution e, ~ - the 
distribution ,~, v(c0 - the distribution ~(e) and v'(c 0 - the distribution obtained by 
symmetrization of v(~). 

Theorem (1.t.) Let 41, 4 2 , ' " ,  4 . . . . .  be independent 1M(d) - valued random variables 
with identical distribution v and satisfying the conditions: 

1. the n-fold convolution v*" converges weakly as n ~ o o  to the uniform 
distribution on NO(d). 

2. The distribution ~.~ on IR a has f inite second moments. 
3. There exists some number no>0  and a set K, K ~ N O ( d )  of  measure 

v(K)>0 so that for any c~eK the support o f  distribution v*"~ does not contain 
any hyperplanes. In what follows for the sake simplicity we shall suppose n o = l. 

Then for any bounded Jordan measurable domain ~ I R a ,  

P { ~  eN} = c mes(~)n -~/2 + O(n-d/Z) (1) 

where mes(~) is the Lebesgue measure of  the domain ~ ,  c is a constant which 
does not depend on ~ and will be evaluated at the end of  this paper. 

It is easy to see that the formulations of the proposition [1] and our 
theorem coincide. 

The main tool of the direct probability method for studying local properties 
of the sum ~ is the reduction to the conditional sums ~(cq , . . . ,~ , )  of inde- 
pendent but not identically distributed random variables where 

~(~ l ,  ..., c~,)= ~(cq)+~(cq) ~l + . . .  +'~(e,) el--. e,-1 (2) 

for fixed collections (cq, c% ....  , e,). 
For fixed (cq, c~2,...,%) the conditional variables are independent but not 

identically distributed. If for the "majority" of these sums the 1.t. in IR~ may be 
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applied, i.e. the value P {~(~t, . . . ,  ~.)e@} may be effectively estimated, then we 
have by integration 

P { ~ r  = ~ P {~n(~l, .. . ,  0~n)~  } u u (3) 

In spite of the essential difference of the methods that have been applied here 
and in [1] they use effectively the same condition 3. For example whenever this 
condition or analogous ones are absent the 1.t. has not yet been proved, if d> 3 
and the measure v has a finite support without additional conditions. 

Finally we remark that by virtue of condition 2 we get the following 
condition2': the variables ~(a), c~eN(D(d) have second moments which are 
absolutely integrable. The expectation M z(c 0 =m(c 0 has second moments also. 
We denote the characteristic function of z(c 0 by f~(t). 

3. A Special Formulation of the I.t. in IR d 

To apply the 1.t. to the sum (2) we need the following variant of Stone's 1.t. 

Lemma 1. Let ~l(z), ~2(z), ..., (,(~) .... be a sequence of IRd-valued nonidentically 
distributed variables depending on the parameter z on a measurable compact 
with probability measure #. For any ze3F the variables (k(z) are independent and 
possess second moments with respect to the measure #. By f,(t, z,) we denote the 
characteristic function of the sum ~l(z,)+...+~,(z,,). I f  for all n, n>0  there 
exists a set S,~_ 3F, /x(2C,)-* 1 and we have uniformly for any sequence {%}, z,eX,:  

1) the distribution of the variable ]~n {~l(r")+ "'" +~,(z,,)-m(n, z)} 
4 

converges 
Y 

weakly as n-* oo to the normal distribution with mean zero and covariance matrix 
f2 where 

~(n, ~.)=M {~(z,)+... +G(~.)}, 
B 

2) the integral ] ~  ~[f , ( t ,G) ldt  tends to zero as n-*co for any positive 
numbers b, B, b 

3) the integral ] ~  ~ If,(t, z,)l dt tends to zero as n -* oo, A-*co,  b--*O, 
A ~ Iltll _-<b 

then for any bounded Jordan measurable domain ~ and for all sequences {G}, 
G E:;~5~ we have 

P {~ ~(G)+ ... + ~ . (%)~} = ( I /n )d  ~ N ~ ( ~ n  

+ o~(A, b, G)(]/n) -d, 

~(n, rn) 

(4) 

where Nr~(x) is the density of the normal distribution with mean zero and 
covariance matrix g2, and the value on(A , b, z,) tends to zero uniformly as n-* co, 
A-*co,  b~O. 
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The scheme of Stone's proof [12] remains valid when applied to the proof of 
Le mma l .  Since we intend to apply L e m m a l  to the sum ~(cq ... .  ,a,) it is 
necessary to represent the terms of the sum in accordance with Lemma 1. In 
order to do this we take the compact space "lr=N(D(d) ~176 with measure #, where 
N�9 ~176 is equal to a countable product of the group NO(d) and the measure # 
is the direct product of the measure v on NO(d). For any v =(cq, ~2, . . .)e]r we 
construct the sequence of IR<valued variables 

