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Summary. A number of conditions on groups have appeared in the litera- 
ture of invariant statistical models in connection with minimaxity, approxi- 
mation of invariant Bayes priors by proper priors, the relationship between 
Bayesian and classical inference, ergodic theorems, and other matters. In 
the last decade, rapid development has occurred in the field and many of 
these conditions are now known to be equivalent. We survey the subject, 
make the equivalences explicit, and list some groups of statistical interest 
which do, and also some which do not, have these properties. In particular, 
it is shown that the existence of the asymptotically invariant sequence of 
probabilities in the hypothesis of the Hunt-Stein theorem is equivalent to 
amenability, a condition that has been much studied by functional analysts. 

0. Introduction 

In this survey we consider a class of conditions on groups which have arisen in 
diverse and seemingly unrelated investigations on invariant statistical models, 
for example, investigations concerning: minimaxity and theorems of the Hunt- 
Stein type (Peisakoff (1950), Kiefer (1957), Wesler (1959), etc.), approximately 
least favorable or uninformative prior distributions (Zehnwirth (1975)), ergodic 
theorems on groups of transformations (see Sect. 2 for references), the spectra 
of transition matrices for random walks on groups (Kesten (1959)), the relation 
between Bayes and Neyman-Pearson confidence intervals (Bondar (1977), 
Heath and Sudderth (1978)), the relationship between proper and improper 
Bayes procedures (Stein (1965), Stone (1970)), and others. 

In all of these papers, the problem can be related to finding some sort of 
invariant average (probability) over the group; particularly well-behaved aver- 
ages exist in compact groups, namely, Haar measure. The groups possessing 
such invariant averages are called amenable groups; thus amenability may be 
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viewed as a generalization of compactness. An appealing reason for using 
amenability in statistics is the remarkable fact that, if the group of a statistical 
problem has the algebraico-topological property called amenability, the truth 
of many of the results which interest us depends little on the exact nature of 
the particular action of the group on the sample space, or on the nature of the 
particular probability distributions in the problem. 

A survey of the interrelations then known to exist among some of these 
group-theoretic conditions was made by Stone and yon Randow (1968). They 
also conjectured that many of the conditions were equivalent. During the years 
following the writing of their paper, the subject received much attention from 
pure mathematicians, and many equivalences among these conditions were 
proved in numerous papers by various authors, scattered through sundry 
journals; a good number of these was collected in Greenleaf (1969). Other 
equivalences are known but seem not to be in the literature. 

Our main theorem (end of Sect. 1) will make the equivalences explicit. In 
Sect. 2, we collect some (known) results partially characterizing the groups 
which possess the properties being discussed. Some proofs are given in Sect. 3, 
and in the appendix is assembled what seems, to the authors at least, a more 
direct and up-to-date exposition than has yet appeared in the literature, of the 
chain of implications from the seemingly weaker condition that the bounded 
uniformly continuous functions on G have a right invariant mean, to the 
apparently stronger condition, that G has a summing net. 

For  a discussion of the statistical applications, the reader is referred to the 
last half of Sect. 2, where among other things, a proof of the Hunt-Stein 
theorem is given. 

1. The Conditions and Their Equivalences 

In the following, G will be a locally compact, Hausdorff topological group; v 
will be a right Haar  measure on G and /~ the associated left Haar  measure 
(#(E)= v(E-1), where E - l =  {g-11g ~ E}); the Borel sets will be those generated 
by the open sets; e denotes the identity of G. See for example, Nachbin (1965), 
Chap. 2 for definitions. In Hewitt and Ross (1963), Sect. 15.10, 15.27 and 20.32 
contain useful remarks about the relations between left and right Haar mea- 
sures. We will consider only real-valued functions on G; most arguments we 
use will apply directly to complex-valued functions. Unless specific mention is 
made to the contrary, probability density functions are assumed to be with 
respect to v (w.r.t.v), which means they are in LI(G, v), which in general is 
different from LI(G, #). Null sets will be those whose v-measure is zero (this is 
equivalent to having #-measure of zero, hence Loo (G, v) = L~o (G, #) (=  L~o (G), 
say)). 

