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Summary. In Lai and Stout [7] the upper half of the law of the iterated
Jogarithm (LIL) is established for sums of strongly dependent stationary
Gaussian random variables. Herein, the upper half of the LIL is established
for strongly dependent random variables {X;} which are however not
necessarily Gaussian. Applications are made to multiplicative random vari-
ables and to Y f(Z,) where the Z, are strongly dependent Gaussian. A
maximal inequality and a Marcinkiewicz-Zygmund type strong law are
established for sums of strongly dependent random variables X, satisfying a

a-+n
moment condition of the form E|S, |’ <g(n), where S, ,= > X,, genecraliz-
ing the work of Serfling [13, 14]. a+l

1. Introduction

Let {X,,n=1} be a stationary sequence of zero-mean random variables with

n

finite variances and let S,=) X;, n=>1. Most of the laws of the iterated
1

logarithm and related strong limit theorems for {S,} in the literature apply only
to the case where the sequence {X,} is weakly dependent (cf. [10]) so that {S,}
behaves in a very strong sense like Brownian motion. We have recently
considered in [7] for the stationary Gaussian case the situation where there is
much stronger dependence. One of our results shows that the upper half of the
law of the iterated logarithm holds under very weak assumptions on the
dependence structure; more specifically, we have proved

Theorem 1. Let {X,,n=1} be a zero-mean stationary Gaussian sequence. Let S,
=YX, g(n)=ES?. Suppose that

1

liminfg(Kn)/g(n)>1  for some integer K =2, (L.1)
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and

Vex>0, 3p=ple)<l  such that limsup { max g()/gn)} <1l+e (1.2)
o nooo  pa<isn

limsup|S,|/{2g(n) log,n}'?<1 as. (1.3)

n— o0

In the above we have let log, n denote loglogn, and we shall also set log, n
=log(log,_,n). The assumption (1.1) is closely related to the concept of
dominated variation introduced by Feller [4] as a one-sided analogue of
Karamata’s regular variation. Note that if either g(n) is nondecreasing or
max g(i)~g(n), then (1.2) holds. The assumptions (1.1) and (1.2) cover a wide
spectrum of dependence situations, e.g., the independent case, the case where
Cov(X;, X)=0 for all i,j, and the case where ES? is regularly varying with
exponent o >0,

In this paper we shall extend Theorem 1 to the non-Gaussian and also to the
nonstationary case. Thoughout the sequel, {X,} denotes a general sequence of

n
random variables and S, =Y X;; no assumption on stationarity or joint normality is
1

made unless otherwise stated. We shall also let S, denote the delayed sum
a+n

Y. X, and set S, ,=0. Further, g(n) does not necessarily satisfy g(n)=ES;.
i=a+1
Noting that in Theorem 1 the stationary Gaussian assumption and the assump-

tion that g(n)=ES? imply that E exp (¢S, ,)=exp (3¢ g(n)) for all 4, n, and 1, we
shall prove in Sect. 2 the following generalization of Theorem 1.

Theorem 2. Suppose g: {1, 2, ...} (0, ) satisfies (1.1) and (1.2). Let {X,} be a
sequence of random variables such that

Eexp(tS, )= Cexp(3t*(1+e,)gn)  forall azay, n=1
and |t| Su,/g"(n), (1.4)

where C, ay, ¢,, and u, are positive constants such that ¢,—0 and u,~(2 log, n)'/?

as n—00. Then (1.3) holds.

