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Summary. In Lai and Stout [7] the upper half of the law of the iterated 
logarithm (LIL) is established for sums of strongly dependent stationary 
Gaussian random variables. Herein, the upper half of the LIL is established 
for strongly dependent random variables {Xi} which are however not 
necessarily Gaussian. Applications are made to multiplicative random vari- 
ables and to ~, f (Zi)  where the Zi are strongly dependent Gaussian. A 
maximal inequality and a Marcinkiewicz-Zygmund type strong law are 
established for sums of strongly dependent random variables Xi satisfying a 

a + n  

moment  condition of the form E I S~,,I"<= g(n), where Sa, ~ = ~ X~, generaliz- 
ing the work of Serfling [13, 14]. ~+1 

1. Introduction 

Let {Xn, n > l }  be a stationary sequence of zero-mean random variables with 
n 

finite variances and let Sn= ~ X i ,  n > l .  Most  of the laws of the iterated 
1 

logarithm and related strong limit theorems for {Sn} in the literature apply only 
to the case where the sequence {Xn} is weakly dependent (cf. [10]) so that {S,} 
behaves in a very strong sense like Brownian motion. We have recently 
considered in [7] for the stationary Gaussian case the situation where there is 
much stronger dependence. One of our results shows that the upper half of the 
law of the iterated logarithm holds under very weak assumptions on the 
dependence structure; more specifically, we have proved 

Theorem 1. Let {X,,  n>= 1} be a zero-mean stationary Gaussian sequence. Let S n 
tl 

= ~  Xi, g(n)=ES2~. Suppose that 
1 

lira inf g (K n)/g (n) > 1 for some integer K >= 2, 
n ~ o ~  

(1.1) 
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and 

Ve>0,  3 p = p ( e ) < l  such that l imsup 
n ~ c o  

Then 

max g(i)/g(n)} < 1 + e. (1.2) 
on<i<=n 

lim sup IS, I/{2g(n) log z n} 1/2 ~ 1 a.s. (1.3) 
n ~ o o  

In the above we have let log 2 n denote log log n, and we shall also set log k n 
=log(lOgk_ln). The assumption (1.1) is closely related to the concept of 
dominated variation introduced by Feller [-4] as a one-sided analogue of 
Karamata's regular variation. Note that if either g(n) is nondecreasing or 
max g(i)~g(n), then (1.2) holds. The assumptions (1.1) and (1.2) cover a wide 

i < n  

spectrum of dependence situations, e.g., the independent case, the case where 
Cov(Xi, X j ) > 0  for all i,j, and the case where ESZ, is regularly varying with 
exponent ~ > 0. 

In this paper we shall extend Theorem 1 to the non-Gaussian and also to the 
nonstationary case. Thoughout the sequel, {Xi} denotes a general sequence of 

n 

random variables and S, = ~ X i ; no assumption on stationarity or joint normality is 
1 

made unless otherwise stated. We shall also let S~, n denote the delayed sum 
a-+-n 

X i and set Sa, o=0.  Further, g(n) does not necessarily satisfy g(n)=ES 2. 
i = a + l  

Noting that in Theorem 1 the stationary Gaussian assumption and the assump- 
tion that g(n)=ES~ imply that E exp(tSa,,)=exp(�89 for all a, n, and t, we 
shall prove in Sect. 2 the following generalization of Theorem 1. 

Theorem 2. Suppose g: {1, 2, ...} ~(0,  oo) satisfies (1.1) and (1.2). Let {X,} be a 
sequence of random variables such that 

Eexp( tSa , , )<Cexp{ �89  for all a > a  o, n > l  

and ltl <=u,/gl/Z(n), (1.4) 

where C, a o, e,, and u, are positive constants such that e, ~ 0  and u ,~ (2  log z n) ~/2 
as n ~ oo. Then (1.3) holds. 

