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Summary. A concept of worst-case-sufficiency is defined, generalizing Le 
CamPs approximate  sufficiency. Instead of using total  var ia t ion norm,  as did 
Le Cam (1964), ne ighborhoods  are described by upper  expectations. A 
corresponding version of the theorem of Le Cam-Blackwel l -Sherman-Ste in  
is proved in the case of finite parameter  space. As a ma in  tool serve 
s tandard  experiments and their upper  limits, here to be called upper  stan- 
dard functionals.  A character izat ion of s imul taneously  least favorable ex- 
per iments  domina ted  by a family of upper  expectations is proved. It says 
that  least favorable experiments exist if and  only if the upper  s tandard  
funct ional  acts addit ively on a cone of concave functions. 
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1. Introduction 

The start ing point  of the present work has been the Huber-Strassen theory of 
robust  testing and  least favorable pairs. It is shown there that under  suitable 

* Part I is essentially from the author's dissertation submitted in partial fulfilment for the Ph.D. 
degree in Mathematics at the Swiss Federal Institute of Technology 
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assumptions, one can construct a minimax test statistic for testing a convex 
composite hypothesis 9 o against a convex composite alternative 91, and that 
there exists a pair (9o,91) in 9 o x.~l which is simultaneously least favorable 
among the pairs in 9 o x 021 for all testing problems, e.g. for all levels or for all 
a priori weights. First, Huber [10, 11] proved such results for neighbourhoods 
9o/t of distributions (~o/~, taken either in e-contamination or in total variation 
norm, thus robustifying the Neyman-Pearson tests of (~0 against (~r Huber- 
Strassen [12] treated the general case of 9o/1 being dominated by 2~alternating 
capacities. In this way the sets 9o/1 could be described without referring to 
metrics and topological neighbourhoods. The formalization by capacities orig- 
inated from Strassen [201. 

One could ask more generally whether there exist experiments 
(Q1, Q 2 , . . . , Q n ) ~  x92 x . . .9,  which are simultaneously least favorable for a 
class of loss functions W=(W0(0). Confining ourselves to a given a priori distri- 
bution and to sets 9 o dominated by upper expectations v o (Qoe9o 
r V f),  we give a simple necessary and sufficient condition. In 
what follows, an indexed family (%) of upper expectations will be called an 
"approximate model". 

In order to achieve this characterization of least favorable experiments, we 
will use sufficiency theory as a tool. According to Blackwell [3, 4], an experi- 
ment (P0) is sufficient for another experiment (Q0) (possibly on a different 
sample space), if there is a randomization which maps P0 onto Q0 for all 
parameters 0. The more familiar Halmos-Savage definition of sufficiency ap- 
plies to a statistic rather than a pair of experiments. However, a statistic T is 
sufficient under the experiment (Q0) in the sense of Halmos-Savage, iff the 
distributions of T, i.e. the experiment Po=~(TIQo) is sufficient for (Q0) in the 
sense of Blackwell (assuming suitable topological conditions). For a proof see 
e.g. Heyer [9]. We will always use the Blackwell definition unless otherwise 
stated. If we weaken this definition by requesting the existence of a randomi- 
zation which maps the former experiment only into a neighbourhood of the 
latter, we get the concept of approximate sufficiency, as used by Le Cam [14], 
who described neighbourhoods in terms of total variation norm. In order to 
consider least favorable experiments in more general convex sets, we introduce 
the following concept: 

An experiment (P0) is called worst-case-sufficient for an approximate model 
(Vo), if there is a randomization which maps P0 onto a distribution Qo domi- 
nated by v o, for all 0. The choice of name is motivated by the trivial fact that 
for any decision problem the image experiment (Qo) is not worse than the 
worst case under (Vo). 

Similar to Blackwell sufficiency and Le Cam's approximate sufficiency, we 
will characterize worst-case-sufficiency in terms of minimal Bayes risks. An 
early version (purely analytical and not yet related to statistics) of such a 
theorem was given by Hardy, Littlewood and Polya [7]. Sherman [18] gener- 
alized it, while Blackwell [3, 4] and Stein [19] proved it in the context of 
sufficiency. Cartier, Fell and Meyer [5] and Strassen [21] embedded it in the 
Choquet theory of measures on convex compact spaces. Finally, Le Cam [14] 
proved it for approximate sufficiency. Here, the notion of a standard measure 
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(Blackwell [3]) becomes indispensable. It generalizes the notion of a probabili- 
ty ratio to the case when the finite parameter  space has more than two points. 
In this way, all decision theoretic information of an experiment is condensed in 
one measure on the unit simplex of N ~ Minimal Bayes risks may be repre- 
sented as the values of the standard measure on concave functions. Corre- 
sponding to the idea of a standard measure for an experiment (Q0), we in- 
troduce the upper standard functional for a family (Vo) of upper expectations 
(i.e. for an approximate model), allowing us to represent minimal upper Bayes 
risks. As special upper expectations, the upper standard functionals are only 
subadditive. 

By showing that the upper standard functional of an approximate model 
acts additively on a certain cone of concave functions (corresponding to the set 
of loss functions in question), we prove the necessary and sufficient condition 
for the existence of simultaneously least favorable experiments. The proof  is 
simply by constructing a least favorable standard measure, which yields the 
asserted experiment via an application of the generalized Le Cam-Blackwell- 
Sherman-Stein Theorem. 