If • is a vector space of essentially bounded, measurable (real-valued) 
functions on G, which contains the constant function 1, a mean on ~U is a 
linear functional m on ~U such that 

(i) m(1)= l  and m(f)>O i f f > O  a.e. (v). 
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It follows that lm(f)l <ess sup If(g)t, i.e., m is continuous. Also (i) is equiva- 
lent to g~G 

(ii) ess inf(g)<=m(f)<ess supf(g) for all f e ~  ~. 
g~G g~G 

The set ~r of all means on : is compact in the weak* topology 
(i.e., a(~t/*,~U)-compact); this is the topology on Jr which has as subbase the 
family of all sets of the form {m~dgttm(f)-mo(f)l<a}, where f~ l : ,  a > 0  
and m 0 e J {  (see Example 1 below for an illuminating special case). The 
probability densities on G are weak*-dense in J [ ;  and in case ~ :cC(G) ,  the 
space of bounded continuous functions on G, then convex combinations of the 
evaluation means {pg]g6G}, where pg(f)=f(g) for fEC(G) and g~G,  are 
weak*-dense in J / .  The right translate fg (resp. left translate g f )  of a function f 
on G by g ~ G  is defined by fg(g ')=f(g 'g)  (resp. j(g')=f(gg')) for all g ' eG.  A 
vector space ~U of functions on G is called right (resp. left) translation invariant 
if fge~/: (resp. gfE~/r) whenever f~~ g s G ;  and a mean m on ~" is called 
right (resp. left) invariant provided m(fg)=m(f) (resp. m(gf)=m(f)) for all 
fe~U,  g eG. When we say that a mean, vector space or what-have-you is 
invariant, we mean that it is simultaneously both left and right invariant. If 
f ~ L | (G)-= L ~o and p ~ L 1 (G, v) = L 1, then the convolutions f *  p and ,b, f are 
defined almost everywhere (w.r.t. v) by 

( f*  p)(s) = ~ f (s g-  1) p (g) d v (g) 
G 

and 

(} *f)(s) = 5 p(gs- t)f(g)dv(g) 
G 

(where D(t)=p(t-1), t eG), and are in LUC(G)=LUC,  and R U C ( G ) = R U C  
respectively, with [If* Pl[~-<-][J]l~o ][PIll and 11} *fll 0o <--]]PI]t []f[[o,. RUG (resp. 
LUC) is the space of bounded right (resp. left) uniformly continuous functions 
on G. (A function f on G is right (resp. left) uniformly continuous if, given any 
e>0,  there is a neighbourhood V=V(e) of eeG such that If(s)-f(t)]<e 
whenever s t - t e V  (resp. t-lseV).) And finally, if ~V is a subspace of Lo~ 
containing the constant functions and such that f ,pe~U (resp. }* fe~ / / )  
whenever f E  ~/ and p ~ L1, a mean m on ~U is called topologically right (resp. 
left) invariant if m(f ,p)=m(f)  (resp. m~, f )=m( f ) )  whenever fe~/~ and 
p e L1 satisfies 

Ilpill = S p (g )dv(g )=  1. (,) 
G 

(The members of L,  that satisfy condition (,) are precisely the probability 
densities; we remind the reader that all probability densities are with respect to 
v unless specific mention is made to the contrary.) 

Example I. If R is the usual additive real numbers and n s N, then the equation 

m,(f)=(2n) -1 i f(x)dx 
--n 
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defines a mean m, on L~(R)=L~.  By weak* compactness of ~r the 
sequence {m,} has a weak* accumulation point m in Jr i.e., m is a mean on 
L~ such that, given n o ~ N, e > 0  and f l , f2,  ..., fkeLoo, there is an n>n o with 

]m(f~)-m,(fOl<e, i = 1 , 2  . . . .  ,k, 

It is easy to verify that m is a (topologically right) invariant mean. We note 
three things about m (all of which also hold for invariant means on general 
non-compact, a-compact, locally compact groups): 

(i) r e ( f ) = 0  if f (x )  -~0 as x --+ oo. 

(ii) m is not o'-additive in the sense that, if ~ is defined for i e N by 

f~(x)=J' l  if - i < x < - i + l  or i - l < x < i  
otherwise, 

then m ~ = 1 4= 0 = ~ m(f~). Thus m determines a probability measure on the 

Borel subsets of R that is finitely additive and not a-additive. See Dunford and 
Schwartz (1958), Theorem IV.5.1, p. 258, in this regard. (Of course, m cannot be 
invariant and a-additive, because this would imply it was a multiple of Haar  
measure, i.e., Lebesgue measure.) 