The condition (1.4) in Theorem 2 implies the finiteness of E exp(t,|X,|) for
all n, where {¢,,n=1} is a sequence of positive constants. For some of our
applications in Sect. 3, however, E exp(t{X,})=o0 for all t>0 and n=1. In the
classical independent case, infinite moment generating functions can be circum-
vented by truncation and by considering the moment generating function of the
truncated random variables. However, for dependent random variables like
those considered in the applications in Sect. 3, the moment generating function
of the sum of the truncated random variables is often very difficult to handle.
Therefore for dependent random variables it is sometimes more convenient to
replace (1.4) by conditions on the moments. Returning to the stationary Gauss-
ian case of Theorem 1, we have E|S, ,/g'/*(n)[?=E|N(0, 1)], and therefore

IB>0 such that EIS, ,/g'*(n)F <Bpe 'y? Vax0,
n=1and p>0. (1.5)
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In general, in the absence of the Gaussian assumption, the condition (1.5)
implies (1.4), as can be easily shown by using power series expansions for both
sides of (1.4). Hence by Theorem 2, the upper half of the law of the iterated
logarithm (1.3) also holds under the assumption (1.5). This suggests the following
generalization of Theorem 1 without the assumption of finiteness of E exp (tX,).

Theorem 3. Suppose g: {1,2, ...} (0, c0) satisfies (1.1) and (1.2). Let >0, §>0,
and let {p(n)} be a sequence of positive constants such that

p(m)~ B~ log,n. (1.6)

Let {X,} be a sequence of random variables such that

limsup E[S, ,[P<co  for every n=1and p>0, (.7
and
E|S, /g 2 )P <B(ap(n)’*™  for all aza, and n21, (1.8)

where B and a, are positive constants. Then

limsup |S,|/{(cef~ 1 log, n)f g'?(n)} <1 as. (1.9)

H— 00

We note that (1.5) implies (1.8) with a=e~! and B=1/2, in which case (1.9)
reduces to (1.3). In Sect. 3 we shall give some applications of Theorems 2 and 3.
Clearly Theorem 2 also includes the upper half of the classical law of the iterated
logarithm for the 1.1.d. second moment case via the Hartman-Wintner truncation
scheme [6]. In [17], Taqqu proved the weak convergence (to certain semi-stable
processes) of sums of nonlinear functions of stationary Gaussian random vari-
ables that exhibit a long range dependence, and he asked about their almost
sure limiting behavior. In Sect. 3 we shall apply Theorem 3 to solve this problem.
Theorem 3 also generalizes an earlier result of Gal [5, Théoréme 2] and of
Philipp [9, Satz 2] who considered the special case g(n)=n and f=1/2 and
who respectively indicated some interesting applications in this special case to
lacunary trigonometric series and to stationary mixing sequences.

The proof of Theorems 2 and 3 in Sect. 2 makes use of a dyadic expansion
argument due to Gal [5]. A simple probabilistic exposition of this useful technique
will be given in the proof of Lemma 1. We shall also use this kind of dyadic
expansion argument in Sect. 4 to obtain a maximal inequality and a Marcinkie-
wicz-Zygmund type strong law for dependent random variables which satisfy
moment restrictions of the form

EIS, JF<gm) forall a=0,1,... and n=1,2, ..., (1.10)

where p>0 and g satisfies regularity conditions of the type (1.1) and (1.2). These
results generalize some of the related results in the literature due to Serfling
[13], [14].

Throughout the sequel, we shall use Vinogradov’s symbol < instead of
Landau’s 0 notation. We shall sometimes also write S(a, n) instead of S, .
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2. Proof of Theorems 2 and 3

Let A=Iliminfg(Kn)/g(n). As shown in Lemma 1(i) and Lemma 2 of [7], the
assumptions (1.1) and (1.2) imply that
g(n)— oo, 2.1)

max g(i)<g(n), ' (2.2)

and that given 0 <y <(log 4)/(log K), there exists N such that
g([an])/g(n)>a® for all a=N and n=N. (2.3)

As we have remarked in Sect. 1, the condition (1.5) on the moments of S, ,
implies the assumption (1.4) on the moment generating function of S, ,. It is
interesting to note that the moment condition (1.5) provides the following ex-
ponential inequality for the tail probabilities of S, ,: For all t>0,a=0,and n> 1,