Acknowledgements. I would like to express my gratitude to P.J. Huber (Harvard) for presenting me 
this matter as a dissertation theme, to F. Hampel (ETH) for valuable discussions and for accepting 
this work, and to L. Le Cam (Berkeley) for suggesting improvements and providing me with re- 
ferences. 

2. Upper Expectations 

We assemble some facts about upper expectations and capacities alternating of 
order 2. Let Y be a Polish space and d y  its Borel algebra. Further let ~gb(y) be 
the space of bounded continuous functions and ~ ( Y )  the space of bounded 
dy-measurab le  functions on Y. Probability measures are considered as linear, 
positive, normalized and a-continuous functionals on 5~ They are en- 
dowed with the weak topology, i.e. the topology of pointwise convergence on 
bounded continuous functions on Y. 

Proposition 2.1. Let ~ be a tight set of probability measures Q olz Y. Define the 
upper expectation v of ~ by 

v (g )=sup{Q(g)[Q~}  for all g ~ o ~ ( Y ) .  

v has the following properties: 
a) v(g 1 +gz)<v(gO+v(gz) ,  v(cg)=cv(g) for c dR  + and gl, gz,g~5~o~(Y), 
b) v(gl)<v(g2) for gl <=g2 in 5~o(Y), 
c) v(c) for c~N, 
d) v(g,).~v(g) for g , ~ b ( y ) ,  g,+g (hence g is upper semicontinuous), 
e) v(g)=sup {v(g*)lg* upper semicontinuous, bounded, <g} for all ge~qo (y). 

Proposition2.2. Conversely, if v is a functional on 5~oo(Y), satisfying a) to e), 
define 

= {QIQ probability, <= v on 5aoo(Y)} 
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Then we have: 
f) Any linear functional on c~b(y), dominated by v]~b(y), is positive, norma- 

lized, a-continuous and hence extendable to a unique element of ~. 
g) ~ is convex and weakly compact. 
h) v is the upper expectation of ~, being attained for every bounded upper 

semicontinuous function. 

If we say that v dominates Q, we simply mean that the inequality 
Q.(f)< v(f) holds for all functions in question. (This has of course nothing to 
do with the domination concept of the Radon-Nikodym theorem.) It should be 
noticed that we allow for all bounded measurable functions f in the definition 
of the set 2. In statement 1), we consider all bounded continuous functions. It 
is required to allow functions of arbitrary sign, not only nonnegative ones, to 
make sure that the dominated functionals are positive and normalized. 

The motivation of why to use compactly generated upper expectations is 
provided by statement f). There is no other way to ensure a-continuity of the 
dominated linear functionals. One derives a-continuity from the continuity 
assumption d), which is equivalent to tightness of the set 2. 

One could wonder about introducing probability measures as functionals 
on 5~ since we use the weak topology only. The reason is that we will 
have to deal intensively with randomizations and compositions thereof (Sect. 3). 
The range of a randomization is contained in 5P~o(Y ), but not necessarily in 
c~b( y). 

Proof of Proposition 2.2.: ad f ) :  Let 0* be a linear functional on c~b(y), 
dominated by v. Then Q* is positive by b): for f_<0, we have 
Q*(f)<=v(f)<=v(O)=O. That (2* is normalized is seen as follows: Q*(-1)=< 
v ( - 1 ) =  - 1  and 0*(1)=<v(1) = 1, hence (2"(1)= 1. From d) and positivity of Q*, 
we conclude that Q* is a-continuous. The Daniell-Stone procedure provides an 
extension Q, which is a regular probability. To assure that Q is an element of 
2, we have to show that it is dominated by v on all measurable functions. 
Assumption d) implies that this is true for all upper semicontinuous functions. 
Since Q is regular, there exists to any function f ~ ( Y )  a nondecreasing 
sequence of semicontinuous functions f ,  which approximate the expectation 
Q(f) from below: f , < f ,  Q(f,)~Q.(f). From this we see that Q is dominated by v 
on f as well: Q(f) = sup Q(f,) < sup v(f,) < v(f). 

n n 

ad g): The preceding steps have shown that, by regularity, a probability 
measure is dominated by v on the measurable functions iff it is dominated on 
the continuous functions only. Thus the set ~ is weakly closed. Tightness is 
equivalent to d). Hence ~ is weakly compact. Convexity is trivial. 

ad h): The proof is in three steps. 

(*) For  every nonzero gEC~b(Y), there is a Q ~  satisfying Q(g)=v(g): Define a 
linear form Q on ]R-g by Q(cg)= cv(g). Using subadditivity of v, Hahn-Banach 
yields an extension of Q to c6b(Y), dominated by v. Then f) provides the 
asserted probability Q. 
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(**) The same holds for g bounded upper semicontinuous: There is a se- 
quence g,+g, gneCgb(Y). We have 

sup {Q(g,)IQ~2} L sup {Q(g)[Q~2} 

since Q~--,Q(g,) is continuous on the compact set 2. From (*), we conclude 
v(g)=sup{Q(g)lQ~2}. The function Q~--~Q(g) is upper semicontinuous on the 
compact 9, hence the supremum is attained. 