(iii) m is not the only right invariant mean on L~o or, what is the same 
thing, {m,} does not converge to m in the weak* topology. For  example, if {a j} 
is a sequence of positive numbers such that (aj+ ~ -aj)/aj-~ oo as j ~ co, and 
F ~ L~ is defined by 

F ( x ) = J ' l  i f - a 2 j + l  < x < - a 2 j  or a2j~x<a2j+l for j s N  
[0 elsewhere, 

then l iminfm,(F)=0 ,  l i m s u p m , ( F ) = l ,  and {m,(F)} does not converge. By 
n i/ 

doing a similar construction, one can show that no subsequence of {m,} 
converges to m either. In fact, it is always the case for a non-compact locally 
compact group with an invariant mean m on L~o that no sequence of probabili- 
ty densities converges to m in the weak* topology; thus, even in the case of R 
one must use nets that are not sequences: the subnet of {m,} that converges to 
m is not a subsequence. (We note that the cardinality of the set of invariant 
means is very large indeed; see Chou (1970, 1976) and Remark (iv) following 
condition J ahead.) 

Any group currently of interest in parametric statistics is a-compact, i.e., the 
group is a countable union of compact subsets. If G is a-compact and satisfies 
any of the conditions below which are stated in terms of nets of sets or 
measures, then the group satisfies the same condition with the net replaced by 
a sequence (and conversely, of course, since any sequence is a net). Thus, those 
who are only interested in a-compact groups can read "sequence" for "ne t"  in 
the definitions and the statements of theorems below. The use of nets in the 
general case is necessary for, unless a group is a-compact, it cannot satisfy 
many of the conditions involving sequences (Emerson (1968), Theorem 4). If G 
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is not c~-compact one must take care to define L~ properly (functions are to be 
identified if they differ only o11 locally null sets); see Grcenleaf (1969), p. 22, 
for technical comments. 

Each condition given below occurs in both a left-handed and a right- 
handed form; the left-handed form is just the right-handed condition with /~ 
replacing v, left multiplication replacing right multiplication and gf replacing 
fg. The mapping g---, g-1 on G will map sets and measures satisfying a right- 
handed condition into ones satisfying the corresponding left-handed condition 
and vice versa, showing that G satisfies a right-handed condition if and only if 
it satisfies the analogous left-handed condition. Of course, for commutative 
groups the left- and right-handed forms are identical in content. 

We adopt what we consider to be the major conditions of Stone and von 
Randow (1968) and also much of their nomenclature. We use nets rather than 
sequences in order to cover the non-o--compact case; Stone and yon Randow 
do not use nets explicitly. All conditions will be put in their right-handed 
forms. The reader is warned that, in the literature of pure mathematics, it is 
customary to use the left-handed forms; no confusion should result in view of 
the above remarks on the equivalence of left- and right-handed versions. 

We now define our conditions. The rationale for the order in which we give 
them would be: while also making some attempt to keep similar conditions 
together, we have started with the conditions of the Appendix, in the order in 
which they appear there, and have then given the other conditions of statistical 
interest. The theorem relating these conditions to each other is stated at the 
end of this section. A discussion of their statistical applications can be found at 
the end of Sect. 2. 

Condition M (amenability) - there exists a right invariant mean on L~(G). This 
is known (Greenleaf (1969), Theorem 2.2.1) to be equivalent to: Mcb - there 
exists a right invariant mean on the space C(G) of bounded continuous 
functions on G; and also equivalent to: Mucb - there exists a right invariant 

T T mean on the space LUC ~ R b  C = U C. 
By our previous remarks, M, Mob and Mucb are equivalent to their left- 

handed forms, namely the existence of left invariant means on the function 
spaces L~, C(G) and UC, respectively. In fact, if there is a right invariant 
mean, then there is a mean which is simultaneously left and right invariant 
(Greenleaf (1969), p. 29, or see Remark (iii) below. 

Condition J (topological amenability) - there exists a topologically right in- 
variant mean m on L~(G). This condition is known (Greenleaf (1969), Sect. 2.2) 
to be equivalent to Job (resp. Jucb), the condition obtained by replacing Lo~(G ) 
by C(G)(resp. UC). 