P[|Sa,n/g1/2(”)|ét]§3ingt_p(l’ ey, by (L35),
P>
=Binfexp{—plogt+iplog(pe ')} =Bexp(—it?). (24)
>0

More generally, if the term (pe )7/ in (1.5) is replaced by (o p)’?, where a,
are positive constants, then (2.4) becomes

P[IS,, /g (m| 2] < Binft =P (x p)’*
p>0

=Bexp{—(B'"")/(xe)}. (2.5)

The proof of Theorems 2 and 3 depends on similar exponential bounds for certain
large probabilities which are obtained under the weaker assumption (1.4) of
Theorem 2 or (1.8) of Theorem 3. Making use of the properties (1.1) and (1.2)
(and therefore (2.1)-(2.3) as well) of g, the following lemma relates these ex-
ponential bounds to the almost sure asymptotic behavior of S,.

Lemma 1. Suppose g: {1,2, ...} = (0, co) satisfies (1.1) and (1.2). Let >0, 6>0,
and let

t,=(0""log, n). (2.6)

Let {X,} be a sequence of random variables satisfying (1.7) and the following two
conditions:
(i). Given 0<e<1, 3¢'>0 and a,, ny such that for all a=a, and n=n,,

PLIS, /g2 mlz(1+e) t,]Sexp{— (1 +&) 0 1,/};
(it} 3d>0, B> 1, and a,, n, such that for all aza, and n=2n,,
P[IS,,./g* (M| zx t,]sexp{—dt,’logx} if x=B.
Then
lim sup |S,,|/{z, glPm<t as. 27
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Proof. Let 0<e< 1. Take 0<d <1 (to be specified later). Let n, =[2*°] and define

A=08,/z(1+9 1, g7 ()],
Bk:[ max (Sn—Snk[.zzstnk gl/z(nk)]'

MmeEns k41

By condition (i), Y P(4,) <o and so P[4, i.0.]=0. Moreover, in view of (1.2),

we can choose ¢ sufficiently small such that for all k sufficiently large and

nE<nsn .y, gln)<(l+e¢) g(n). Therefore it remains to show that
P[B,i.0.]1=0. (2.8)

To prove (2.8), we use a dyadic expansion argument due to Gal [5]. Take
j=Jj(k) such that 2~*<n,  , —n;, <2’. Therefore

JjkKy=ké+0(1), (2.9)
and
n 2212 — 1)+ 0(1), since n,,; —n=n(2°—1)+0(1). (2.10)

For n,sn<n,_, since n—n, <2, it then follows that
n—m=e; 2 T te , V7 4. te,

wheree;_,=0or 1 (i=1, ...,j), and therefore
i
Su=Su+ 3 Stn+m 2,2 e _y), @.11)
i=1

1

where m;=0, my=¢;_2’7""'+ ...+, (i=1,...,j—1), so that 0<m,<2/~%. For
i=1,....j(k)and m=0,1, ..., define

Bi(i, my=[IS(m+m 2, 27> e(j (k) — i+ 1) t,, g/ ()]

j
Since Y (j—i+1)"2<2, we obtain from (2.11) that

i=1

(U U Bd(i.m)=B,. (2.12)

12i£jk) 0Em< 2700 -1

Take 0<# <1, and let 0<&<¢/2. By choosing ¢ sufficiently small, we obtain
from (2.3) and (2.10) that g(n,)/g (2" ) =5 {2/%~¥/(2° — 1)} and log, n, = log, (2 %)
for i, i< j(k). Hence it follows from condition (i) that for all large k

njk) SiZjk) 0Sm< 2/0) =i

s )Y YW exp{—d0~'(logi)[log#—2log(j(k)—i+1)

i) S5 (k)
+3ylog(2® Y2 -~ )T}

<j(k) max(exp {vlog 2—d6~" (log n j(k)) [3 7 log(2’/(2° — 1)) -2 log (v + 1)
+log&l})

