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Summary. An estimate m, of a regression function m(x)=E{YlX=x} is 
weakly (strongly) consistent in g 1 if ~[m,(x)-m(x)]#(dx) converges to 0 in 
probability (w.p. 1) as the sample size grows large (# is the probability 
measure of X). 

We show that the well-known kernel estimate (Nadaraya, Watson) and 
several recursive modifications of it are weakly (strongly) consistent in L~ 
under no conditions on (X, Y) other than the boundedness of Y and the 
absolute continuity of #. No continuity restrictions are put on the density 
corresponding to #. We further notice that several kernel-type discrimination 
rules are weakly (strongly) Bayes risk consistent whenever X has a density. 

Introduction 

In nonparametric regression function estimation one is provided with a se- 
quence D,=(X1,  I11), ...,(Xn, Yn) of independent RdxR-valued random vectors 
distributed as (X, Y) but is not given any information about the distribution of 
(X, Y) other than the existence of the regression function re(x)=E{Y IX =x} (for 
this, it suffices that E{[ Y[}<oo). A regression function estimate, or simply 
estimate, is a function of xeR a and the data Dn: mn(x ). Criteria measuring the 
closeness of m n to m include the uniform deviation, 

Un = ess sup Iron(x) - re(x)[ 
(,) 

and the distance in Lp, 

I~p = (~ lm~(x) - m(x)l p #(dx)) lip. 

Here # is the (unknown) probability measure of X. 
Nadaraya (1964, 1970) and Watson (1964) proposed the estimate 
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L Y~K((X~ - x)/h.) 

m.(x)='=l 
L K((Xi - x)/h.) 

i = 1  

(1) 

where {h,} is a sequence of positive numbers and K > 0 is an integrable function 
on R a. A variety of properties are known for (1). The pointwise convergence (in 
probability and in the mean square) of m, to m is treated by Watson (1964), 
Rosenblatt (1969) and Noda (1976) for d = l  and by Greblicki (1974) for d >  1. 
Schuster (1972) discusses the joint asymptotic normality of m,(xl)  , . . . ,  m,(xN) at 
fixed points x l , . . . ,  x N. Nadaraya (1964) for d--1 gives conditions insuring that 
U,-~0 with probability one (w.p.1). 

Greblicki (1974) and Ahmed and Lin (1976) prove some pointwise con- 
vergence results for a recursive version of (1). 

L YihTaK((Xi - x)/h,) 

m~ = i=1 
hTdK((&-  x)/h,) 

i = l  

The recursive computation of (2) can be carried out by 

(2) 

m o ( x ) = f o ( x ) = O ,  

f.(x) = (h./h._ y f . _  l (x) + K ( ( X .  - x ) /h . ) ,  

m.(x) = m . _ l  (x) + f . -  l(x)(Y. - m._1 (x)) K ( ( X .  - x)/h.). 

A still simpler recursive estimate which the authors believe is new reads 

(3) 

~K((X,-x)/h,)  
m.(x)='=l 

K((X,-x)/h,) 
i = 1  

(4) 

or equivalently, 

mo(x)=fo(x)=O,  

L(x)  = L -  1 (x) + K((X.  - x)/h.), (5) 

m,(x) = m,_ l (x) + f -1 (x)(Y, - m, _ 1 (x)) K((X~ - x)/h,). 

The main theorem of this paper involves the weak and the strong convergence 
to 0 of 

I .  = ~ Jm.(x) - m(x)l ,(a:,) 

for the estimates (1), (2) and (4) under the following standing conditions: 
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# is an absolutely continuous (with respect to Lebesgue measure) 
probability measure, (6) 

I Y I < c < oe with probability one, (7) 

K is a nonnegative bounded integrable function on R e whose radial 
majorant ~ is integrable: 

~J(x) a= sup K(y), j ~(x) dx < oo. (8) 
llyrl ~ IF~EI 

Stone (1977) has shown that a large class of regression function estimates 
including the ones of the nearest neighbor type, satisfy E{I,} 4.0 for all possible 
distributions of (X, Y) with E{I Y[} < oo. For estimate (1), the same was shown by 
Devroye and Wagner (1979) whenever 

h. ~, O, (9) 

nha. 4.~ (10) 

and 

K is a bounded nonnegative function with compact support such 
that for a small sphere S about the origin, inf K(x)> O. 