The condition (1.4) in Theorem 2 implies the finiteness of E exp(t,[X,I) for 
all n, where { t , , n > l }  is a sequence of positive constants. For  some of our 
applications in Sect. 3, however, E exp( t lX,  I)=oo for all t > 0  and n > l .  In the 
classical independent case, infinite moment generating functions can be circum- 
vented by truncation and by considering the moment generating function of the 
truncated random variables. However, for dependent random variables like 
those considered in the applications in Sect. 3, the moment generating function 
of the sum of the truncated random variables is often very difficult to handle. 
Therefore for dependent random variables it is sometimes more convenient to 
replace (1.4) by conditions on the moments. Returning to the stationary Gauss- 
Jan case of Theorem 1, we have E ISa,,/gl/2(n)lP = E  IN(O, 1)1 p, and therefore 

3B~>0 such that E[S~,,/gl/2(n)lP<B(pe-1) p/2 Va>0,  

n > l  and p>0 .  (1.5) 
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In general, in the absence of the Gaussian assumption, the condition (1.5) 
implies (1.4), as can be easily shown by using power series expansions for both 
sides of (1.4). Hence by Theorem 2, the upper half of the law of the iterated 
logarithm (1.3) also holds under the assumption (1.5). This suggests the following 
generalization of Theorem 1 without the assumption of finiteness of E exp (tX,). 

Theorem 3. Suppose g: {1, 2, ...}--*(0, ~ )  satisfies (1.1) and (1.2). Let ~>0, /3>0, 
and let {p(n)} be a sequence of positive constants such that 

p(n) ~/3-  ~ log 2 n. (1.6) 

Let {X,} be a sequence of random variables such that 

l imsupE]Sa , , ] v<~  for every n>=l and p>0,  (1.7) 
a ~  oo  

and 

ElSa,,/gl/2(n)lP(")<B(c~p(n))~P(") for all a > a  o and n> l, (1.8) 

where B and a o are positive constants. Then 

lira sup IS.I/{(c~e/3 1 log z n)p gX/2(n)} < 1 a.s. (1.9) 

We note that (1.5) implies (1.8) with c~=e -1 and/3=1/2,  in which case (1.9) 
reduces to (1.3). In Sect. 3 we shall give some applications of Theorems 2 and 3. 
Clearly Theorem 2 also includes the upper half of the classical law of the iterated 
logarithm for the i.i.d, second moment case via the Hartman-Wintner truncation 
scheme [6]. In [17], Taqqu proved the weak convergence (to certain semi-stable 
processes) of sums of nonlinear functions of stationary Gaussian random vari- 
ables that exhibit a long range dependence, and he asked about their almost 
sure limiting behavior. In Sect. 3 we shall apply Theorem 3 to solve this problem. 
Theorem 3 also generalizes an earlier result of G~I [5, Th6or6me 2-1 and of 
Philipp [9, Satz 2] who considered the special case g(n)=n and /3=1/2 and 
who respectively indicated some interesting applications in this special case to 
lacunary trigonometric series and to stationary mixing sequences. 

The proof of Theorems 2 and 3 in Sect. 2 makes use of a dyadic expansion 
argument due to G~tl [5]. A simple probabilistic exposition of this useful technique 
will be given in the proof of Lemma 1. We shall also use this kind of dyadic 
expansion argument in Sect. 4 to obtain a maximal inequality and a Marcinkie- 
wicz-Zygmund type strong law for dependent random variables which satisfy 
moment restrictions of the form 

ElSa.~l;<g(n) for all a = 0 , 1 , . . ,  and n = l ,  2, ..., (1.1o) 

where p > 0 and g satisfies regularity conditions of the type (1.1) and (1.2). These 
results generalize some of the related results in the literature due to Serfling 
[13], 1-14]. 

Throughout the sequel, we shall use Vinogradov's symbol ~ instead of 
Landau's 0 notation. We shall sometimes also write S(a, n) instead of Sa,,. 
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2. Proof  of  Theorems 2 and 3 

Let A = l i m i n f g ( K n ) / g ( n ) .  As shown in Lemma l(i) and Lemma 2 of [7], the 
n~oo 

assumptions (1.1) and (1.2) imply that 

g(n) ~ oo, (2.1) 

max g(i) ~ g(n), (2.2) 
i < n  

and that given 0 < 7 < (log A)/(log K), there exists N such that 

g([an]) /g(n)>a ~ for all a >  N and n> N. (2.3) 

As we have remarked in Sect. 1, the condition (1.5) on the moments of S~,, 
implies the assumption (1.4) on the moment generating function of So,,. It is 
interesting to note that the moment condition (1.5) provides the following ex- 
ponential inequality for the tail probabilities of Sa,,: For  all t > 0, a > 0, and n > 1, 

PEI&, ,/gl/2(n)l > t] < B inf t -P(p e-t)  p/2, by (1.5), 
p > 0  

= B  i n f e x p { - p  log t + l p  log(p e-t)} = B  exp(- �89 (2.4) 
p > 0  

More generally, if the term (pe-1)  v/2 in (1.5) is replaced by (ep)pV, where e, 
are positive constants, then (2.4) becomes 

P [ISo,./gl/2 (n)] > t] < B inf t -v  (o~ p)~V 
p > 0  

= B exp { -  (fi Ple)/(c~ e)}. (2.5) 

The proof of Theorems 2 and 3 depends on similar exponential bounds for certain 
large probabilities which are obtained under the weaker assumption (1.4) of 
Theorem 2 or (1.8) of Theorem 3. Making use of the properties (1.1) and (1.2) 
(and therefore (2.1)-(2.3) as well) of g, the following lemma relates these ex- 
ponential bounds to the almost sure asymptotic behavior of S,. 