Remarks. (i) If pg is the evaluation mean at g, i.e., the probability measure 
whose mass is concentrated at g, then fg-1=f*p~ (see Remark (ii) for the 
definition of f*p~), so we see that J can be considered as a "'topological" 
version of the ~ condition M. (The left-handed form of J is m(p,, f)  
=re( f )  for every f~L~  and every probability density p with respect to /z, 
where " ,  " denotes convolution with respect to/~, 

p*J(s)=~p(g)f(g ls) dt~(g).) 
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(ii) By definition, a topologically right invariant mean m on L~ satisfies 
m ( f , p ) = m ( f )  for all f ~ L ~  and all probability densities p. Such a mean is in 
fact invariant in the following sense, which is stronger than being invariant in 
the sense of either M or J;  namely, re( f*  ~)=m(f) for  all f e L ~  and all regular 
Borel probability measures ~ on G (where 

f ,  re(g) = S f (g s - l) dr~(s) 

a.e. (v) (Hewitt and Ross (1963), (20.12) Theorem (i)). This follows from Hewitt 
and Ross (1963), (19.18) Theorem. 

(iii) Using the ideas of Remark (ii), one can easily show that every to- 
pologically right invariant mean on L~o (or UC) is right invariant. From this 
fact and Remark 2 at the beginning of the appendix, one can conclude that, if 
one of the subspaces considered here has a mean invariant in one of the senses 
under consideration, then Lo~ has a mean simultaneously invariant in all those 
senses. 

(iv) Every right invariant mean on RUC is topologically right invariant 
(Greenleaf (1969), proof of Lemma 2.2.2). However on C(G) and Loo there can 
exist right invariant means that are not topologically right invariant (Rosen- 
blatt (1976, 1978)). For example, on L~~ where T is the circle group, there 
exist 2 c "mutually singular" (right) invariant means, only one of which can be 
topologically invariant, since C(T) has a unique invariant mean. 

Condition W C  (Day's weak convergence to invariance) - there exists a net {ha} 
of probability density functions such that, for every g ~ G, h~-(h~)g ~ 0 weakly 
in Li(G ) (i.e., 

[ha(s ) - h~(sg)] f (s) d v(s)-~ 0 
6 

for every f e  L~(G)). It follows from basic Banach space theory that WC is 
equivalent to M. 

Condition W C T  (the "topological" version of WC) - there exists a net {ha} of 
probability density functions such that, for every probability density function h, 
h~-h~*  h ~ 0 weakly in LI(G ) (i.e., for every f~L~o(G), 

[ h J g ) - ( h  a * h)(g)] f  (g)dr(g) ~ 0). 

Banach space theory yields directly the equivalence of this condition and J. See 
the proof J ~ WCT in the Appendix. 

Condition S C T  (strong convergence to topological invariance) - there exists a 
net {ha} of probability density functions such that, for every probability density 
function h, h a - h a * h -~ 0 in L 1 (G) (i.e., 

11 h a -  ha * h]]l = S Ih~(g) - (h~ �9 h) (g)l dv(g) ~ 0). 

Condition P - for each compact K c G and e >0, there is a probability density 
function h such that, for every g e K, 

]] hg-  h ][1 = S ]h (g'g) - h (g')l dv(g') < g. 
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This is H. Reiter's condition, which he called (P0 and applied in a number of 
directions (see Reiter (1968), Chap. 8, or Greenleaf (1969), Sect. 3.2, for details). 

In the following definition, and in all others where "v(G~)" occurs in a 
denominator, it is understood that v(G~)>0. 

Condition S (existence of a summing net) - there is a net {Go} of compact 
subsets of G with G ~ G ~  whenever c~>/~ and U G ~ = G  and such that 

v(G~g ~ G~)/v(G~)~ 1 uniformly (in g) on compact subsets of G. Whenever such 
a net exists, it can be chosen so that 

(i) the G~'s are symmetric (G~ = G~-1). 

In case G is o--compact, the net {G~} can be chosen to be a sequence 
(summing sequence), in accordance with the earlier general remarks about o-- 
compact G. And, when G is unimodular, the G~'s can be chosen to satisfy both 
(i) and also 

(ii) v(G~Kc~G~)/v(G~)-* 1 for each compact K e G .  

For non-unimodular amenable G, it is not known if there is a summing net 
simultaneously satisfying both (i) and (ii); it seems reasonable to conjecture 
that there is such a summing net. It is known that every locally compact 
amenable group, unimodular or not, admits a summing net satisfying (ii), but 
perhaps not (i). (See Emerson (1974a) in this regard.) 