~1(~)='(~1) ,  ~ ( z ) = ~ ( ~ ) ~  . . . .  , ~,(~)=~,(c~,) cq. . .  ~._~ (5) 

which are independent and nonidentically distributed. 
Then for any rE]r we can define the random variables 

(~) = ~ (~1, . . . ,  ~,) = ~ (0  + . . .  + ~,(~). 

We shall apply the equality (4) to the s u m  ~ n ( ~ l  . . . .  , an). For this it is enough to 
verify that the conditions 1), 2), 3) are valid for ~ (cq , . . . ,  c~n). 

1 
4. The Normal Convergence of the Sequence ~ {~(z, , ) -M(~(z,))} 

1 
Condition 1 will hold for ~(~1, ..., c~,) if the distribution of the sequence l / ~  

{~(%)-M(~(%))} ,  z , e / ( ,  converges to the normal distribution with density 
Nn,(~c ) where/( ' ,  are some subsets of NO(d) ~176 1. We need the following 
auxilliary proposition: 

Lemma 2. Let ~1, c~2,.., be independent N�9 variables with the same 
distribution v. Let f (a) be the linear sum of elements taken from the matrix of 
nontrivial irreducible representation of NO(d), a(c 0 a real function on NO(d) with 

[a(a)l d r <  oo. Then 

1 ~a(o:k)f(cq o~k_l) - -  , . .  

n 1 

(6) 

tends to zero weakly. 

Proof. At first we suppose that a(c 0 has second moments and we shall prove that 

i M ~n 1)} 2 ---~ O. 
~ a(~) f(~ ... ~_ (7) 

The sum (7) is equal to 

n2 1 

l 
+ ~  E M~(~k) a(o:m)f(O:l""~k-1)f(al""C~k -lr 

l < k  < m < n  
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Since the function f(a)  is continuous, If(~)l <c l  on N�9 Let us set M a2(c~) 
=c  2, M la(c~)l =c3. Under condition 1) for the measure v it was proved in [7] 
that IM f ( ~ l  ... ~k)l < c4 ;k where c4, 2 are constants not depending on :~, and in 

1 
addition 0 < ~ < 1 .  Therefore the first sum remains less than - c 2 c  ~ and the 

1 n 
C2ClC4~m k. Consequently (7) is true, and second one is less than n~ l_<k<m-<n 

! 2  - a(c~k)f(al...~k 1) tends to zero weakly if Ma2(c~)<oo. If Ma2(:~)=oo we 

can write a(e) =aN(~)+~N(c~) where faN(a)1 < N  and M I~NI <~. Then the sum (6) 
is equal to 

1_ n ~ n 

aN(c~k) f(cq ... C~ k - 0 +  L ~ aN(~k)f(cq ... C~ k_ 1)' 
n -i- n -i- 

It is proved above that the first sum tends to zero and the second sum is less 
n n 

than c 1 1 ; I~N(C~k)[. But 1 ; [aN(~k)l tends to c 1 MleN] which is less than c 1 b. cl n 
1 l 

Since b may be chosen arbitrarily we get the required result. 

n 

Lemma 3. Under the conditions of Lemma2 the value -1 ~ a(c~k)f2(~l "'" ak 1) 
n 1 

converges weakly to M a(c 0 ~f2(a)d~ where the integral ~f2(~)d~ is taken with 
respect to the invariant measure on ~�9 

Proof. The function f2(~) is an element of the tensor square of the correspond- 
ing representation. Therefore 

d 

f 2 (~) = 70 + ~ 7k fk(c~) (8) 
1 

where 7~ is constant, fk(a) are elements of the some irreducible nontrivial 
representations N�9 and ~ f2(~) d~ = 7o because ~ f~(~) da = 0. Consequently 
applying Lemma 2 to the sum (8) we obtain Lemma 3. 