Lemma 1. Suppose g: {1, 2, ...}-+(0, c~) satisfies (1.1) and (1.2). Let  f l>0,  0>0,  
and let 

t, = (0-1 log 2 n)e. (2.6) 

Le t  {X,} be a sequence of  random variables satisfying (1.7) and the following two 
conditions: 

(i) Given 0 < e < 1, q e' > 0 and ao, no such that for  all a > a o and n > n o, 

P liSa, ,/gl/2 (n) l > (1 + e) t,] =< exp {-- (1 + e') 0 tl,/~} ; 

(ii) ~ d > 0, B > 1, and a 1 , n 1 such that .for all a > a 1 and n > nl, 

P[]S~,, /gl/2(n)]>=xt,]<=exp{-dt~/elogx} if x > B .  

Then 

lim sup ]S,]/{t, gl/Z(n)} < 1 a.s. (2.7) 
n+oo  
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Pro@ Let 0 < e < t. Take 0 < 6 < 1 (to be specified later). Let n k--- [2 ka] and define 

Ak= [[S~ I >(1 + ~) t,,~ gl/2 (nk)], 

B k = [  max {Sn-S,~[>2et, ,~gl/2(nk)].  
nk ~ ~l~;qk + 1 

By condition (i), ~ P(Ak)< oo and so P [ A  k i .o.]=0.  Moreover, in view of (1.2), 
we can choose b sufficiently small such that for all k sufficiently large and 
nk<n<nk+ 1, g(nk)<(1 + e)g(n). Therefore it remains to show that 

P[Bk i.o.] =0 .  (2.8) 

To prove (2.8), we use a dyadic expansion argument due to G~tl [5]. Take 
j =j(k) such that 2 ~-~ < nk+ 1 - n k < 2 j. Therefore 

j(k) = k (5 + 0(1), (2.9) 

and 

nk>_2J(k)-l/(2 ~ -  1)+O(1), since nk+l--nk=nk(2 ~ -  1)+O(1). (2.10) 

For n~<n<nk+l ,  since n - - n k < 2  ~, it then follows that 

n - - n k = e j _  1 2 J - l  + e j _ 2  2 1 - 2 +  . . .  + e 0 ,  

where ei_l =0  or 1 (i= 1, ... ,j), and therefore 
J 

Sn=Sn~ + ~ S(nk+mi 2 i, 2 i-1 ei_O, (2.11) 
i= t  

where mj=0, mi=ej_  ~ 2 J - i - l + . . .  +e~ (i=1, . . . , j - I ) ,  so that 0_<_m~<2J-( For 
i= 1, ... , j (k)  and m=0,  1, ..., define 

Bn ( i, m) = [IS (n k § m 2 i, 2 i -1)1 > e(j (k ) - i+ 1)- 2 tn ~ gi/Z (nk)] �9 

J 
Since ~ ( j - i +  1)-2< 2, we obtain from (2.11) that 

i=1 

( ~ U Bk(i, m) )~Bk .  (2.12) 
l<~i<=j(k) 0 <=m< 2J(k) - i  

Take 0 < t / <  1, and let 0<?  <e/2. By choosing c5 sufficiently small, we obtain 
from (2.3) and (2.10) that g(nk)/g(2~-l)>_�89 {2J(k)-~/(2 ~ -  1)} ~ and log 2 nk>_log2 (2i-~) 
for i o <_i<j(k). Hence it follows from condition (ii) that for all large k 

~ P(Bk(i, m)) 
~lj(k)<~i<=j(k) O_<m< 2J(k)-i 

< ~. 2 J ( k ) - ~ e x p { - d O - l ( l o g i ) [ l o g ~ - 2 1 o g ( j ( k ) - i + l )  
~rj(k) <= i <= j(k) 

+ �89 T log( 2J(k)-i/(2~- 1))]} 

<=j(k) max(exp {v log 2 -dO -~ (log t/j(k)) [�89 7 log (2V( 2~-  1)) -2  log(v + 1) 
v>O 