x 6 S  

Theorem 1 below complements this result in the sense that the almost sure 
convergence to 0 is established for I ,  under weaker conditions on K but slightly 
stronger conditions on the distribution of (X, Y) (see (6-7)). We note here that 
Theorem 1 below is density-free: it is valid for all random vectors X possessing a 
density. Also, we are not putting a continuity condition on m, and the random 
variable Y need not have a density at all. The condition (8) is intimately related 
to but not implied by the well-known condition 1[xiraK(x)~O as []xE[~oo 
(incidentally, this condition is equivalent to ]Lxi[dtp(x)~O as qixH~oo). For 
example, (8) holds if K is a bounded function and either has compact support, or 
satisfies 

]lxlhd+~/(x)~0 a s  ]Lxl] ~ oo  

o r  

Ilxlla(logllxll)l+~K(x)~O as jjxll~oo 

for some e > 0. 

Theorem 1. Assume that (6 9) hold. 
(i) I~-~O in probability for estimate (1) if (10) holds; I , & 0  w.p.1 for estimate 

(1) if 

• exp(--c~nhd,) < oo forall c~>0. (11) 

(ii) 1~ & 0 in probability for estimate (2) if 
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1 5 
r /2  i =  1 

In&0 w.p.1 for estimate (2) if either 

..~522~d <~ 
n = l  Yt vt n 

O r  
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(12) 

(13) 

nh~/log log n " -~ oo. (14) 

(iii) I n ~ 0 w.p. 1 for estimate (4) /f 

h. = o0. (15) 
n = l  

Remark 1 (Related Work with The Stochastic Approximation Method). 
R6v6sz (1973, 1977) for d = l  studies the integral convergence on compact 

sets of the recursive estimate defined by 

mo(X ) = 0; m,(x) = m,_ l(x) + (nhe,)- l(y, _ m,_ l(X)) K((X,  - x)/h,). (16) 

His proofs of convergence are rooted in the well-known theorems of con- 
vergence for stochastic approximation methods. The approach followed in this 
note is more directly related to the laws of large numbers. It is curious that (5) is 
in form similar to (16) if f,(x) is replaced by nh~. For large nfn(x ) is close to 
nhd, f (x )  when f (x )  is the value of the density of X at x. Thus (5) and (16) can be 
expected to behave in a similar fashion for large n. 

Remark 2 (Conditions on {h,}). 
The conditions for weak consistency are strictly nested: (10) implies (12)and 

(12) implies (15). To see this, use 

ha>= (n2 ~ ~-.)-~> (1~1/@q)-~ 
i = 1  i = l  ~ ~ i  

and Toeplitz's Lemma (Lo6ve, 1963, pp. 238). Condition (11) is implied by 

nh~fflog n ~ oo, (17) 

which clearly is stronger than (14): nh~,/log log n 4 oo. 

An Application in Discrimination 

In discrimination Y is integer-valued: Ye{1, ..., M}. If (X, Y) is independent of 
D,, then Y is estimated from X and D n by gn(X), which also takes values in 
{1 . . . .  , M}. The performance with a certain mapping gn (discrimination rule) is 
measured by its probability of error, 

L.=P{g.(X)=t= Y]D~}. 



On the L 1 Convergence of Kernel Estimators of Regression Functions 19 

In any case, L~ can not be smaller than the Bayes probabili ty of error 

If  

L* = inf P{g(X) 4= Y}. 
g : R d ~ ( 1 , . . . , M }  

p~(x)=E{I{y=~}tX=x)=P{Y=i[X=x}, l<i<M, xeR d, 

(here I is the indicator function) then all discrimination rules g satisfying 

g(x)4=i whenever p~(x)< max pt(x) 
l <=t<_M 

achieve L*. 
The unknown p~ can be estimated by P~i using any of the above mentioned 
methods (1), (2) or (4), and g, can then be picked such that 