By (x~(~), ..., ~,(c~)) we denote the coordinates of the random vector ~:(c~) with 
mean zero, and by g(w)=l/gr we denote the orthogonal matrix of the 
rotation weN�9 The map w~g(w) is continuous and g(w, w2)=g(w~)g(wa) , 
g(w) is an  irreducible representation of NO(d). Let M(c~) be the covariance 
matrix of x(c 0 and ~:(~)w be the image of ~(~)elR e under weN�9 Then the 
covariance of ~(e)w is equal to g(w) ~ M(c~)g(w), where g(wff is the transposed 
matrix. However it follows that the covariance matrix for the random variable 
1 

]/~ {~-Mg~n(z)}, where ~=(~1, ~2, ...) is equal to 

1 ~ gX(cq ... ~_~)M(~)g(cq  ... ~ x ) = ~ ( n ;  <x I . . . .  ,0~n). (9) 
n k = l  

virtue of condition 2' the expectation M{M(e)} = IIo~jll exists. Set 6=:l,(~r~1 By 
+-. .  + ace). It follows from condition 1, that a > 0. 

a 
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Lemma4.  The value (2(n; ~ .. . .  ,~,) converges weakly to all where I is the 
identical matrix. 

Proof The coordinates of the vector ~(~) w are equal to 

~i(~,W)=~(cOgj~(W)+...+~d(~)gja(W), j = l , 2  .. . .  ,d. 

Then the (i,j)-th element of the matrix O is equal to 

1,} ,10, 
The functions gi~(w) are the elements of an irreducible non-trivial unitary 
representation for which the following ortogonal relations are well-known: 

~g2(w)dW=d; ~g,~(w)g~(w)=O if (m,i)4=(r,j). 

The functions g~j(w)g~(w) are the elements of the 
sentation of g(w). Therefore to every sum of the kind 

1 ~ Mzm(O:k)~(O:k)gmi(0:l O~k-1) grj(O~l "'" ~k-1) 
n k = l  

tensor square repre- 

Lemmas 2 or 3 may be applied. This proves Lemma 4. 
Now we will indicate the set ~ c ~ ; O ( d )  ~176 #(;,g#,)--, 1, for which the distribu- 

tion of the variable + { ~ ( z , ) - M ~ ( % ) } ,  z , s ~  converges weakly and un- 
vn  

iformly to the normal distribution Nel(~v), f2 a = ~rlI. 

At first we set qh (x) = sup ~ II ~ w II 2 dr(cO where [l~c H = x l / ~  2+. . .  + ~v~. 

Evidently the function is measurable and ~o~(cO < ~ [Ix II 2 dr(cO. 
Since the right hand side of the inequality is integrable in v, we have for all 

2 > O, ~ ~oz(7 ) dv = ~o(2)< c where the constant c does not depend on 2. For any 
the function ~oz(~) decreases to zero as 2~o9 .  Consequently (p(2)~O as 2--*~, 

and there exists a sequence 2 N, q)(2N)=eN$0. Since the sum - q)x(~)~q)(2) in p 
n 1 

measure, we may define the sets SUN, ~r cJgu+ i c$(D(d) ~ 1 such that for 
t 

any (cq, c~z,...)~ ~ the following inequality holds: l imsuP�88 ~ q~z,(C~k)<eN_ 1. 
k = l  

In virtue of the decreasing q)~(c 0 as 2--*oo for any c~ and v=(ea, c~2, "")egfN we 

have l imsup -1 ~,-- ~01n,(~k)<eN+, " for any integer N, m > 0  or l imsup 
n k = l  1 n 

qh.,(C~k)=0. This implies that 
nk=l  

1 "  
lim ~ ~ [[xll 2 dv(~k)a~ ... ~k_ 1 ~l im sup n ~ (pln.(C~k) = O. 

(11) 
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The last inequality holds for arbitrary but fixed 2(  N, any ~ > 0 and from some 
positive integer N~ on. 

The right-hand side of the inequality (11) is a necessary and sufficient 

condition for the convergence in the weak sense of ~ {~(%)-M~(z , )}  to the 
normal distribution under ~n~JfN. V n 

1 
On the other hand the covariance matrix from Lemma4 l ~ { ~ ( z , )  

- M ~ ( % ) }  converges to f2~ =MI. Since the normal distribution with zero is de- 
termined by the covariance matrix uniquely and g ( J fu )~ l  as N ~  0% condition 
1) of Lemma 1 for the variables (5) is satisfied. 