(***) v is the upper expectation of 2:  This follows from (**) and from e). [] 

In general, an upper expectation v is not uniquely determined by its upper 
probability v(B)=v(lB) on d r. This however is true if v is generated by the 
Choquet integral of a capacity alternating of order 2. Consider the following 
properties of a setfunction w on d r :  

i) w(q~)=0, w(Y)= l  
j) w(A)<w(B) for A c B  in d r 
k) w(A,)Tw(A) for A,~A in d r 
1) W(F,)~.w(F) for F,$F closed sets of Y 
m) w(Ac~B)+w(AuB)<w(A)+w(B) for A,B in d r 

w is called a (normalized) capacity, if it satisfies i) to 1). It is 2-alternating, if it 
satisfies m). For  any positive, monotone setfunction w, the Choquet integral # 
is defined by 

oo oo 

~(g)=~w[g>t]d t=~w[g>tJd t  for geS~ 
0 0 

Since we intend to make of # an upper expectation, we need an extension to 
the whole space 5~o , i.e. to functions g of arbitrary sign: 

Proposition 2.3. Let w be a normalized, monotone setfunction on d r  (properties i) 
and j)). Then the Choquet integral of w satisfies: 

~v(cg)=c#(g), ~(g+c)=~v(g)+c for cE]R +, g6~/~+(r). 

By the latter equality, ~ is extendable to 5r putting simply: 

r for cE~ +, g~Lf+(Y) 

This definition is independent of the special representation of g -c .  

Proposition 2.4. Let w be a normalized, monotone, 2-alternating setfunction (i), j), 
m)) on ;dy. Then w is a capacity (k), 1)) iff v~ satisfies properties 2.1 d) and e), i.e. v~ 
is continuous on decreasing sequences of continuous functions, and its values on 
measurable functions may be approximated from below by upper semicontinuous 
functions. 

This follows immediately from the wellknown fact that a 2-alternating 
capacity is regular from below: 

w(A) = sup {w(F) IF ~ A, F closed} 

(Choquet's theorem of capacitability). 

for all A ~ d  r 
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Proposition 2.5. Let w be a normalized, monotone setfunction on d r. Then w is 2- 
alternating iff # is subadditive ( a ) ~  m)). 

The if-part is proved by a simple application of the Choquet integral to I A 
+IB=IA~B+IA~B. The converse direction is more involved. Here is a straight 
forward proof. (For the original proof, see Choquet ([6], p. 287).) 
- First let gl and g2 be indicators: gl=IA, g2=lB. Subadditivity reduces to 2- 
alternation of w, since ~(l A § 18) = w(A wB) § w(A ~ B). 
- Now let g, be a sum of indicators, which we may assume nonincreasing: g~ 
= 2 laj , Aj=Aj+I.  In order to make an induction, put g*= ~ laj. By 

l <=j<=J l <=j<=J--1 

definition of the Choquet integral: 

# (g l+ lB)=  ~, w((Aj_lc>B)voAj)+w(As~B) (put Ao=Y) 
l < j < _ J  

vv(g~ + IB)= ~ w((Aj_lC'~B) v~ 
l <j<J- I 

2-alternation yields: 

w((Aj_ 1 c~ B) w A j) § w(Aj c~ B) < w(Aj_ 1 ~ B) + w(Ad). 

Thus we have 

By induction: 

Making use of 

we get 

!~(g I § ln) --< w(g* § IB) § w(Aj). 

~(g* + IB) _--< w(g*) + w(B). 

~(gl)  = ~(g~) + w(A,), 

- A  second induction 

w(gl + IB) < w(gl) + w(B). 

will cover the case g2 = ~ IB. Again, assume 
l <=k<~K 

IB. Then #(g l+g2)~#(g l+g~)+w(Bk)  by the Bk~Bk+ l, and put g*= 
1 <k<--K - 1 

preceding induction. By assumption, v~(gl +g~) < w(gl) +v~(g~). Subadditivity 
follows because of w(g2) = w(g*) + w(Bk). 
- The next step consists of a passage to the limit via the usual approximation 

1 1 g=sup  Y' ~ [ > i ] .  
n 1=<i<2~z; [g 2"J 

- At last, subadditivity extends from 2 ,+ to s  by 2.3. [] 
Independently and earlier already, Prof. Le Cam found the same proof 

without publishing it. We summarize the preceding two lemmas as follows: 

Proposition2.6. The Choquet integral # is an upper expectation iff w is a 2- 
alternating capacity. 

A full account of the relationship between upper expectations and upper 
probabilities can be found in Wolf [23]. 

Later on, we will need the following proposition: 
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Proposition 2.7. Let m be a positive finite measure on [0, oo[, and let F+ resp. F 
be its cumulative functions." 

7hen we have." 

F+(t) =m([0, t]) resp. F_(t)=m([0, t D 

(F+ (g)) = 5 w[g  __> t]m (at), 
(F_ (g)) = S w[g > t] m (dr). 

This may be seen by a change of variables. Proposition 2.7 says essentially, 
that ~ is additive on the cone of monotone functions of g. 

3. Randomizations 

Since we are dealing only with finite parameter space, we shall not follow Le 
Cam's, but the conventional framework, indicated by a-additivity and corre- 
sponding regularity conditions. A first step in this direction has been done in 
the preceding section with the restriction to Polish spaces and to weakly 
compact sets of probability measures. The following is a modified adaptation 
of Le Cam ([14], Sect. 3). Since the set of all transition probabilities lacks 
convenient topological properties, we are forced to embed them in a larger 
class of transformations. Let X and Y be Polish spaces. Then we define: 

An (ordinary) randomization M from X to Y is a linear map g~--~M(g), 
5P~o(Y) ~ 5~o(X ), which is 
positive: M(g) > 0 if g > 0 
normalized: M(Iy) = 1 x 
a-continuous: M(g,)+0 ifg,$0. 