<k=2, by choosing § sufficiently small and using (2.9). (2.13)
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Moreover, choosing N >1i, such that (2.3) holds, we obtain by a modification
of (2.13) that for all large k

P(B (i, m))

N<ignjk) 0Sm< 2/~
<2/ j(k) exp {—d0~'(log N) [Fy log(2" ~"/*®) — 2 log j(k)]}
<k=2, by choosing N large enough. (2.14)

Finally, by (1.7), sup{E|S, ,/’: n<N, aza,} <o for every p>0, and therefore
choosing p large enough, we have

N
Y Y PO m) YOG )

<m< 2000 i

<k™2,  by(2.3)and (29),if p is large enough. (2.15)
From (2.12)-(2.15), )’ P(B,) < oo and therefore (2.8) holds. [J
1

Proof of Theorem 2. It is easy to show that (1.4) implies that the conditions of
Lemma 1 are satisfied with = f=1. In particular, to check that condition (ii)
holds, we note that

P[IS,, /g (m| 2 xt,] = {exp(—u, xt,)} {E exp(u,S,, ,/g"* (1))
+E eXp(—‘ U, Sa, n/gllz(n))} .

Hence the desired conclusion follows from Lemma 1. [

Proof of Theorem 3. By the Chebyshev inequality and (1.8),
P[IS,,./g"* Mz x 1,1 < B{apm)/(x )"} 7™,

and it then follows that the assumptions of Lemma 1 are satisfied with 6=

Blae). O

3. Some Applications of Theorems 2 and 3

Clearly Theorem 2 includes Theorem 1 as a special case. Another special case of
Theorem 2 is Corollary 1 below on uniformly bounded multiplicative sequences.
Recall that a sequence {X,, n=1} is said to be multiplicative if

E(X X, )=0 forall nz1andall 1<i,<...<i,. (3.1)

i1t in

Suppose that the sequence {X,} is multiplicative and that [X,|<A for all n,
where A4 is a positive constant. Then it has been shown in [1] that for every real
number ¢ and for every double array {b,,: 1 Sk=m, m=1} of real constants,

k=1 k=1

E exp (t Y bk Xk) geXp{%AZ 2y bik}. (3.2)

Hence (1.4) holds with g(n)=A4%n, C=1 and ¢,=0. Therefore the following
theorem of Serfling [14] and Takahashi [16] is a special case of Theorem 2.
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Corollary 1. Let {X,, n=1} be multiplicative with |X,|S A as. for some positive
constant A and all n=1. Then

limsup|S,|/2nlog, n)/?<A4 as. (3.3)

Takahashi [ 167 has sharpened the result (3.3) under stronger assumptions on
the sequence {X,}. A multiplicative sequence {X,} is said to be an equinormed
strongly multiplicative sequence (ESMS) if EX?=1 for all n21 and

(H X{{j}) H EX[®  forall 1Zi(l)<...<i(n) (3.4)
i1
and all 7(j) such that r()=1 or 2(j=1,...,n) and all n=>1.

It is known (see Lemma 2.2 of [15] and its proof there) that if {X } is a
uniformly bounded ESMS then for given 4 >0 there exists t;>>0 such that

Eexp(tS, JSexp{3(1+9)*n} forall az0, n=1, |t|<t,. (3.5)

Hence the following refinement of (3.3) due to Takahashi [16] is another special
case of Theorem 2.

Corollary 2. Let {X,, n=1} be a uniformly bounded ESMS. Then
limsup|S,|/(2nlog, n)? <1 as. (3.6)

n— 0

By making use of Theorem 3, we can extend (3.3) to the case where the
sequence {X,,n=1} need not be uniformly bounded. The following strengthen-
ing of the multiplicative criterion (3.1) in terms of higher order product moments
is due to Dharmadhikari and Jogdeo [2]:

(ﬂ X;g;) 0 forall n>1andall 1<i(l)<...<i(n) (3.7)

J=1

and all positive integers r(j) such that min r(j)=1.
1<j=n
We shall say that a sequence {X,} is higher-order multiplicative if (3.7) holds.
If |X,/<A as. for all n, then obviously E|X,|[P< AP for all n=1 and p>0.
Theorem 3 gives the following extension of (3.3) to the case where {X,} need not
be uniformly bounded.