1 
Remark.  It is well-known by [4] that the distribution ~nn ~ converges weakly to 

the normal one with density Nr~(~ ). The matrix O was defined in [4], too. On 
other hand we have 

1 
= ~ n  {~(z) - M ~ ( z ) }  +~nn M~(z)  

for any collection (0~1, ~2 . . . .  ) = T .  
1 

It was shown above that the distribution ~n{5~,(~,)-M~(z,)}, ~,a,YY, 

converges to the normal one with density Ne~(x). The distribution of the 
1 1 

variable ~ M ~ ( z ) = ~  E ~e(ak)cq ... c~k_ 1 converges to the normal distribution 

with the density Nn~(a) [4] since by condition 2'. the value of ~ ll~(~)ll2dv is 
bounded, and the random variables a~, a2,--- are independent with common 
distribution v, satisfying condition 1. Consequently Ne(x)=N~+e~(~v). This 
equality will be used to calculate the constant c in the theorem. 

5. Proof  of  Conditions 2), 3) for the Sum ~,.(~1, -.., ~,) 

To check conditions 2), 3) for the sum ~(c~l,...,c~,) we need the following 
proposition. 

Lemma 5. Let  f~(t) be the characteristic function o f  the variable z(c~). Put  w k 
=(cq ... ~k) -1,  w o - the identity o f  NO(d).  Then for  any segment [b,B],  0 < b < B  
there exists O, 0 < 0 < 1 such that the inequality 

holds uniformly for  any t~[b, B] as n ~ oo. 

Proof. For ~ K  (see condition 3.) the support of the distribution v(c 0 does not 
contain any hyperplane. Thus, if c~cK, then the function Is may be equal to 
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only for the points laying on some lines G passing through the origin �9 Let fl 
be a random variable on NO(d) with distribution v. The convergence of v *n to 
the uniform distribution on NO(d) involves the convergence of (vw) *n to one 
under fixed w~N(D(d). Then Mp [fs(tfi w)[ < 1, since the distribution v(c~) must be 
degenerate in the contrary case. Thus M~ [fs(t fl w)l = v(t, a, w) < 1 for t + O, c~K, 
v(t, ~, w) is a continuous function and sup v(t, c~, w) = v(t, a) < 1, M s v(t, ~) = v(t) < 1 

w 

for t:t:0, ~eK. 
Hence we can find a 01, 0 < 0 1 < 1  such that v(t)<O~ for all te[b,B]. Since 

]s < 1 we have the following inequalities: 

M {k=i~i1 "} ([n12] 1)l} (12) 

and 

Ms~,<(M2k- 1 Is ~2k 1_ , .  (X2k 1_ 2 . . .  ~7 1)1 (13) 

=M~2 ~ v(t, ~2k, w2k_ 2)--< Ms2~ v(t, ~2~) = v(t) < 01. 

We remark that the random pairs (:r a2k-l) and (~2,,, ~2~-1) are inde- 
pendent for any integers k, m, k+m. Thus it follows from (13) and 
M s Mp [s fl w[ < 01 that the right hand side of (12) can be estimated recursively, 
i.e. 

M IL2~(tw2k_l 5 M  ls 0 ~ < . . . < 0 ]  "/21. 
tk= i 

This completes the proof. 
To verify that condition 2) is fulfilled for the sum ~-~.(~i .... , ~.) it suffices to 

show that 

M{~-n ; l-[Ifs~(twk_Oldt}-->O. 
b~ Iltll ~Sl 

But by Lemma 5 this value is less than 0 n ]/n(B - b), 0 < 0 < 1 and consequently it 
tends to zero. To verify that condition 3) is fulfilled it is enough to show that 

]/-nM {g_~ II!ll __<b ~ If~(twk-1)l dt} 

tends to zero as n ,A~oe ,  b~O. For this we put Mlfs(t)l=u(t), u(tw,) 
=max  u(tw). We know that the variables ak, k = l , 2  . . . .  are independent and 

W 

distributed identically, hence we have 

Mk:x  f i  Ifs~(tWk-Ol<tMn(-[xc k=~ Ifs~(tWk-1)[} u(twt)<u"(tw')" (14) 

It is regrettable that the function u(t) cannot be a characteristic function. 
However, {MIf~(t)l} 2 = u(t)2 =< M ls = U(t) where U(t) is the characteristic 
function of the distribution ~ v'(a)dr. This distribution has finite second mo- 
ments and by condition 3) does not contain any hyperplanes. Hence it follows 
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that for some neighbourhood of zero we have the estimate 

U( t )< l -c l l t l ]  2. 