Given a probability P on X, we define a P-generalized randomization as a 
map M: ~ ( Y ) - - , ~ ( X ) ,  for which linearity, positivity and normalization 
holds almost surely, the exceptional sets of probability zero depending on the 
functions used. Note that a-continuity is not contained in this definition. 

A restricted randomization will be a randomization from X to Y of the 
form M =  ~ fi-~y,, where 

l<=i<n 

f~b+(X) ,  ~ f~=l x and y~Y .  
l < i<n  

Ordinary randomizations are exactly those linear maps which are induced 
by transition probabilitieL Hence the notation M(g)x=~M(x, dy).g(y ) makes 
sense. Clearly, we have the inclusions "restricted" c " o r d i n a r y "  c " P -  
generalized". 

The following lemma shows how generalized randomizations may be sub- 
stituted in our context: 

Lemma3.1. I f  v is a compactly generated upper expectation (as will always be 
assumed) on Y, such that PM o <v for a P-generalized randomization Mo, then 
there exists also an ordinary randomization M, such that P M < v  and M(g) 
=mo(g  ) P-a.s. for all g6~b(y). 
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Proof Put M I = M o I ~ ( y  ). PM 1 is a linear, positive, normalized, a-continuous 
functional on cgb(y), since PM 1 N v[eb(r), p M  1 may be extended to a probability 
Q on Y By 2.2f), we have Q<=v. Let n be the natural projection 
5f~(X)--*L~(X,P). Then gMl: cgb(y)~Lo~(X,P) may be extended to a map 
M2: L~(Y,Q)--*Loo(X,P ), since P(IMl(gn)[)---,0 if Q(lg,])~0 and gn~gb(Y), and 
since cgb(y) is dense in Lo~(Y,,Q) with respect to Ll-norm. M 2 inherits a- 
continuity from Q. Neveu ([16], Prop. V4.4) yields an ordinary randomization 
M, such that M(g)=Mo(g) P-a.s. for all g~Cgb(y). This insures PM=Q<v.  [] 

We shall now see what makes P-generalized randomizations so useful. 
Denote their set by @(X, Y). Endow @(X, Y) with the topology of pointwise 
convergence, where ~c~o(X ) inherits the a(Loo,LO-topology of Lo~(X,P ), for 
which it won't be separated. Then we have: 

Lemma 3.2. The linear forms M~--~ S M(g) . fdP  are continuous on Ypp(X, Y), for all 
ge~t~o(Y ) and f ~ ( X , P ) .  

Proof These forms even induce the topology. []  

Lemma 3.3. Jpp(X, Y) is convex and quasicompact. 

Proof Convexity is clear. Quasicompactness follows from an application of 
Tychonoff and from the a(Loo,L1)-compactness of the closed unit ball of 
L~o(X,P). [] 

The following is a weak version of a very strong density result of Le Cam 
(Theorem 1 [14]). However, we are content with Proposition 3.4 in its present 
form. It can be proved with more elementary tools than Le Cain's theorem. 

Proposition 3.4. The restricted randomizations form a dense subset of JR(X, Y). 

Proof Given T~Jp(X,Y), gl . . . . .  gme~q~o~(Y), f l , . . . , fmeYl (X ,P)  and ~>0, one 
has to show the existence of T * =  ~, ai-6y ~ (where aiEc~b+(x)) such that 

IS IT(g j ) -  T*(gj)].fk dP[< e for j = 1,... ,  m, k = 1,. . . ,  n. Since cgb(x) is dense in 
Ll-spaces, it is enough to find aie~+(X) instead of cgb+(x). Further, it is 
enough to consider measurable step functions gl, '",gm, because Jp(X,Y) is 
equicontinuous for (ess) sup norms on ~o~(X) and s Hence we may 
assume g3=~bik'IR~, bjk constants, (Bk) a finite measurable partition of Y, 

k 
Bk~0. Select yeEBk for all k, and let T*=~T(IB~).cSy ~. Then we have T*(gj) 
= T(g~). [] k 

NOW we turn to conditional expectations. Again, let P be a probability on 
X, and M an ordinary randomization from X to Y Denote by f dP  the (signed) 
m e a s u r e  

Sfo fdP =fdP(fo). 

Under the map M, we obtain a signed measure (fdP)M, which is absolutely 
continuous with respect to PM. Thus the map 

d(fdP) M Lo~(X, P) ~ L ~o(Y, PM) 
f~-~ d PM ' 
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is well defined (Radon-Nikodym) and linear, positive, normalized, a-con- 
tinuous. A regular version thereof, i.e. a randomization which induces this 
map, does exist and will be called a conditional expectation given M under P, 
denoted E~(y, dx). It is immediately seen: 

Lemma 3.5. I f  Q -- PM, then QE~ = P, and ( fdP)M = (E~f)  dQ. 

In other words: Ee M sends Q back onto P. If f is a density of a P-continuous 
measure with respect to P, then E~e(f) is a density of the image measure with 
respect to Q. The latter equation might look more familiar in the following 
form: 

g. EMe (U) dQ = M(g) . fdP.  

4. Models and Sufficiency 

We give the essential definitions and assumptions�9 The parameter set O is 
assumed finite and fixed. Sample spaces X, Y are always Polish. 

A family (P0) of probabilities on X, indexed by 0cO, will be called a model 
or an experiment on X. Models on Y will be denoted (Qo). An approximate 
model on Y shall be an indexed family (Vo) of compactly generated upper 
expectations (not necessarily induced by 2-alternating capacities). In contrast, 
we call (Qo) an exact model. 