Condition A~ - there exists a net {G~} of compact sets such that 
v(G~K)/v(G~)~I for all compact K ~ G .  (Note that the left-handed form has 
tt(KG~) in the numerator, not #(G~K); in fact the condition #(G~K)/#(G~)---,1 
cannot be satisfied, unless G is unimodular, even if we restrict ourselves to the 
singleton sets K = {g}, g ~ G.) 

Condition FWt - for each finite F c G  containing the identity e, there exists a 
sequence {G,} of Borel sets with v(Gn) < oo such that 

1. 
gEF 

Condition GR - the constant function 1 (equal everywhere to 1) can be 
approximated uniformly on every compact subset of G by continuous positive 
definite functions vanishing outside compact sets. This condition was used by 
Grenander ((1963), Chap. 5) to prove probabilistic limit theorems on groups 
using Fourier transforms. An astounding point about this condition is that it is 
expressed entirely in terms of functions that are constant or vanish at infinity; 
and the algebra generated by such functions always has an invariant mean, 
whether G is amenable or not. The equivalence of this condition and P was 
shown essentially by H. Reiter (1964); see also Reiter (1968), Sect. 8.3. (An 
excellent overview of the role and history of positive definite functions in 
mathematics has been written by Stewart (1976).) 

Condition SC (strong convergence to invariance) - there exists a net {ha} of 
probability density functions such that 

li(h~)g-h~[l~=~lh~(g'g)-h~(g')ldv(g')--*O for all g~G. 

(Stone and von Randow (1968) call this condition P2-) 
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Condition Pa - For each pair {gl ,gz}~G, there exists a sequence {h,} of 
probability density functions such that 

H(h,)g -h,[[1 ~ 0 ,  i=  1,2. 

The analogous condition with "pair {gx,g2}" replaced by "finite set of points" 
is easily seen to imply amenability (and is, in fact, equivalent to it). For some 
implications of P3 in statistical theory, see Stone and von Randow (1968), 
Sect. 4. 

Condition H S  - there is a net {P~} of probability measures defined on the Borel 
sets of G such that for all g ~ G  and Borel B e G ,  IP~(Bg)-P~(B)I--+O. (The 
statement of the left-handed version uses "P~(gB)" and is otherwise identical.) 
HS is the condition of the Hunt-Stein theorem (Lehmann (1959), p. 336). It is 
usually stated in terms of sequences rather than nets; in effect, this restricts the 
theorem to G-compact groups. 

Torgersen (1972), p. 1387, asserts the equivalence of HS and amenability; 
we give a sketch of the proof in Sect. 3. B. Zehnwirth pointed out to us that 
amenability is also equivalent to the stronger condition (to be called HSU), 
where, for each g~G, the convergence in HS is uniform in B. 

Condition H 1 - there exists a net {G~} of closed sets with v(G~) < oo such that 

v((") G~k)/v(G~)--+ 1 
k E K  

for every compact K. This condition was shown by Bondar (1977) to imply 
that "strong inconsistency" cannot occur between Neyman-Pearson and flat 
Bayes confidence intervals. 

Condition H a - for each pair {gl, g2} c G, there exists a sequence {G,} of Borel 
sets with v(G,)< oo for all n such that 

v(G, n G,g 1 c~ G, gz)/v(G,) --+ 1. 

Condition 171 - there exists a net {G~} of Borel sets with v(G~)< 0% such that 
v(G~ c~ G~g)/v(G~) ~ 1 for all g e G. This is the right-handed form of the "weak 
boundedness" of Peisakoff's 1950 thesis on minimaxity. 

Solvability - there is a finite chain 

G = G , ~ = G m _ I ~ . . . = G o = { e }  

of subgroups terminating in the identity, such that G~ is the commutator 
subgroup (the closure of the subgroup generated by all elements of the form 
glgzgi-lg21) of G~+I, O<=j<m. This implies that each Gj+I/G j is a com- 
mutative group. In the context of Lie group theory, the term "solvable" is used 
to refer to a similar property defined in terms of chains of subalgebras of the 
Lie algebra of G. The above definition, however, is the one occurring in 
statistics, e.g., Stein (1965). Solvability implies 
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Stein's Condition - there is a finite chain 

G=Gm~Gm_ID. . .~Go={e}  

of closed subgroups, each a normal subgroup of the previous one, such that 
each GjGi_ 1 is either compact or commutative. This condition appears in 
Stein (1965), p. 225. If G satisfies Stein's condition, then such a chain can be 
found for which GJGI_ ~ is compact if i = m  and commutative if i<m. Iwasawa 
(1949), in his work on Hilbert's fifth problem, was led to consider connected 
groups satisfying Stein's condition; he called such groups (C)-groups. 