Corollary 3. Let {X,,n=1} be a higher-order multiplicative sequence such that
there exist A>0, C>0 and y=>0 for which

E|X)F=CAPp®  for all nz1 and even integers p. (3.8)
Then letting ﬁ:y+% and oc:(%Az et/ (L2,

limsup[S,|/{n'*(xeB~ ' log, n)’} <1 as. (3.9)
Remark. If {X,} is uniformly bounded, then y=0 and therefore f=3 in (3.9),
which then implies that lim sup [S,[/(n log, n)/? < oo a.s., in agreement with (3.3).

h— o0
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Proof. Clearly (3.8) implies (1.7). Let {p(n)} be a sequence of positive even
integers such that p(n)~ =" log, n. We now show that (1.8) holds with g(n)=n.
The condition (3.7) implies that for m=1,2, ..., and a=0, n=1,
m a-+n
E[S, "< Y (R*™ k-1t Y E|X*m (3.10)

k=1 i=a+1

(cf. [2], page 1507, line 9). Setting 2m =p(n)~ f~ ! log, n in (3.10) and making use
of (3.8), we obtain (1.8) with g(n)=n and B being a sufficiently large positive
number. Hence the desired conclusion follows from Theorem 3. [

A random variable X is said to be generalized Gaussian with parameter
2>0 if Eexp(tX)<exp(}it?) for all real z. Obviously the following result of
Stout [15] which was proved by using the maximal inequalities of Serfling is
another special case of Theorem 2.

Corollary 4. Let S, , be generalized Gaussian with parameter in for all =0 and
n=1. Then

limsup |S,}/2Ainlog, n)* <1 as. (3.11)

We now apply Theorem 3 to study a problem of Taqqu [17] concerning the
almost sure limiting behavior of S,,=i f(Z,), where f(+) is an arbitrary Borel
function such that for some p=2 '

Elf(Z)F<oo and Ef(Z,)=0, (3.12)

and {Z;,i=1} is a mean zero, unit variance stationary Gaussian sequence that
exhibits a long-range dependence in the following sense:

r(k)=EZ,Z,, ~k " L(k) as k- oo, (3.13)
with d>0 and L(+) being a positive slowly varying function. Let

g(n)=ES2. (3.14)
Let v denote the measure on the real line R defined by

dv(x)=Q2n)"Y? exp(—1ix?) dx.

Since Ef(Z,)=0 and Ef*(Z,)<oo, the function f(x) may be uniquely
expanded in I*(R,v) in terms of the Hermite polynomials

k

b A
H () =(— 1 &2~ e, (3.19)

so that the series

oo}

Y J(k) Hy(x)/k!, where J(K)=Ef(Z,)HJ(Z,), (3.16)

k=1
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converges to f(x) in L,(R, v). As defined in [17], the Hermite rank of f is the
smallest positive integer k such that J(k)+0, where J(k) is as defined in (3.16).
Taqqu [17] has noted that if f has Hermite rank m and (3.13) holds with
0<d<1/m, then as n— 0

ES2(=g(n)~{2J2(m)/(m) (1 —md)(2 —md))} n*>~™ I7(n). (3.17)

For the case f(x)=x, {S,} is itself a Gaussian sequence to which Theorem 1
above and the laws of the iterated logarithm in {7] and [17] are applicable.
These results can be extended to more general functions f with Hermite rank 1,
in view of the following strong reduction lemma due to Tagqu [17].