A model (P0) on X is called sufficient for the model (Qo) on Y, if there is a 
randomization M from X to g,, such that Qo=Po M for all 0~O (Blackwell [4])�9 
(P0) is called worst-case-sufficient for the approximate model (Vo) on Y, if there 
exists M such that PoM<_v o. This concept describes the situation that one 
experiment (P0) is better than the worst case dominated by (Vo). 

Note that it doesn't matter whether we formulate sufficiency with ordinary 
or P-generalized randomizations, where P is a probability with respect to 
which all the P0 are absolutely continuous: 

Proposition4.1. I f  there is a P-generalized randomization Mo, such that 
PoMo <v o for all O, then there is also an ordinary one with the same property. 

Proof M o is also P-generalized P = i - t ~ P 0  Since P M o < - l - v 0 , r  there is 
�9 = 1 O l  0 

by 3.1 an ordinary randomization M such that M(g)=Mo(g ) /5-a.s. (geCgb(Y)). 
From this and 2.2t), it follows PoM<vo. [] 

5. Standard Experiments 

Standard experiments will be our technical main tools�9 They were first used by 
Blackwell [3]. A further reference is Torgersen [-22]. Notations and facts, 
introduced in this section, will be of constant use throughout the remainder. 

Let K be the unit simplex of N~ K = {(zo)lz o >0, ~ z o = 1}. To every model 
0 

((2o) on a sample space Y, let qo be a density of Qo with respect to ~ Qo, such 
0 
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that ~ q 0 = l y .  Further, let q=(q0) be the vector of densities, which we may 
0 

consider as a map q: Y---,K. If S(0 Q) is the distribution of q under Qo, we call 
the family (S~ a)) the standard model or standard experiment of (Qo). S(o Q) is a 
probability on K, and we have S(oQ)=QoT q, where T q is the natural "random- 
ization" hw-~hoq, ~ ( K ) ~ 5 ~ o o ( Y )  from Y to K, associated with the point 
map q. 

The standard measure S (Q) of the model (Qo) is defined as the distribution of 

1 s(Q) _ ~_T q S(Q) s(Q) q under O - : , , ~ Z Q o ,  i.e. - . Trivially, is also given by 

_ 1 ~S(0Q) ' Conversely,l~l~ a standard measure determines uniquely its standard 
IOL 0 

model by S~0 a)= IOI. zodS(a), where z o is the 0-component of z~K. From normal- 

ization of the S ~a), it follows SzodS(e)- 1 Since the projections z~--~z o form a -Io  
linear base of all affine functions on K, we have: ~adS~a)=a(e) for all affine 

functions a on K e=vA~(1, l)~K . In other words: S (e) represents the point 
e of K. 

Generally, any positive measure S on K, which represents e, is called a 
standard measure. (It is automatically a probability.) And the family (So), where 
So=lOI.zodS, is called a standard model. Any standard model is "its own" 
standard model, since the identity map on K is a vector of densities of (So) 
with respect to ~So=lOI  .S. 

0 
A motivation for introducing standard experiments is given by the fact that 

(S(0 Q)) is sufficient for (Qo). Indeed, the statistic q =(q0) is sufficient in the sense 
of Halmos-Savage, i.e. there exists a conditional expectation E q given q inde- 
pendently of 0. The map E q is a randomization from K to Y, which sends (S(0 e)) 
back onto (Qo). Hence (S (a)) is sufficient for (Qo) in the sense of Blackwell. 
Another proof follows directly from criterion b) of Theorem 7.2. 

To any approximate model (Vo) on Y, we may construct an approximate 
standard model (s(0 v)) simply by S~o~)(h)= sup {S(oQ)(h)[(Qo)< (v0)}. It is equivalent to 
define first the upper standard functional s(V)(h)=sup{S(e)(h)[(Qo)<(vo)}, and 
then the approximate standard model s~V)(h)=sup {So(h)lS <s(~)}. Generally, we 
call (upper) standard functional any upper expectation s on K, such that 

D e f i n i t i o n  5.1. s(h +a)=s(h)+a(e) for all h~LZ~o(K ) and all affine a. 
In connection with standard measures and standard functionals, those ran- 

domizations D play a special role, which leave the affine functions fixed: D(a) 
= a  for all affine a's or equivalently D(zo)---z o for all 0. They are called 
dilations. If S is a standard measure, so is SD. We will use the following 
property of dilations: 

L e m m a  5.2. I f  k is a continuous concave function on K, then we have: D(k)< k. 

This is seen from k=inf{a[a affine>k} and D(inf)__<infD (Jensen). []  

It should be noticed that the concept of a standard measure generalizes 
directly the wellknown information measures for pairs of distributions. A f- 
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information is defined by 

'1" f (h)  ~ r 
If(Q1,Q2)=sf(q?ll)dQl+hlfl)oo~]~--~ ~ 2 L q l  =0] 

where f is a continuous convex function defined on the nonnegative numbers. 
Most commonly, one uses f = - l o g ,  for which one obtains the wellknown 
additivity property on multiple independent observations (Kullback [-13]). The 
following remark relates both notions: 

Proposition5.3. The convex functions f on the nonnegative numbers and the 
concave functions k on the unit simplex K for O={1,2} ,  are in a l - l - cor -  
respondence by 

k ( z ) = - 2 " f  ( z~) ' z~ .  

Corresponding f '  s and k' s satisfy: 

S(~ = - I ~(Q 1, Q 2). 

Because of the change of sign, the map (Q1, Q2)~--~SC~ is a measure of 
uninformativity. 