G has the fixed-point property if every representation g ~ Tg (Tg(X) being 
separately continuous in g and x) of G as a group of affine transformations of 
a compact convex subset K of a locally convex topological vector space has a 
fixed point (i.e., there exists k~ K such that Tg(k)=k for all g e G). For  abelian 
groups, the fixed-point property is established by the Markov-Kakutani  fixed- 
point theorem (Markov (1936), Kakutani (1938), or Dunford and Schwartz 
(1958), Theorem V.10.6). Furstenberg (1963) proved that, for connected Lie 
groups, the fixed-point property and Stein's condition are equivalent. Proceed- 
ing from the work of Day (1961), Rickert (1967) proved the equivalence, in 
general, of these two conditions. (See also Greenleaf (1969), Sect. 3.3.) 

Condition K - whenever G leaves invariant the statistical problem of testing 
the G-invariant hypotheses H 0 against H1, and certain regularity conditions 
are satisfied (namely, G is locally compact and a-compact, acting measurably 
on the second countable sample space 5~, and the probabilities Po, 0 ~ H o w H~, 
on ~ are dominated by a a-finite measure m), then, for every randomised test 
function ~ of size c~ defined on Y', there is an invariant randomised test 
function ~ also of size c~, such that 

infEgoO(X)<Eo~(X)<supE~o~(X), O~HouH1.  
g~G gEG 

Here, test function means any ~L~(YC,  m) for which 0<~(x)=<l ,  x~Y'. One 
form of the Hunt-Stein theorem is the statement "HS ~ K". The reverse 
implication K ~ HS is also true for almost connected groups (Bondar and 
Milnes (1977)), giving a converse to the Hunt-Stein theorem. 

The Emerson-TempIeman Condition - there exists a summing net {G~} of com- 
pact sets for which 

(,) there is an upper bound B < o e  for the ratios v(G~G2I)/v(G~). This con- 
dition was formulated by Templeman (1967) in an announcement of a point- 
wise (individual) ergodic theorem for groups of transformations; see Emerson 
(1974) for statement and proof. It has been suggested that the existence of a net 
{G~} of compact subsets of G satisfying ~ G~=G and (*) ought to imply 

amenability. We do not know if this is the case. 

It will be noted that some of our statements involving intersections can be 
reformulated using the symmetric difference A A B (=  (A w B ) -  (A c~ B)). For 
example, condition S requires that v(G~A G~g)/v(G~)--+O. Some other statements 
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involving intersections can be reformulated in a different way, since, for any 
given a > 1 and compact K c G, the assertion that there is a (measurable) set U 
with 

v( (3 g)/v(c;)>= 1/a 
g~K 

is equivalent to the assertion that there is a set U' with 

v(g' g)/v(g')  = v(~) U'g)/v(U')__<a. 
geK 

Thus H 1 would be equivalent to A 1 if the net {G~} in H 1 was required to 
consist of compact sets. (The reader can write down for himself the precise 
"union" equivalents of conditions IIi, Hz and H~.) 

We may also note that many of the conditions occur in pairs, one con- 
dition involving a ratio of measures of sets, the other involving probability 
measures; for example, the pair H z and P3, and the pair /I2 and SC. To be 
more precise, if {G,} is a sequence satisfying H z and we normalise the indicator 
functions of the G,'s, we get a sequence of probability densities {h,} 
= {v(G,,)-lIa,}, which by an easy calculation satisfies P3. Thus, moving from a 
statement about ratios of measures of sets to one about probability densities is 
straightforward. On p. 337 Lehmann (1959) considers strengthening condition 
HS by requiring the probability measures in HS to be of the form P, 
= v(Gn)-lI~ for suitable G,,cG. One easily sees that condition S implies this 
strengthened HS condition. 