+log~]}) 

k-2, by choosing ~ sufficiently small and using (2.9). (2.13) 
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Moreover, choosing N > i  o such that (2.3) holds, we obtain by a modification 
of (2.13) that for all large k 

~ P(Bk(i , m)) 
N<i<=~lj(k) 0__<ra<2J(k) i 

2~(k) j(k) exp { - d 0-1(log N) [�88 ? log (2 (1 -'r)J(k)) _ 2 log j (k)] } 

~ k  -2, by choosing N large enough. (2.14) 

Finally, by (1.7), sup {E IS~,,I p" n < N, a > ap} < oe for every p > 0, and therefore 
choosing p large enough, we have 

N 

~ P(Bk(i, m)) ~ 23(k)(j(k))2p(g(nk)) -p/2 
i ~ 1 0 _ _ < m <  23(k) - i  

~ k  -2, by (2.3) and (2.9), ifp is large enough. (2.15) 

(30 

From (2.12)-(2.15), ~ P(Bk)< oo and therefore (2.8) holds. [] 
1 

Proof of  Theorem 2. It is easy to show that (1.4) implies that the conditions of 
Lemma 1 are satisfied with O=fi=�89 In particular, to check that condition (ii) 
holds, we note that 

P [[So, n/g 1/2 (n)[~ X tn] ~ {exp (--u n x t,)} {E exp (u, Sa, n/g 1/2 (n)) 

+ E exp(-- u, Sa,,/g~/2 (n))}. 

Hence the desired conclusion follows from Lemma 1. [] 

Proof of  Theorem 3. By the Chebyshev inequality and (1.8), 

P [IS,, n/g 1/z (n)l > x t,] < B {~ p (n)/(x tn)l/P} #p(n), 

and it then follows that the assumptions of Lemma 1 are satisfied with 0=  
fi/(c~e). [] 

3. Some Applications of Theorems 2 and 3 

Clearly Theorem 2 includes Theorem 1 as a special case. Another special case of 
Theorem 2 is Corollary 1 below on uniformly bounded multiplicative sequences. 
Recall that a sequence {X~, n__> 1} is said to be multiplicative if 

E(X~, ... Xi.)=0 for all n > l  and all 1=<i1<...<i,,.  (3.1) 

Suppose that the sequence {X,} is multiplicative and that [X,[<=A for all n, 
where A is a positive constant. Then it has been shown in [1] that for every real 
number t and for every double array {bmk: l<_k<m, m> 1} of real constants, 

Eexp <exp A e e 2 . (3.2) 

Hence (1.4) holds with g(n)=A2n, C = I  and G=0.  Therefore the following 
theorem of Serfling [14] and Takahashi [16] is a special case of Theorem 2. 
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Corollary 1. Let {X, ,  n> 1} be muhiplicative with IX,I < A a.s. for some positive 
constant A and all n >= 1. Then 

lira sup ]S,[/(2n log 2 n) 1/2 <=A a.s. (3.3) 
n ~ c o  

Takahashi [16] has sharpened the result (3.3) under stronger assumptions on 
the sequence {X,}. A mnltiplicative sequence {X,} is said to be an equinormed 
strongly multiplicative sequence (ESMS) if EX2, = 1 for all n > 1 and 

E ~ i ( s ) ] -  ~ ( i )  for all l < i ( 1 ) < . . . < i ( n )  (3.4) 
- -  j = l  

and all r0" ) such that r(])= 1 or 2(]= 1, ..., n) and all n >  1. 
It is known (see Lemma 2.2 of [15] and its proof there) that if {X,} is a 

uniformly bounded ESMS then for given 3 > 0  there exists to>0 such that 

Eexp( tS~,n)<exp{ �89 for all a>0 ,  n > l ,  [tl<to. (3.5) 

Hence the following refinement of (3.3) due to Takahashi [16] is another special 
case of Theorem 2. 

Corollary 2. Let {X, ,  n> 1} be a uniformly bounded ESMS.  Then 

lim sup [S,l/(2n log a n) 1/2 < 1 a.s. (3.6) 
n ~ 9  

By making use of Theorem 3, we can extend (3.3) to the case where the 
sequence {Xn, n > 1} need not be uniformly bounded. The following strengthen- 
ing of the multiplicative criterion (3.1) in terms of higher order product moments 
is due to Dharmadhikari and Jogdeo [2]: 

E _ ~i(s) ]=0 for all n > l  and all l < i ( 1 ) < . . . < i ( n )  (3.7) 

and all positive integers r(j) such that minr(])  = 1. 
l<j<=n 

We shall say that a sequence {X,} is higher-order multipIicative if (3.7) holds. 
If ]Xn[<=A a.s. for all n, then obviously E I X ,  lV<__A v for all n___l and p>0.  
Theorem 3 gives the following extension of (3.3) to the case where {Xn} need not 
be uniformly bounded. 