6. Minimal Bayes Risks 

We introduce the usual decision theoretic concepts. A loss function is an 
indexed family (W0) of functions W0eSP~(T), where T is the decision space, 
assumed to be Polish. A procedure is a randomization G from a sample space 
Y to a decision space T. Given a model (Qo) on Y,, a loss function (W0) on T 
and a procedure a from Y to T, we have the risk function 0~---*Q0a(W0). In 
general, a prior distribution would be any probability on O, but we shall deal 
only with the uniform distribution. Hence, Bayes risks are defined for us by 

1 
R((Qo), (w o))= 2o  (wo) 

Minimizing Bayes risks, we are lead to a fact which yields another motivation 
for the use of standard experiments. 

Proposition6.1. To any loss function (Wo) , we construct a concave continuous 
function k otl K by 

k(z) = inf Z Wo(t) . z o. 
t e T  0 

Then we have: 

inf R((Q), a, (W))= S~~ 

I.e. minimal Bayes risks may be expressed by standard measures. 



378 A. B u j a  

Proof 
infR((Q), a, (W)) = inf~ [ ~  a (W0). qo(Y)] Q(dy) 

a o- 0 

= ~ [ in fZ  Wo(t)" qo(Y)] Q(dy) = ~ k(q(y)) Q(dy) = S(~ 
t 0 

In this chain, only the second equality is problematic. It is easily seen to hold 
in the case of step functions W o taking on only finitely many values. Approx- 
imating uniformly a general loss function by step functions the equality 
follows. [] 

A vector q(y)= (qo(Y)) may be interpreted as a posterior distribution given 
the observation y under the uniform prior distribution. Then it is well known 
that a Bayes procedure consists of deciding such that the posterior expected 
loss ~ W0(t ). qo(Y) is minimized. This is the essential content of the preceding 

0 

proof. The value of k at z=(q0(y)) is thus the minimal posterior expected loss 
given the observation y. 

It makes sense to consider Bayes risks of exact models (Q0) for @gener- 
alized, ordinary and restricted procedures. But we have: 

Lemma6.2. The value infR((Q),a,(W)) is the same, if we let a vary among Q- 
G 

generalized or ordinary or restricted procedures. 

To see this, note that a~--~R((Q), a, (W))= ~ ~ a(Wo).qo dQ. is continuous on 
0 

the set ~(Y,, T) of (~-generalized procedures by 3.2. Further, the restricted 
procedures form a dense subset by 3.4. [] 

Upper risks are similarly defined by substituting the exact model by an 
approximate one: 

1 
R((v), a, (W))=~-6~ ~o v o a(Wo). 

But only ordinary and restricted procedures make sense. Again, we have a 
representation in terms of standard functionals: 

Proposition 6.3. infR((v), a, (W))= s(V)(k). 

The proof will need an application of the minimax theorem. First, let a, 
where it occurs, vary only among restricted procedures ~o~(T)~Cgb(Y). This 
restriction will be dropped afterwards. 

infR((v), a, (W))=infsup R((Q), a, (W)) 
~ (Q) 

where (Qo) varies among all experiments dominated by (Vo). The Bayes risk is 
an affine function of a, and the restricted procedures a form a convex set. 
Further, the models (Qo) under (Vo) form a convex, compact set in the ]O]-fold 
product topology of the weak topology. The Bayes risk is an affine, continuous 
function of (Qo), since the a's are assumed to be restricted: 
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o-(W0)~cgb(Y ). Thus, the minimax theorem may be applied: 

infR((v), a, (W)) = sup inf R((Q), a, (W)). 
a (Q) a 

From 6.1 and 6.2, we conclude that the right side equals sup {s(Q)(k)l(Q0)=< (v0)} 
and this is by definition s(V)(k). Dropping the restriction on a, we have so far 
proved: 

inf R((v), a, (W)) <=s(V)(k). 
Ct 

The converse inequality is trivial, since it holds always 

infsup => sup inf. []  
a (Q) (Q) ,7 

As a byproduct, we note the analogue to 6.2 as far as it makes sense: 

L e m m a  6.4. infR((v), a, (W)) has the same value if we let a vary among restricted 
G 

or among ordinary procedures. 

7. The  G e n e r a l  T h e o r e m  o f  L e  C a m - B l a c k w e l l - S h e r m a n - S t e i n  

T h e o r e m  7.1. The following statements are equivalent: 
a) (P0) on X is worst-case-sufficient for (Vo) on Y 
b) There exists a model (Qo) on Y, dominated by (vo) , and a randomization N 

from Y to X,  such that P = QN and N(Po)= qo ((~-a.s.). 
c) There exists a model (Qo) on Y, dominated by (Vo) , and a dilation D on K, 

such that S (P)= S(Q)D. 
d) For any concave continuous function k (which is the infimum of only 

finitely many affine functions), we have S(P)(k) <=s(V)(k). 
e) To any (f inite)  decision space T, to any loss function (We) on T, to any 

(restricted) procedure p from Y to T, and to any ~ > O, there exists a procedure a 
from X to T, such that 

R((P), p, (W)) <= R((v), a, (W)) + ~. 

Remarks. In d) and e), we may add the contents of the parentheses. Doing so, 
we get weaker statements, which are also equivalent. 

Statement b) is a kind of Neyman-criterion, while statement c) is its 
analogue for standard experiments. 

The randomization M, which is provided by a), and the randomization N 
of b) are essentially conditional expectations of each other, as will be seen from 
the proof. 