In addition to the above, many more conditions may be found in Stone and 
yon Randow (1968), Greenleaf (1969), Day (1969), and other recent works on 
tunctional analysis such as Berg and Christensen (1974), Chou (1980), Emerson 
(1978, 1979), Eymard (1975), Furstenberg (1963), Gilbert (1968), Glasner (1976), 
Guivarc'h (1973), Herz (1973), Jenkins (1973), Johnson (1972, 1977), Lance 
(1973), Milnes (1978), Paschke (1978), Rindler (1976), Schwartz (1963) and 
Sherman (1979). 

Theorem 1.1. All the conditions defined above are equivalent for locally compact 
Hausdorff groups G, save for the Emerson-Tempteman condition, Stein's condition 
and solvability, each of which implies amenability, and K, H 2 and P3 which are 
implied by it. i f  G is almost connected, then K, P3, H2 and Stein's condition are 
each equivalent to amenability. Each of K, P3 and H 2 is equivalent to amenability 
if G is a subgroup of a linear group furnished with the discrete topology. 

G is almost connected if G/G o is compact, where Go is the (connected) 
component of the identity. In particular, any group which is connected or has 
a finite number of connected components is almost connected. By a linear 
group, we mean the group GL(V) of invertible linear transformations of a finite 
dimensional real vector space V. It is worth noting that any group of affine 
transformations of a finite dimensional vector space can be embedded as a 
subgroup of a linear group. 
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A diagram of the implications of the theorem: 

Solvable 

Stein 

l i t  
Emerson-Templeman ~ Amenability ~ H 2 ~=~ P3 

T~ ~- 

K 

( ~  indicates implication with the added hypothesis that G be almost con- 
nected; ~ indicates implication with the added hypothesis that G be a sub- 
group of a linear group.) Proofs of the various parts of Theorem 1.1 are 
discussed in Sect. 3 and the appendix. 

It is well known that solvability is not necessary for amenability; for 
example, the symmetric group on 5 symbols is not solvable (a fact proved in 
Galois theory to be equivalent to the impossibility of solving all quintic 
equations in radicals - hence the name), but this group is finite, hence ame- 
nable. It is not known if the Emerson-Templeman condition holds for any 
amenable non-unimodular groups, or even for all amenable unimodular groups. 

There is a celebrated conjecture of von Neumann (1929) that every non- 
amenable group contains a free group on two generators as a closed subgroup. 
If this is true, the free group on two generators is in a sense the basic non- 
amenable group. Stone and von Randow have remarked that a P3 group 
cannot contain a free group on two generators as a closed subgroup. Therefore, 
if von Neumann's conjecture is true, then a group which is not amenable can- 
not satisfy P3, hence P3 ~ amenable (without further hypotheses on the group 
in question). The conjecture is known to be true for almost connected groups 
(Rickert (1967), Theorem 5.5) and for subgroups of linear groups (Tits (1972)), 
the latter furnished with the discrete topology. Fortunately, perhaps, all the 
groups currently used in parametric statistics (save for the infinite discrete 
groups) have a finite number of connected components and a forteriori  are 
almost connected. The word "closed" in the statement of the conjecture is 
critical; for, the rotation group SO(3), which is compact and thus amenable, 
contains the free group on two generators as a (non-closed) subgroup; von 
Neumann used this fact to resolve the Hausdorff-Banach-Tarski "paradox"  
(Greenleaf (1969), Sect. 1.3). Sherman (1979) and Emerson (1979) independently 
have formulated an analogue of this paradox for locally compact groups so as 
to provide another characterization of amenability. 

2. The Class of Amenable Groups 

The following are basic and well known (Greenleaf (1969), Day (1969)); for 
discrete groups Theorems 2.3-2.6 were proved by von Neumann (1929), who 
initiated the study of invariant means. 
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Theorem 2.1. All compact groups are amenable. (The proof is easy: if v is 
normalised Haar measure, v(G)= 1, then f-~ ~f(g)dv(g) is an invariant mean.) 

G 

Theorem 2.2. All abelian groups are amenable. 

Theorem 2.3. Any closed subgroup of an amenable group is amenable. 

Theorem 2.4. The image of an amenable group under a continuous homomorphism 
is amenable, 

Theorem 2.5. I f  N is a closed normal subgroup of G and if N and GIN are 
amenable, then G is amenable. 

Corollary 1. The 
these groups are 
follows from 2.5.) 

Corollary 2. The semidirect product of two amenable groups is amenable. 