Lemma 2 ([17], p. 206). Let m be a positive integer, 0<d <1/m, and let p be the
smallest even integer satisfying p>2max {d~',(1—md)~'}. Let L:[1,0)—R be
slowly varying (at o). Suppose that {Z,,i21} is a stationary Gaussian sequence
such that EZ, =0, EZ3=1 and (3.13) holds. Suppose also that f- R—)R is a Borel

function satisfying (3.12) and having Hermite rank m. Let S, z f(Z) and g{n)
=ES? Then with probability 1

Z {S(Z) = (m)/m) Hm(Zf)}‘/g”z(n) =0 as n-o, (3.18)

where H, (x) is the m™ Hermite polynomial (see (3.15)) and J(m) is as defined in
(3.16).

When the Hermite rank m =2, the requirement d <1/m in Lemma 2 turns out
to imply that S,/g'/*(n) has a limiting distribution which is non-Gaussian ([17],
Theorem 3). This result was first discovered by Rosenblatt [12] and was used by
him to show that the sequence {Z;} fails to be strong mixing if d<%. With a
highly dependent structure and in the absence of a limiting Gaussian distribu-
tion, it is not obvious what analogue of the law of the iterated logarithm would
{S,} exhibit, and Taqqu has raised this problem in [17]. We now apply
Theorem 3 to this problem in the following:

Corollary 5. With the same notations and assumptions as in Lemma 1, there exists
a positive constant A such that

limsup|S,|/{n*~™ L"(n)(log, n)"} > < 4 as. (3.19)

R— 0

Proof. Let S’n:ZHm(Zi). We first note that for every positive even integer p,
1

~ n /2
ES;S(ERLZ) (n 3 o) (3.20)

Jj=—n

This inequality follows from Corollary 4.2 and Lemma 4.4 of [17] together with
the formula in the fifth display on p. 227 of [17]. By (3.13),

n i [FG)™~2n* =" IMn)/(1 —md) as n— co. (3.21)

Jj=—n
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Moreover, for even integers p,
EHN(Z,)~2"*(c, p)"?? as p—oo, (3.22)

where c,, is a positive constant depending only on m (cf. [17], p. 228). Let yr(n)
=n?-m4 ["(n). From (3.20), (3.21), (3.22), and the stationarity of {Z,}, we obtain
that for all even integers p = p, (sufficiently large) and all a=0 and n=1,

E|S, W' )P =E|S, /' ()| < B(ap)™”, (3.23)

for some positive constants B and «. Clearly the function y satisfies (1.2) and
(1.3). Hence by Theorem 3 the conclusion (3.19) of Corollary 5 holds for S,. In
view of Lemma 2 and (3.17), the desired conclusion therefore also holds for

S,. O

4. A Maximal Inequality and a Marcinkiewicz-Zygmund Type Strong Law

Throughout this section we shall let

M,,=max|S, .| M, =M,,.

1Zk=<n
In [13], Serfling has obtained the following useful maximal inequality.

Theorem 4 ([13], p. 1231). Let f:{1,2, ...} —»(0, c0) be a nondecreasing function

such that

2f(m<f(@2n) forall nzl, (4.1)
and

fm/fm+1)-1 as n—ooo. 4.2)
Let p>2. If

E|S, JF<f?*(n) forall az0and nz1, (4.3)

then there exists a positive constant C such that
EM? < CfP%(n) forall az0and nz1. (4.4)

Serfling’s proof of the above theorem in [13] is based on induction on n and
depends heavily on the assumption that p>2 and the conditions (4.1) and (4.2).
By making use of a similar dyadic expansion argument as in the proof of
Lemma 1, we can drop the assumption that p>2 and relax (4.1) and (4.2) into
more general conditions of the type (1.1) and (1.2). Thus we generalize Serfling’s
maximal inequality in the following:

Theorem 5. Let p>0. Suppose g: {1, 2, ...} = (0, c0) satisfies (1.2) and
liminfg(Kn)/g(n)>K  for some integer K=2. (4.5)

n— 0
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If

E|S, \F<g(n) forall az0and nzl, (4.6)
then there exists a positive constant C such that

EM? <Cg(n) forall az0and nz1l. 4.7)

Remarks. (i) Put g(n)=/??(n) in Theorem 4. Then since p>2, (4.1) implies that g
satisfies {4.5) with K=2. Moreover, since f is nondecreasing, so is g and
therefore (1.2) obviously holds. Hence Theorem 4 is a special case of Theorem S.