The proof will be cyclic. The main step e) ~ a) contains essentially a variant 
of the arguments of Le Cam (1964, p. 1473 0. 

a ) ~ b ) :  By a), there is a randomization M from X to Y such that Qo 

=PoM<vo. Let N be a conditional expectation given M under P =  P0. 
- 1 

Then we have for Q=i-AT~Qo: P = Q N  and g(po)=qo ((~-a.s.) by 3.5. 
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b) ~ c): Let E~ be a conditional expectation given q under (~. Denote by T p 
the "randomizat ion" hw--,hop= TP(h), ~ ( K ) - - +  ~oo(X ). Let Do=EqoNTV, N 
granted by b). Then we have SCQ)D=S (e) and Do(zo)=Z o (S(~ since ]O].z o 
is a density of S(o P) with respect to S (e) and it is also a density of S~0 o) with 
respect to S (~ The equality Do(zo)=Z o holds strictly on a set A ~ d  K of S (eL 
probability 1. Put D(h)= l A . Do(h ) + IAc. h. This is the dilation we need. 

c ) ~ d ) "  This follows from 5.2. We have D(k)<k for concave continuous 
functions k, hence Stm(k)< S(~ for a model (Qo) dominated by (Vo). 

d) ~ e): In its strong form, e) says: 

inf R((P), p, (W))= inf R((v), a, (W)). 
p a 

By Sect. 6, this is equivalent to S(e)(k)<=s~'~ where the concave function k is 
built from the decision space T and the loss function (Wo) as indicated by 6.1. 
Clearly, finite decision spaces yield concave functions which are the infimum of 
only a finite number of affine functions. Thus the weak and the strong form of 
e) follow from the respective variants of d). 

e) ~ a): Assume e) in its weak form. First we drop the restriction to finite 
decision spaces. Let T be any Polish space and (W0) a loss function on T. 
Given a restricted procedure a =  ~ f~.,St~ from Y to T, consider T* 

l <=i <=n 

={t l ,  ..., t~} as a finite decision space and a as a procedure from Y to T*. 
Then e) may be applied to T*, so that we have the inequality: 

infR((P), p, (W)) <= infR((v), a, (W)). (*) 
p tr 

By 6.4, it does not matter whether we let cr vary among restricted or ordinary 
procedures. Hence we have e) in its strong form. Now, specialize T =  Y and 
consider the ordinary procedure a=idl~oo(Y) from Y to Y. (Since p are 
randomizations from X to Y from now on, we write M instead of p.) The 
above inequality (*) yields: 

i n f ~  Po M(Wo) < 2 vo(Wo), 
M 0 0 

where M may be /5-generalized. If we put U(M,(W))=~[vo-PoM](Wo),  we 
0 

have infsup U(M, (W))=>0, since the inequality holds for all loss functions on Y. 
(IT) M 

We should like to apply the minimax theorem. The set @(X, Y) of all /5_ 
generalized randomizations is quasicompact in a topology which makes M 

U(M, (W)) continuous. @(X, Y) is convex and U is an affine function of M. 
Further, the families (W0) form a convex set and U is a convex function of (W0). 
Thus, the minimax theorem yields the existence of a P-generalized random- 
ization M o, such that U(Mo,(W))>O for all (Wo). In other words: 
Vo(g)>PoMo(g ) for all 0~O and for all g~=T~_(Y). By 3.1, there is an ordinary 
randomization M, such that M(g)=Mo(g ) (P-a.s.) for all g~V(y ) .  Thus we 
have also PoM <vo. [] 
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There is nothing essential in the restriction to a finite parameter space O. It 
is possible to prove a variant of the theorem for arbitrary O, but the con- 
ventional framework, dealing with o--continuous functionals and random- 
izations, would carry over only to experiments (P0) which are absolutely con- 
tinuous with respect to some o--finite measure. Instead, one should drop o-- 
continuity as is done in the framework of Le Cam [-14]. Further, one should 
replace the standard measures by conical measures (see Le Cam [-15J). 

For  easier reference, we state also the specialization of the above theorem 
to exact models, leading to the classical theorem of Blackwell-Sherman-Stein: 

Corollary 7.2. The following statements are equivalent: 
a) (P0) is sufficient for (Qo). 
b) There is a randomization N from Y to X, such that P = QN and N(Po) =qo 

((~-a.s.). 
c) There is a dilation D on K, such that S(P)= S(~ 
d) s(e)(k) <=S(e)(k) for all concave continuous functions k on K. 
e) infR((P),p,(W))<infR((Q),o-,(W)) for all decision spaces r and all loss 

p ~r 

functions (Wo) on r. 

In d) and e), the same restrictions are allowed as in 7.1. 

8. Least Favorable Experiments 

We will apply the theorem of the preceding section to characterize least 
favorable experiments. The condition which is necessary and sufficient for the 
existence of such experiments will be formulated in terms of standard mea- 
sures. So it is convenient to adapt a restricted definition of being least favor- 
able using only Bayes risks under the uniform prior distribution: 

Let ~K be a family of loss functions (W0) on any decision spaces. We call an 
experiment (Qo) under (vo) least favorable for the family ~,, if: 

infR((Q),a,(W))=infR((v),a,(W)) for (Wo)in ~ .  
G 

Actually, we shall work with the following equivalent condition: 

S(~ =s(V)(k) for all concave functions k corresponding to loss functions 
in ~ (see Sect. 6). 

Since all loss functions generating the same k are equivalent, we may also 
speak of being least favorable for k. 