Corollary 3. Let {X, ,  n > l }  be a higher-order multipIicative sequence such that 
there exist A > O, C > 0 and 7 > 0 for which 

E ] X , f < C A V f  p for all n>=l and even integers p. (3.8) 

Then letting/~=7+�89 and ~=(�89 2 e) 1/(1+2;0, 

lira sup [Sn[/{nl/2(c~e~ - 1 log 2 n)~} < 1 a.s. (3.9) 
n ~ o o  

Remark. If {X,} is uniformly bounded, then 7=0  and therefore /~=�89 in (3.9), 
which then implies that lira sup [S,[/(n log 2 n) 1/2 < oO a.s., in agreement with (3.3). 
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Proof Clearly (3.8) implies (1.7). Let {p(n)} be a sequence of positive even 
integers such that p(n)~fl-1 log 2 n. We now show that (1.8) holds with g(n)=n. 
The condition (3.7) implies that for m = 1, 2, ..., and a > 0, n > 1, 

~, a+n 
E _,.S ,.2"<= (k2m-1/(k-1)!)n k-1 ~ E[X,[ a'' (3.10) 

k = l  i = a + l  

(cf. [2], page 1507, line 9). Setting 2m=p(n)~fl-1 log 2 n in (3.10) and making use 
of (3.8), we obtain (1.8) with g(n)=n and B being a sufficiently large positive 
number. Hence the desired conclusion follows from Theorem 3. [] 

A random variable X is said to be generalized Gaussian with parameter 
2 > 0  if E exp(tX)<__exP(�89 2) for all real t. Obviously the following result of 
Stout [15] which was proved by using the maximal inequalities of Serfling is 
another special case of Theorem 2. 

Corollary 4. Let Sa, n be generalized Gaussian with parameter 2n for all a >_0 and 
n >= 1. Then 

lim sup IS,[/(22n log 2 H) 1/2 ~ 1 a.s. (3.11) 

We now apply Theorem 3 to study a problem of Taqqu [17] concerning the 
n 

almost sure limiting behavior of S, =~f (Z~) ,  where f ( . )  is an arbitrary Borel 
1 

function such that for some p > 2 

Elf(Z1)lP<oo and Ef(Z1)=0,  (3.12) 

and {Z~, i_>_ 1} is a mean zero, unit variance stationary Gaussian sequence that 
exhibits a long-range dependence in the following sense: 

r(k)=EZiZk+l~k-dL(k)  as k--+oe, (3.13) 

with d > 0  and L(.) being a positive slowly varying function. Let 

g(n) =ES2,. (3.14) 

Let v denote the measure on the real line R defined by 

dr(x) = (2~z)" 1/2 exp ( - � 89  2) dx. 

Since Ef(ZO=O and EfZ(ZO<o~, the function f(x) 
expanded in LZ(R, v) in terms of the Hermite polynomials 

may be uniquely 

Hk(X)=(--1) k eX2/2 d k e x2/2, (3.15) 

so that the series 

J(k) Hk(X)/k !, where J(k) =Ef (Z l )  Hk(Zl) , 
k = l  

(3.16) 
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converges to f ( x )  in Lz(R , v). As defined in [17], the Hermite rank o f f  is the 
smallest positive integer k such that J(k)+0,  where J(k) is as defined in (3.16). 
Taqqu [17] has noted that if f has Hermite rank m and (3.13) holds with 
O<d<l /m ,  then as n ~ o o  

ESZ, ( = g (n)) ~ {2J 2 (m)/(m ! (1 - m d) (2 - m d))} n 2 -  m d  L m (n). (3.17) 

For the case f ( x ) = x ,  {S,} is itself a Gaussian sequence to which Theorem 1 
above and the laws of the iterated logarithm in [7] and [17] are applicable. 
These results can be extended to more general functions f with Hermite rank 1, 
in view of the following strong reduction lemma due to Taqqu [17]. 