g . (x )+ i  whenever phi(X)< m a x  p.z(x). (18) 
I <I<_M 

Since 

L* = E{ 1 - max pi(X)}, 
i 

and 

L , = E { 1  -pg~tx>( X)ID,,) 

p.g~,(x)(x) -- max p.i(x), 
i 

we have 

O_<L. - L *  = E{max p,(X) -pg.(x)(X)]D.} 
i 

= E {max pi(X) - max p.i(X) ID.} 
i i 

+ E{p,,g.(X)(X) -Pg.(x)(X)ID,,} 
M 

<=2 ~ E{Ip,(X)-p,i(X)IIDn}. (19)  
i = l  

The inequality (19) is valid for all discrimination rules satisfying (18). It will 
allow us to draw conclusions from the convergence of I n to 0 regarding the 
convergence of L,  to L;*. 

The rules resulting from (1) are well-known: they satisfy 

g.(x) + i 

whenever 

K((Xj-x)/h.)< max ~ K((Xj-x)/hn). (20) 
j : Y j = i  l <=l~ M j : Y j = l  
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Rules of this type are studied by Greblicki (1974, 1977, 1978), Devroye and 
Wagner (1976), Rejt6 and Rdv6sz (1973) and Van Ryzin (1966). The starting 
point in all these papers is the Parzen-Rosenblatt density estimate (Parzen, 
1962; Rosenblatt, 1957; Cacoullos, 1965). The rule (20) is also mentioned in the 
early works of Fix and Hodges (1951), Sebestyen (1962) and Meisel (1969) for 
special K (see also Bashkirov, Braverman and Muchnik (1964)). Pattern re- 
cognition procedures that are derived from any type of density estimate are 
discussed by Glick (1972, 1976), Greblicki (1974, 1977, 1978) and Devroye and 
Wagner (1976). 

The rule obtained from (2) and (18) is the one first proposed by Wolverton 
and Wagner (1969) and later discussed by Rejtti and R6v6sz (1973): let g~ satisfy 

g,(x) # i (21) 

whenever 

hfaK((Xj-x) /hj)< max ~ h/dK((Xj-x)/hj).  
j : Y j = i  1 <I<~M j : Y j = I  

Combining (4) and (18) gives the very simple rule: let g. be such that 

g,(x) =~ i 

whenever 

~, K((X~- x)/hj) < max ~ K ( ( X j -  x)/(hj). (22) 
j : Y j = i  l <l<-M j : Y j = l  

The following theorem, an immediate corollary of Theorem 1 and inequality 
(19), establishes the weak and strong Bayes risk consistency of the rules (20), (21) 
and (22) under no restrictions whatsoever on the density of X. The conditions of 
convergence are weaker than those reported by Wolverton and Wagner (1969), 
Van Ryzin (1966, 1967), Rejt6 and R6v6sz (1973), Greblicki (1974, 1977, 1978) 
and Devroye and Wagner (1976). 

Theorem 2. Assume that (6), (8) and (9) hold. 

(i) For the discrimination rules (20), Ln~ L* in probability if(10) holds; also, 
L , ~ L *  w.p.1 /f (11) holds. 

(ii) For the discrimination rules (21), L , ~  L* in probability if (12) holds," of 
(13) or (14) are satisfied then L , ~  L* w.p.1. 

(iii) For the discrimination rules (22), L , ~  L* w.p.1 if (15) is satisfied. 

Proofs 

Lemma 1. Let m be a regression function and let m, be a regression function 
estimate. Let further for some c< oo, [m,[ <c, ]ml <c. Then I ~ , 0  in probability 
(w.p.1) when m,(x)-~m(x) in probability (w.p.1) for almost all x(12). 
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Proof For the weak convergence part let A be the set on which rn,(x)& re(x) in 
probability. By the Lebesgue dominated convergence theorem E{lm,(x) 
-m(x)l}&O on A. By another application of the Lebesgue dominated con- 
vergence theorem, 

E { I,} = ~ E {[m,(x) -m(x)]} #(dx) -~ O, 

from which Lemma 1 follows by Markov's inequality. 
For the strong convergence part of Lemma 1, we let A be the set on which 

m,(x)&m(x) w.p.1, and let ((2, ~ ,P)  be the probability space of (X1, Y1) , 
(X2, Y2), .... We write co for the probability element of ~. By Fubini's theorem 

P{co: m,(x) fm(x)}  =0 for almost all x(#), 

if and only if 

{(co, x): m,(x)fim(x)} has measure (Px#) zero, 

if and only if 

/~({x: m~(x)@m(x)})=O for almost all o(P). 