Since UtH = Iltwll for any rotation w~N(D(d), we also have 

U(t  w,) < 1 - c [[tll 2. (15) 

Consequently it follows from (14) and (15) that 

1/ /nM• i I ~ I I s  i I U["/2'(t)dt. (16) 
~_= ~b ~ =  ~b 

According to (15) standard tools can be applied to estimate the integral of the 

power of the characteristic function in the segment [A/]/n, b]. In that case we 

obtain ] /n  ~ U["/2l(t) dt ~ 0 as n, A -+ or, b --> 0. 
Consequently, this completes the proof of condition 3) for the sum 

~ ( ~ 1 ,  . . . ,  '~,). 

6. Essen's Inequality for the S u m  ~ ( e l ,  ---, %). 

Let ~,, g2 . . . . .  ~,, ... be a sequence of random variables which are independent 
and identically distributed in IR~. In the paper by Esseen [3] the following 
inequality was obtained for the sum ~ = r  + ... +~ ,  

rl 

~eF.e (.u>r 
(17) 

where X~ is the sphere of radius r with the centre at the origin; c(d,r) is a 
constant depending only on d and r, Pk is the distribution of {k, Xk(u) 
= inf ~ (t, x)2 dp k where the distribution Ps is obtained by symmetrization 

I l t l l -  1 II=ll < u  

of Pk. Let us apply the inequality (17) to the sum 

< ( w ;  :q . . . .  , ~.) =~q(cq)  w~ + . . .  +r w, 

where the rotations wl, . . . ,w,  are arbitrary but fixed. Since for any rotation 
weND(d)  the ~quality (v(~)w)'= v'(ct)w holds, we shall have 

inf 5 " (t,x)2 d(v(~)v)'= inf ~ (t 'c-l,  oc)2 dv'(o:) 
I l t l [ = l  I1=11=<.~o I I t [ l = l  II.il__<;~o 

= inf ~ (t, x) 2 dv'(c O. (18) 
Iltll = 1 II=ll <;.o 

Thus Esseen's inequality for the sum ~ ( w ; c q , . . . , % )  does not depend 
on the arbitrary rotations w> ..., w,~N~(d) .  The function qJ(c~,)0 
= inf ~ (t,x) 2dv'(ct) is measurable with respect to ~ and is decreasing 

I )11=1 [l~,ll_< ~ 
with respect to 2 for every fixed c~. By condition 3. if ct~K then lim inftp(~, )0>0. 
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Consequently we can find a subset K o ~ K with positive measure v(Ko)=Po > 0 
and some 2 o such that simultaneously for all c~Ko, 2 > 0  the inequality 

inf ~ (t, ~v) 2 dv'(~)>6o >0  (19) 
IIt[I = a II~l[ <~ 

is fulfilled. 

Lemma 6. Let us suppose that among ~ . . . .  , ~ the value ~k~Ko is taken on Po n/2 
times at least. Then there exists a sphere X~ and a constant c(po, 6, d, r) such that 

sup P {5~,,(~ 1 . . . .  , c~.)~Z~ +co} < C(Po, ~, d, r) n -~t/2. 

In fact this can be obtained by employing (18) and (19) in the inequality (17) for 
the sum ~ ( e l  . . . .  , ~,)- 

The next lemma follows from the preceding one. 

Lemma 7. Under the conditions ofLemma 6 for any bounded domain ~ in 1R ~ 
there exists a constant c(~, Po, 6, d) such that 

sup P {~(cq,  ..., %)e@ +~v} < c ( .  ) n -d/2. (20) 

Furthermore the measure of all trajectories (cq, ..., c~,) for which the inequality 
(20) may not be true is less than exp { -  C(po) n} and the constant C(po) > 0 depends 
only on Po. 

Proof In fact any bounded domain ~ of diameter L may be covered by the 
finite number of spheres of the radius r. This number depends only on L and r. 
Consequently we can apply Lemma 6. The second part of Lemma 7 follows by 
elementary combinatorial estimations. 