Lemma 2 ([17], p. 206). Let m be a positive integer, O<d<l /m ,  and let p be the 
smallest even integer satisfying p > 2 m a x  {d-1, (1-md)-1}.  Let L: [1, oo)~ R be 
slowly varying (at oD). Suppose that {Z i, i>1} is a stationary Gaussian sequence 
such that EZ 1 =0, EZ 2 = 1 and (3.13) holds. Suppose also that f :  R--+R is a Borel 

n 

function satisfying (3.12) and having Hermite rank m. Let S , = ~  f (Zi) and g(n) 
=ESZn . Then with probability 1 1 

i=~a{f(Zi)-(J(m)/m!)Hm(Zi)} /g~/Z(n)--+O as n- -*~,  (3.18) 

where Hm(x ) is the mth Hermite polynomial (see (3.15)) and J(m) is as defined in 
(3.16). 

When the Hermite rank m = 2, the requirement d < 1/m in Lemma 2 turns out 
to imply that SJgl/2(n) has a limiting distribution which is non-Gaussian ([17], 
Theorem 3). This result was first discovered by Rosenblatt [12] and was used by 
him to show that the sequence {Z~} fails to be strong mixing if d<�89 With a 
highly dependent structure and in the absence of a limiting Gaussian distribu- 
tion, it is not obvious what analogue of the law of the iterated logarithm would 
{S,} exhibit, and Taqqu has raised this problem in [17]. We now apply 
Theorem 3 to this problem in the following: 

Corollary 5. With the same notations and assumptions as in Lemma 1, there exists 
a positive constant A such that 

lira sup t S, I/{n 2- md L m (n) (log 2 n) ~} 1/2 ~ A a.s. (3.19) 
n ~ o o  

n 

Proof. Let S , = ~  Hm(Zi ). We first note that for every positive even integer p, 
1 

~ / n \ p / 2  

ESPn<-(EHPm(Z1) ) [n 2 [r(J)l~nJ �9 (3.20) 
- -  - -  j =  - n  

This inequality follows from Corollary 4.2 and Lemma 4.4 of [17] together with 
the formula in the fifth display on p. 227 of [17]. By (3.13), 

n ~ Ir(j)[m~2n2-meLm(n)/(1-md) as n ~ .  (3.21) 
j ~  - n  
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Moreover, for even integers p, 

EH~(Za)~2a/Z(c,,p)"P/z as p--+oo, (3.22) 

where c m is a positive constant depending only on m (cf. [17], p. 228). Let O(n) 
=n2-maLm(n). From (3.20), (3.21), (3.22), and the stationarity of {Zi} , we obtain 
that for all even integers P>=Po (sufficiently large) and all a > 0  and n >  1, 

E ISa, ,I7?lZ(n)lP =E 1~,17,~/2(n)1 p <B(c~p),,,I2, (3.23) 

for some positive constants B and c~. Clearly the function ~s satisfies (1.2) and 
(1.3). Hence by Theorem 3 the conclusion (3.19) of Corollary 5 holds for S,. In 
view of Lemma 2 and (3.17), the desired conclusion therefore also holds for 
S,. [] 

4. A Maximal Inequality and a Marcinkiewicz-Zygmund Type Strong Law 

Throughout this section we shall let 

Ma , ,=  max ISa,.l, M , = M o , , .  
l < k ~ n  

In [13], Serfling has obtained the following useful maximal inequality. 

Theorem 4 ([13], p. 1231). Let f:  {1, 2, ...} --+(0, oo) be a nondecreasing function 
such that 

2f(n)<f(Zn)  for all n>=l, (4.1) 

and 

f(n) / f (n + 1)--+ 1 as n--+ oo. (4.2) 

Let p>2 .  I f  

EIS~,.IP<=fP/2(n) for all a>O and n > l ,  (4.3) 

then there exists a positive constant C such that 

EM~,,< Cfp/2(n) for all a>O and n >  1. (4.4) 

Serfling's proof of the above theorem in [-13] is based on induction on n and 
depends heavily on the assumption that p > 2  and the conditions (4.1) and (4.2). 
By making use of a similar dyadic expansion argument as in the proof of 
Lemma 1, we can drop the assumption that p > 2  and relax (4.1) and (4.2) into 
more general conditions of the type (1.1) and (1.2). Thus we generalize Serfling's 
maximal inequality in the following: 

Theorem 5. Let p>0 .  Suppose g: {1, 2 . . . .  } ~(0,  oo) satisfies (1.2) and 

lira infg(Kn)/g(n)>K for some integer K>2.  (4,5) 
n ~  oo  
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/f 

EIS~.,[P<__g(n) for all a>O and n > l ,  (4.6) 

then there exists a positive constant C such that 

EM~,~< Cg(n) for all a>O and n_-> 1. (4.7) 

Remarks. (i) Put g(n)=fP/Z(n) in Theorem 4. Then since p >  2, (4.1) implies that g 
satisfies (4.5) with K = 2 .  Moreover, since f is nondecreasing, so is g and 
therefore (1.2) obviously holds. Hence Theorem 4 is a special case of Theorem 5. 