An application of 7.2 is the following proposition: 

Proposition 8.1. A model (Qo) under (Vo) is least favorable for all loss functions iff 
it is "least sufficient" in the sense that all models dominated by (Vo) are sufficient 

for (Qo). 

Being least favorable means SCQ)(k)= sup S(Q')(k), where (Q0) varies among all 
models under (Vo). From Theorem 7.2 a)~* d) follows the assertion. [] 
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The  si tuat ion described in the preceding propos i t ion  is rarely found. It  
applies typically to the Huber -S t rassen  case of testing experiments.  

N o w  let (Q0) be an a rb i t ra ry  model  under  (Vo) and put:  

~r= {klX~e)(k)=s<V)(k), k concave,  cont inuous  on K}. 

The  set • is a closed convex cone:  
a) k~dg  ~ c. k~Y(  ( c e ~  +) 
b) k l , k 2 ~ J g ' ~ k l  +k2~Jv{" 
c) kind(,  ki--+k ~ k~d{'. 
Thus, if (Qo) is least favorable  for some concave k, the same holds for the 

elements  of  the closed convex coen they generate.  
s (v) is addit ive on such a cone oaf ", since it coincides there with S (Q). It  turns 

out  that  this is also a sufficient condi t ion for a least favorable  exper iment  to 
exist: 

Theorem8.2 .  Let ~ff be the closed convex cone generated by the concave func- 
tions k corresponding to the elements of a family Y/U of loss functions. The 
following are equivalent statements: 

a) There exists a model (Qo) under (Vo) which is least favorable for all loss 
functions in ~ .  

b) The upper standard functional s (v~ is additive on the cone ~ .  

To prove  the nontr ivial  impl ica t ion  b ) ~  a), we proceede  as follows: Below, 
we show that  it is possible to const ruct  a s tandard  measure  S under  s (v~, which 
equals s {~ on the cone X .  S determines  a unique s tandard  mode l  (So) with 
s tandard  measure  S (see Sect. 5). Since S is domina ted  by  s ~, (So) is worst-case-  
sufficient for (Vo) by Theorem7 .1  d ) ~  a). I.e. there is a r andomiza t ion  M f rom 
K to Y, such that  Qo<vo for Qo=PoM. By the chain of  inequalities s(~)(k) 
= S(k)< S<Q)(k)< s<')(k) for k e ~ ,  it follows that  (Q0) is least favorable  on d((. 

There  remains  to show the existence of S. Define a l inear functional  S on 
the linear space 9 i f - S  by 

S(k 1 -- k2) = S(V)( k 1) - -  s ( V ) ( k 2 )  ' 

Addi t iv i ty  of s <~) on d(( implies that  this definit ion is independent  of  the special 
representa t ion  k l - k  2. Subaddi t iv i ty  of  s <~) on 2 U - g f  implies that  S is domi-  
na ted  by  s{V)lxf_ ~.  H a h n - B a n a c h  yields an extension of S to Cg(K), which is also 
domina t ed  by S(v)I~<K). A further extension to G~ (see 2.2t)) provides  a 
probabi l i ty  S under  s (~), which must  be a s tandard  measure  since S __< s C~). [ ]  

The  existence p roof  for S is related to a wel lknown a rgumen t  in the theory  
of measures  on compac t  convex spaces, see Car t ie r -Fe l l -Meyer  ([5], p. 441). 

T h e o r e m  8.2 is essentially a s imul taneous  min imax  theorem. The  case of  ~/K 
containing only one single loss function could be  p roved  directly by means  of 
the classical min imax  theorem:  

Corol lary  S.3. To any single loss function there exists a least favorable experi- 
ment under an approximate model. 
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S t a t e m e n t  8.2 is a s t ruc tu re  t h e o r e m  which  solves  the p r o b l e m  of least  
f avorab i l i ty  in  full general i ty .  However ,  for p rac t ica l  pu rposes  one  is c o n t e n t  
wi th  a spec ia l i za t ion  wh i c h  follows f rom 8.3 a l ready.  U s u a l l y  a fami ly  of loss 
func t ions  ~ respect ive ly  the  c o r r e s p o n d i n g  cone  S is g iven  in  a p a r a m e t r i z e d  
form. F o r  this let A be  a c o m p a c t  me t r i c  space a n d  a s s u m e  tha t  the  set Y is 
g iven  by  a p a r a m e t r i z a t i o n  s f =  {k~leEA}. A s s u m e  tha t  the  m a p  (e, z)w-~k'(z) is 

c o n t i n u o u s  o n  A x K .  F o r  a f inite m e a s u r e  2(de 0 on  A it m a k e s  sense to 

cons ide r  the  m i x t u r e  kX(z)= ~ k~(z)2(d~). T h e n  we have :  

Theo rem8 .4 .  There exists a simultaneously least favorable experiment for 
= {k~[~eA} under (Vo) iff 

s~V~(k ~) = ~ s~~ ~) ,~(d~) 

for a finite measure • on A satisfying support ( 2 ) = A .  

Proof. By 8.3 there  exists (Qo) u n d e r  (Vo) which  is least  f avorab le  for k ~ only.  I t  

fol lows:  

s~")( k~ ) = S~e~( k~ ) = S S~~ ;~ (doO 

< ~ s{~)(k ~) 2 (dc 0 = s{~}(kZ). 

F r o m  this, f rom c o n t i n u i t y  of  c~--~S{~ a n d  f rom s u p p o r t  ( 2 ) = A ,  follows 
S~e)(k~')=sC~)(k~)Vo:~A. [] 
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