7. The Proof  of  the Theorem 

It follows from above that we can define some sequence of sets 
~ c N O ( d )  ~176 # ( J { , ) ~ l  as n--*oo such that the conditions of L e m m a l  are 
fulfilled for the sum ~(~l , - . . ,~n)  if r , = ( ~ l  . . . .  , % , . . . ) ~ .  Then for every 
number n we shall represent the compact NO(d) ~ as the sum of the sets tin, 5O, 
and g, where 5~ is a set of z such that v=(cq,  ..., e . . . . .  )~$(D(d) ~, so that the 
value ~keK0 is taken on less than Po n/2 times among the n first components, g, 
is the rest of the elements $(D(d). It is obvious that #(g,) __< e,. By virtue of 
Lemma 7 we have #(5O,)< exp(-C(po) n). It is clear from the foregoing definition 
of the measure # on $�9 ~176 that integral (3) can be written 

P { . 5 ~ } = ~ P { 5 ~ , ( z ) ~ }  d # =  ~ + ~ + ~. (21) 

By Lemma 6 and the evident inequality 0<P{5'~(z)e~} < 1 we have 

=(] /n)-a  ~ (~ Nn~(" )dy)d#+(~ O.(" )d#) n-el2. 
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Since 0, tends to zero uniformly on Y ,  as n ~ oc the second integral is less than 
~',n -d/2 where e ' ~ 0 .  

It  is obvious  that 

t t  t t  ~ = n - d / 2 M ~ ( ' ) - - n  -d/2 ~ where ~ N e ~ ( 0 ) m e s @ - G , G  0. 
ffff'n ~CP n -t- g n ~'cf n + ~ rt 

To evaluate M~(. )  it suffices to change the integration order  and to note that  
mes (~)  and N~(~v) are bounded.  Therefore 

M ~ ( ' ) = m e s ~ .  l imM~ N ~  \ ] / n  / j j + G " ,  ~"-~0.  

Thus we obtain 

P { ~ }  = m e s  @ {lim M~[ .  3} n -el2 + G ( 1 )  n -d/2. 
n 

Accord ing  to the remark above the distr ibution of the variable M ~(~)  con- 

verges uniformly to the normal  distr ibution with the density Ne(~v). 

Consequent ly  the constant  lim, M~-[Nel \{M~(%))l/n ] ] = c  is equal to 

N~.I(~) Na~(~c ) d~c =Na(0) ,  where Ne(~)  is the density of  the limit distr ibution 
I R  d 

of + 5~,. Thus the theorem is proved. 
Vn 

References 

1. Baldi, P., Bougerol, Ph, Crepel, P.: Thdor~me central limit local sur les d6placements de 1R d. 
C.R. Acad. Sci. Paris, S6r. A 283, 53-55 (1976) 

2. Bougerol, Ph.: Th6se 3 ~me cycle. Universit6 Paris VII (1977) 
3. Esseen, C.G.: On the concentration function of a sum of independent random variables. Z. 

Wahrscheinlichkeitstheorie verw. Gebiete 9, 290-308 (1968) 
4. Gorostiza, L.: The central limit theorem for random motions of d-dimensional euclidean space. 

Ann. of Probability 1, 603-612 (1973) 
5. Kazdan, D.A.: A uniform distribution in the plane. Trudy Moskov Mat. Ob~. 14, 299-305 

(1965) 
6. Le Page, E.: Th6or6mes quotients pour certaines marches aleatoires. C. R. Acad. Sci. Paris, 

S6r. A 279, 69-72 (1974) 
7. Maximov, V.M.: On the applicability of the central Limit theorem to sums of the form 

~f(~l---~). Izv. Vys~. U6ebn. Zaved. Matematika 12, 61-71 (1970) 
8. Maximov, V.M.: Uniform distribution of points and a local theorem for random motions. Soviet 

Math. Dokl. 18, 67-70 (1977) 
9. Maximov, V.M.: A local theorem for lattice motions of the euclidean plane. Soviet Math. Dokl. 

18, 1545-1549 (1977) 
10. Maximov, V.M., Tutubalin, V.N.: On the integral and local theorem in groups of Motions. 3rd 

Soviet Japanese Symposium. Procerdings. Tastikent 91-92 (1975) (in Russian) 



38 V.M. Maximov 

11. Shepp, L.A.: A local limit theorem. Ann. Math. Statist. 35, 419-423 (1964) 
12. Stone, Ch.J.: A local limit theorem for nonlattice multidimensional distribution functions. Ann. 

Math. Statist. 36, 546-551 (1965) 
13. Stone, ChJ.: Ratio limit theorems for random walks on groups. Trans. Amer. Math. Soc. 125, 

86-100 (1966) 

Received August 18, 1977; in revised form June 1, 1979 