(ii) Recently Longnecker and Serfling [9] have established a result which 
has some of the flavor of Theorem 5 although it is more distantly related to 
Theorem 5 than Theorem 4 is. In this result of [8], (4.6) is replaced by the 
existence of a function f ( . ,  .) such that for some 7 > 1 and p >0, 

ElSa,~lP<(f(a+l,a+n)) ~ for all a > 0  and n>__l. (4.8) 

Furthermore, (1.2) and (4.5) are replaced either by 

f(i,j)/f(1, n )<( j - i+l ) /n  for all l< i< j<n ,  (4.9) 

or by 

f ( i , j )+f ( j+l ,n)<f( i , j )  for all l<__i<j<n. (4.10) 

Then the conclusion (4.7) still holds with g(n) replaced by (f(1, n)) 7. As pointed 
out in [8], either (4.9) or (4.10) implies the existence of nonnegative constants 

J 
u 1 , u a, ... such that f(i, j) < ~ u k for all 1 < i < j  with equality if i = 1, j = n. There- 

k=i 
fore clearly the function g in Theorem 5 cannot be reduced to the form of the 
Longnecker-Serfling theorem. On the other hand, like Theorem 5, the Longnecker- 
Serfling theorem treats the general case p > 0 instead of just p > 2 which has been 
assumed in the earlier papers. 

Proof of Theorem 5. We shall only consider EMP,, as the same argument works 
for the more general EM~,,,. We first consider the case n=2 h (h= 1, 2, ...). 
Letting nk=2 k in (2.11) and using an argument as in (2.12), we have for x > 0  
and h = l ,  2, ..., 

<pEix i>_xl, {PEiS,j >__xj 
k 2 k i "1 

+ 2 2 PClS(nk+m2', 21- t ) l>(k- i+l ) -ax] l"  (4.11) 
i = 1  m = 0  

Let A=liminfg(Kn)/g(n)(>K), and choose l<7<(logA)/(logK ). Since 
n ~ c o  

E ISo, nl p__<g(n), it follows from (1.2) and (2.3) that there exists a positive constant 
c such that for h = 1, 2, ..., 
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h co h 

Z ~PxP-~P[IS,~[>x] dx< Z g(2k) 
k = l  0 k = l  

h 

<cg(2 h) ~ 2-(k-h)'<c' g(2h), 
k = l  

(4.12) 

co 

where c' = c ~  2 -j~, and 
1 

h k 2 k-~ co 

~ ~, ~px p-1P[lS(nk+m2 i, 2i-1)l>=(k-i+l)-2x]dx 
k = l  i = 1  m = 0  0 

h k 2 k - i  co 

= 2 E 2 ( k - i q - 1 )  2p ~Pyp-Ip[IS(nk+m2',2i-1)I>=y]dy 
k = l  i = 1  m = O  0 

h k 

< ~ ~, 2k-'+~(k--i+l)ZPg(2 '-1) 
k = l  i = 1  

h k 

<=cg(2h) E Z 2(k-i+l)-e(h-i+l)(k-i+ l) 2p 

k = l  i = 1  

h k 

----<cg(2h) E 2-O(h-k+l) E 2(t-'7)(k-i+D(k--i+ l)2P<=c" g(2h), 
k = 1  i = 1  

where we take c5 > 0 and r /> 1 such that  ? = c5 + r / and  we let 

(4.13) 

co co 

c c( 2 1,Jj2  t 
F r o m  (4.11), (4.12), and (4.13), we obtain (4.7) for a = 0  and n = 2  h. Clearly the 
same argument  also establishes (4.7) for a = 2h and n = 2 h. 

N o w  let 2h<--n<_2 h+l. We note  that  

p ~  p f  p p ~ p + l  EM~=2 ~EMzh+EM2~,2~}=2 Cg(2h)<Clg(n), (4.14) 

where C 1 is a positive constant .  The  last inequali ty in (4.14) follows from (2.2). 
Therefore  we have proved (4.7) for a = 0 and n = 1, 2 . . . . .  [ ]  

While the momen t  inequali ty in Theorem 5 relates EMPa,, to the upper  
bound  g(n) of ES~, ~, a s t raightforward modif icat ion of its p roof  also yields in the 
following theorem an analogous maximal  inequali ty relating the tail probabi l i ty  
of M,,~ to that  of S, , , .  