(ii} Recently Longnecker and Serfling [9] have established a result which
has some of the flavor of Theorem 5 although it is more distantly related to
Theorem 5 than Theorem 4 is. In this result of [8], (4.6) is replaced by the
existence of a function f(*, -) such that for some y>1 and p>0,

EIS, JF<(f(a+1,a+n)y forall az0andn=1. 4.8)

Furthermore, (1.2) and (4.5) are replaced either by

faefA,ns(—i+)/m  forall 1Zi<j<n, 4.9)
or by
FRN+HfG+HLm=fG))  forall 1<igjsn (4.10)

Then the conclusion (4.7) still holds with g(n) replaced by (f(1, n))’. As pointed

out in [8], either (4.9) or (4.10) implies the existence of nonnegative constants
j

Uy, Uy, ... such that (i, )< 3 u, for all 1<i<j with equality if i=1, j=n. There-
k=i

fore clearly the function g in Theorem 5 cannot be reduced to the form of the

Longnecker-Serfling theorem. On the other hand, like Theorem 5, the Longnecker-

Serfling theorem treats the general case p> 0 instead of just p> 2 which has been

assumed in the earlier papers.

Proof of Theorem 5. We shall only consider EM?, as the same argument works
for the more general EMZ . We first consider the case n=2" (h=1,2,..).
Letting m,=2* in (2.11) and using an argument as in (2.12), we have for x>0
and h=1,2, ...,

h
P[M, Z4x]<P[|X [zx]+ ), {P[lsnkléx:l
k=1
ko 2k
+Z ZP[IS(nk+m2i,2i‘1)|g(k—i+1)'2x]}. (4.11)
i=1 m=0
Let A=Iliminfg(Kn)/g(n)(>K), and choose 1<y<(logd)/(logK). Since

E|S, ,IF Zg(n), it follows from (1.2) and (2.3) that there exists a positive constant
¢ such that for h=1,2, ...,
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M=

}Opx’"1 P[|S, |Zx]dx< i g(2%)
0 K

k=1 =1

h
Scg(@h) Y 276 < g(2h), 4.12)
K

=1

[e0]
where ¢’'=c¢) 2777, and
1

N
&
J

pxP~ L P[IS(n,+m2:, 2= Y| 2 (k—i+1)~2x] dx

D=
) =
O‘—->8-

k=1i=1 m=0

i

N
&
I

(k—i+1)*" [ py*=! P[IS(m+m2, 2= 1)z y] dy
0o 0

IIA

2k—i+l(k__i+ 1)217 g(zi— 1)

I EM;-
D= -
N

e
-
1

-

i k
écg(zh) Z Z 2(k—i+1)—y(h—i+l)(k__i+1)2p

k=1i=1
h k
écg(zh) Z 2—5(h—k+1) Z 2(1—n)(k~i+1)(k_i+1)2p§6//g(2h), (413)
k=1 i=1
where we take § >0 and % >1 such that y=9-+# and we let

' =c (i 2—61‘) (i 9t~ 1)jj2p)_
1

1

From (4.11), (4.12), and (4.13), we obtain (4.7) for a=0 and n=2". Clearly the
same argument also establishes (4.7) for a=2h and n=2"
Now let 2" <n <2+ We note that

EME<2P{EM%.+EM%, 5} <271 Cg(2M<C, g(n), (4.14)

where C, is a positive constant. The last inequality in (4.14) follows from (2.2).
Therefore we have proved (4.7) for a=0 and n=1,2,.... [

While the moment inequality in Theorem 5 relates EM?  to the upper

an

bound g(n) of ES? | a straightforward modification of its proof also yields in the

a,n’

following theorem an analogous maximal inequality relating the tail probability
of M, ,tothatof S, ,.