Let f2' be this set of co~2. But for every oJeQ', I , = ~  Im,(x)-m(x)l #(dx ~,0 by 
the Lebesgue dominated convergence theorem. Since P{~2'} =1, Lemma 1 is 
proved. Q.E.D. 

Proof of Theorem 1. If c is the constant of (7) then (1), (2) and (4) satisfy Im, I <c, 
]ml <c. By Lemma 1 we need only show that m,(x)~,m(x) in probability (w.p.1) 
for almost all x(#). Let us call 

1 
zl"(x)=nh~ i=lk YiK((Xl-x)/h,) ,  

Z~(x)--1 ~ ~1 y~K((Xi_x)/hi) ' 
-r t  i=~ hi 

i =  i = 1  

If we can show that under the conditions of Theorem 1 Zin(x)-~m(x)f(x) in 
probability (w.p.1) for almost all x(~t), then we have also shown that W)(x)• f (x)  
in probability (w.p~ for almost all x(kt) where i W/,(x) is defined as Zn(x ) with 
Y/-1 (and thus m -  = 1). Since in all three cases m,(x)=Z~(x)/W~(x) and since for 
almost all x(~t)f(x)> 0 we can conclude that m,(x)-~ re(x) in probability (w.p.1) 
for almost all x(#). 

We can split the proof into two parts in view of 

tZi,(x) - re(x) f (x)l < IZr - E (Z~,(x)} I 

+ I E {Zi,(x)} -re(x)f(x)i ,  i= 1, 2, 3. 
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First w e  use a theorem of Stein (1970, pp. 62-63) regarding the following 
function: 

r s) = E { s -  ~ L K ( ( x 1  - x)/s)} 

= E{s -dm(Xl )  K( (X  1 - x)/s)} 

= ~ s -  d K ((y -- x)/S) re(y) f (y )  dy. 

If  m f  > O, ~ re(x) f (x) dx < 0% K > O, ~ K(x) dx = 1 and ~ qJ(x) dx < ~ (here ~J is the 
radial  ma jo ran t  of  K) then r  as s--*0 for a lmost  all (Lebesgue 
measure)  x. Let  us collect these x in a set A. Since f is a density, we obviously  
have  that  # (A)=  1. Not ice  that  we can always take K such that  ~ K ( x ) d x =  1 
since K appears  in bo th  the denomina to r  and n u m e r a t o r  of  m,. 

For  the es t imate  (1), E{ZI,(x)} = qS(x, h , ) & m ( x ) f ( x )  as h,~,O, x~A .  It  follows 
that  for x e A ,  

E{Z.~(x)} = n-~ ~ r hi) ~' re(x) f ( x )  
i = l  

and 

whenever  h i - oo. 
i = 1  

as h , & 0  

~, h] r hi) ",m(x) f ( x  ) as h , & 0  
i = 1  

T h e o r e m  1 is thus p roved  if we can show that  for all xEA  Zi,(x ) 
-E{Zin(x)} 4 0  in probabi l i ty  (w.p.1), i =  1, 2, 3. Let us consider Z~ first. Clearly, 

2 
Z~ (x) -- E {Z~ (x)} = n - t  Z (Z(h.) - ~ { T~(h,)}) 

i = 1  

where Ti(s ) = s -  d Yi K((XI - x)/s). If  b -= sup K(x), c' = sup r h,) (c' is finite if x eA 
x n 

but  should depend  on x), then we notice that  

I T~(h,)i < bc/hd, w.p.1 

and 

E{ T/2(h,)} <=(bc/h~) E { T~(h,)} < bcc'/h~. 