Theorem 6. Let p > 0 .  Suppose g: {1, 2 . . . .  }---, (0, oo) satisfies (1.2) and (4.5). If 

e[ls,,,l>x]<x-Pg(n) forall x = 0 ,  a>=Oandn>_l, (4.15) 

then there exists a positive constant C such that 

P[M~,,>x]<Cx-Pg(n) forall x > 0 ,  a>Oandn>l. (4.16) 

As a corol lary of Theorem 6, we now obtain a Marc inkiewicz-Zygmund type 
strong law for dependent  r andom variables. First if X1, X 2 . . . .  are i.i.d, and 
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0 < p < 2 ,  then the classical Marcinkiewicz-Zygmund strong law says that the 
following two statements are equivalent: 

n 1/PS,--,O a.s.; (4.17) 

ELXllV<oo and in the case p > l ,  EXI=O. (4.18) 

Let g(n)=2nElX~[ v. Using the Esseen-vonBahr inequality [3] for the case 
1 < p < 2  and the i.i.d, structure, it is easy to see that (4.18) implies 

E[Sa, nlV<g(n) for all a_>_0, n > l .  (4.19) 

Moreover, (4.17) can be rewritten as 

(g(n) ) - l /PS,~0 a.s. (4.20) 

In the general situation without the i.i.d, assumption, it is natural to ask whether 
for 0 < p  < 2, (4.19) is strong enough to guarantee (4.20). The answer turns out to 
be negative. For example, even in the i.i.d, case, if EXI=O and EX2<oo, then 
E I Sn IP~  rl p/2 for p < 2 and therefore (4.19) also holds with g(n)= c n p/2, where c is 
some sufficiently large positive constant. However, (cnp/2)-i/vS,=S,/(cl/Pn ~/2) 
clearly does not converge to 0 a.s. Although (4.19) does not necessarily imply 
(4.20), the following theorem says that a somewhat weaker assumption than 
(4.19) implies a slightly weaker conclusion than (4.20). 

Theorem 7. Let p>0 .  Suppose that g: {1, 2 . . . .  } ~(0,  oo) satisfies (1.2) and (4.5). If  
(4.15) holds, then for every 6 > 0  and k = l ,  2, ..., 

lim S,/{g(n) (log n)... (log k n) 1 +~} 1/p = 0 a.s. (4.21) 
n ~ o o  

Remarks. (i) Obviously (4.19) implies (4.15) by the Cebygev inequality. 
(ii) For p=2 ,  the conclusion (4.21) is not much weaker than the iterated 

logarithm result (1.3). 
(iii) Since g(n)>>n ~ by (2.3), we can replace log h n by loghg(n) (h= 1, 2, ..., k) 

in (4.21) (and also in (1.3) and (1.9)). Hence (4.21) is only slightly weaker than 
(4.20). 

(iv) Under the assumptions of Theorem4 and assuming further that 
f(2n)/f(n) is bounded, Serfling [143 has proved that (4.21) holds with g(n) 
=fP/Z(n). p>2 ,  k=2 ,  and 6=1 .  In Theorem 7 we are able to drop the 
assumption that p > 2  so that the result is closer in spirit to the classical 
Marcinkiewicz-Zygmund law. Moreover, our conditions on g are considerably 
weaker, and in particular, we are able to drop the boundedness assumption on 
g(2n)/g(n) by using the argument in the following proof which is different from 
that of Settling [14]. 

Proof of Theorem 7. Let b(n)=g(n)(logn)...(logkn) 1+~. We shall write S(n) 
instead of S, and M(a, n) instead of Ma, .. Let e>0.  By Theorem 6, 

p [IS(2~)I > ebl/P(2.i)] __< e-V(b(2J)) 1 g(2J), (4.22) 
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and 

P [M (2:, 2 J) > e b 1/p (U)] < C e - p (b (U)) - a g (U). 

Therefore  by the Borel-Cantell i  lemma, 

max [S , I /b l /P(2J)~O a.s. 
2 J < n < 2  j + l  

F r o m  (2.2) and (4.24), the desired conclusion (4.21) follows. 

T.L. Lai and W. Stout 

(4.23) 

(4.24) 

[ ]  
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