Theorem 6. Let p>0. Suppose g: {1,2,...} > (0, 00) satisfies (1.2) and (4.5). If
P[IS, J=zx]1<x"Pg(m) forall xz0, az0and nz1, (4.15)
then there exists a positive constant C such that
P[M, ,zx]<Cx ?g(m) forall x>0, az0and nz1. (4.16)

As a corollary of Theorem 6, we now obtain a Marcinkiewicz-Zygmund type
strong law for dependent random variables. First if X,, X,, ... are iid. and
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0<p<2, then the classical Marcinkiewicz-Zygmund strong law says that the
following two statements are equivalent:

n~ S -0 as.; (4.17)
E|X,P<oo andin the case p=1, EX,=0. (4.18)

Let g(n)=2n E|X,|P. Using the Esseen-von Bahr inequality [3] for the case
1 <p<2 and the i.id. structure, it is easy to see that (4.18) implies

E|S, |P<g(m) forall az0, nx1. (4.19)
Moreover, (4.17) can be rewritten as

(gm)='"S,-0 as. (4.20)

In the general situation without the i.i.d. assumption, it is natural to ask whether
for 0<p<2, (4.19) is strong enough to guarantee (4.20). The answer turns out to
be negative. For example, even in the iid. case, if EX, =0 and EX7 < oo, then
E|S,|P<n?* for p<2 and therefore (4.19) also holds with g(n)=cn??, where ¢ is
some sufficiently large positive constant. However, (cn??)~1rS =8, /(c'/? n'/?)
clearly does not converge to 0 a.s. Although (4.19) does not necessarily imply
(4.20), the following theorem says that a somewhat weaker assumption than
(4.19) implies a slightly weaker conclusion than (4.20).

Theorem 7. Let p>0. Suppose that g: {1, 2, ...} —(0, o) satisfies (1.2) and (4.5). If
(4.15) holds, then for every 6>0 and k=1,2, ...,

lim S,/{g(n)(logn)... log, n)* °}1?=0 as. (4.21)
Remarks. (i) Obviously (4.19) implies (4.15) by the Ceby3ev inequality.

(ii) For p=2, the conclusion (4.21) is not much weaker than the iterated
logarithm result (1.3).

(iil) Since g(n)>»n” by (2.3), we can replace log,n by log,g(n) (h=1,2,...,k)
in (4.21) (and also in (1.3) and (1.9)). Hence (4.21) is only slightly weaker than
(4.20).

(iv) Under the assumptions of Theorem4 and assuming further that
f(2n)/f(n) is bounded, Serfling [14] has proved that (4.21) holds with g(n)
=f?2(n). p>2, k=2, and 6=1. In Theorem 7 we are able to drop the
assumption that p>2 so that the result is closer in spirit to the classical
Marcinkiewicz-Zygmund law. Moreover, our conditions on g are considerably
weaker, and in particular, we are able to drop the boundedness assumption on
2(2n)/g(n) by using the argument in the following proof which is different from
that of Serfling [14].

Proof of Theorem 7. Let b(n)=g(n)(logn)...(log,n)' *°. We shall write S(n)
instead of §, and M(a, n) instead of M, ,. Let £>0. By Theorem 6,

PIS@) zeb™? (2] e ?(b(2) " g(2), (4.22)
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and

PIM(2, 2)zeb'P(2)] < Ce~?(b(2) ' g(2). (4.23)

Therefore by the Borel-Cantelli lemma,

max |S,|/b'P(2) =0 as. (4.24)

2i<ng2i+1

From (2.2) and (4.24), the desired conclusion (4.21) follows. []
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