If U 1 . . . .  ,U,  are independent  r a n d o m  variables  with ]UiI<b , E{U/}=0 ,  
E{ Ui 2} <= a 2, then an inequali ty due to Bennett  (1962, pp. 39) (see also Hoeffding 

(1963, pp. 16)) states that  

P{In -1 ~ Uil>= ~} 
i = l  

< 2  exp { -n(e /2b)( (1  + t72/2be) log (1 + 2b~/o -2) - 1)} 

< 2 exp ( - neZ/2(a 2 + be)} 
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n 

w h e r e  0.2 y/-1 ~ 0.2 and the latter inequality follows from log(l+u)>2u/(2 
i--1 

+ u) for all u > 0. Applying this inequality yields 

P{IZ~(x)-e{z.~(~)}l <_-~} 
< 2 exp { - ne2/(2bcc'/hdn + 4bc~/h~)} 
= 2 e x p  {-o:nh~} where o~=e2/(2bcc'+4bc~). (23) 

Condition (10) implies that (23) goes to 0 as n ~ o o  for all ~>0; (11) and the 
Borel-Cantelli lemma are sufficient in order to be able to conclude that Z~(x) 
-E{Z~(x)} &O w.p.1 for all xcA. 

Let us turn our attention to 

n 

Z,  2(x) - E (Z2(x)} = n-~ ~ (T~(h~) - E (T~(h~)}), 
i=1 

assuming that (12) holds. Since 

n 

E{(Z2(x)_E{ZZ(x)})2} <__,<2 ~, E{T/(h3} 
i=1 

~=n -2 ~ bcc'/h~-~O, 
i=1 

we conclude by Cebygev's inequality that 2 2 Z, (x) - E{Z, (x)} & 0 in probability. 
Assume now that (13) holds. By Kolmogorov's second moment version of the 
strong law of large numbers (Loeve, 1963, pp. 253) we know that Z~(x) 
-E{Za~(x)} -~0 w.pA if 

~, E{T,2(hn)}/n2 < oo. 
n--1 

But in view of E{T~a(h,)} <bcc'/hd, this condition reduces to (13). It is a bit 
harder to show that the same conclusion can be drawn if just (14) holds. From 
Loeve (1963, pp. 253) we conclude that ZZ(x)-E{Z2(x)}-~0 w.p.1 if IZo(h,)l <Ln 
for all n and some L < o o  (which is the case here since IZ~(h~)l<bc/he, and 
nh~/log log n& oo) provided that 

o o {  2 (Ti(hi)_E{Vi(hi)}) } .... ~I P 2 k ~ >e  <o% all e>0.  (24) 
k i = 2 k + l  

If we define h, = inf h~, then by another application of Bennett's inequality we see 
i<_n 

that condition (24) is satisfied if 

• 2exp{-ct2kh~k}<oo for all ct>0. (25) 
k=0 

This in turn follows from 2khe2k/logk&oo, which itself follows whenever 
nhen/log log n & oo. We now show that this is true if nUn~log log n & oo. Indeed, 
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nh~/log log n 

>min  { inf ih~/log log i; nh~v/log log n}. (26) 
i > N  

The right hand side of (26) can be made aritrarily large by first picking N large 
enough (here we use (14)) and then letting n grow unbounded. 

We finally show that under condition (15) Z3,(x)-E{Z3,(x)} 4 0  w.p.1. 

3 Z , ( x ) - E { Z , ( x ) }  = h~ (h~T~(hi)-hfE{T~(hi)}) 
i= i = 1  

tends to 0 w.p.1 if 

{(ha, T.( }/(~ d) 2 E h,,)) 2 h < oo (27) 
n = l  i = 1  

(Loeve, 1963, pp. 253). Since E{(h~T,(h,)) 2} < , d bcc h,, (27) is satisfied if 

h h <oo. 
n = l  i -  

Assume that h I >0. Then from (15) we deduce the following inequality: 

hd/( ~ hdf  " 
n = l  \ i = l  

G 1/h d + ~ hdn h h 
n = 2  i =  t 1 

= 2/h~ < c~. Q.E.D. 
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