Theorem 2.6. If  G is a directed union of a system of closed amenable subgroups 
{Ha}, in the sense that G= U Ha and for any H~, H a there exists H~ such that 

H~ ~ H~ ~ Hp, then G is amenable. 

Some amenable groups are: the usual additive real numbers ({G,}= 
{ [ -n ,n ]}  is a summing sequence as shown in Example 1), the positive real 

numbers with ordinary multiplication G,} = , n is a summing sequence , 

the translations of a finite-dimensional vector space, the scalar multipli- 
cations on a vector space (the "scale group"), the "translation-scale group" of 
the real line (also known as GA(1)), the group of the Behrens-Fisher problem 
(which is the direct product of two translation-scale groups, hence amenable by 
Corollary 1), the group T(n) of non-singular upper triangular matrices (the 
"triangular group"; this group is even solvable), the group generated by T(n) 
and the translations in E" (since this is a semi-direct product of the triangular 
and translation groups). Groups satisfying Stein's condition are amenable 
(since G 1 in the chain of normal groups defining Stein's condition, is com- 
mutative or compact, hence amenable. Now induction on m using 2.5 shows 
that G is amenable); solvable groups are a special case. The univariate two- 
sample problem is invariant under the group of transformations of the form 

(x l , x2 , . . . , y l , y  2 .... )~(sx~ +a, sx2+a .... ,syt +b, sy2+b,...), s + 0 ;  

this group is amenable. Consider the group S~ consisting of those permu- 
tations of a countable collection of objects which leave all but a finite number 
of the objects fixed; this group is of interest as the largest group leaving 
invariaut all exchangeable probabilities. So~ is amenable by Theorem 2.6, and its 
invariant means were used as priors for a Bayesian sampling model in Lane 
and Sudderth (1978). 

Some groups which are not amenable: the free group on two generators 
(which was used in 1950 by Peisakoff in a counterexample to a conjecture 

direct product of two groups is amenable if and only if both of 
amenable. (The "only if" part follows from 2.3; the " i f"  part 
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regarding minimax decision rules), the general linear group GL(n) for n > 2 (i.e., 
the non-singular n x n matrices; that this group fails to satisfy HS was shown by 
Stein (Lehmann (1959), Sect. 8.4, Example 9)), the group generated by trans- 
lations and non-singular matrices in E" for n > 2 (known as the general affine 
group GA(n)). The group SL(n) of n x n matrices with unit determinant is not 
amenable for n > 2  (which follows from 2.5 since GL(n)/SL(n) is the group of 
reals). 

It follows from 2.3 and 2.5 that, if G has a finite number of connected 
components, then G is amenable iff its connected component of the identity is 
amenable. In particular, if such a group G is a closed subgroup of GL(n), then G 
is amenable iff the subgroup consisting of those elements of G with positive 
determinant is amenable. The usual full group leaving invariant the hypothesis 
/*=0 in MANOVA, namely GL(n)x O(r)x E Rr (Lehmann (1959), Chap. 7.10) is 
not amenable for n>2,  but the group (isomorphic to O(n)xO(r)xE nr) 
leaving invariant the hypothesis X = ~0 is amenable. 

Remarks on Applications. These remarks supplement comments in the last three 
paragraphs and following the definitions of conditions GR, P3, HS, H1,/71 and 
K. 

Probably the first statistical application of amenability was the testing 
version of the Hunt-Stein theorem, c. 1946. The best presentation of this in the 
literature is in Lehmann (1959), Chap. 8, Theorem 2. We shall shortly give a 
more direct proof using the fixed point property. 

In the following, a G-invariant statistical model (X, N,m, {P010EF2}) consists 
of a positive measure space (X, N, m) for which L 1 (X, N, m)* =L~o(X, N, m) and 
a set f~ indexing a set of probability densities P0 in LI(X,N,m) (i.e., each P0 is a 
probability density with respect to m on X). (See Dunford and Schwartz (1958), 
pp. 289-90, concerning the requirement L** =Loo.) G acts as a set of transfor- 
mations of s i.e., a function 

(g, x)--+ gx, GxX--+X 

is defined satisfying gl(g2x)=(glg2)x for all xEX and gl ,g2EG. We assume 
that N is G-invariant, i.e., gB={gxtxEB}EN for all B e N ,  and that, if gm is 
defined for gEG and B e N  by gm(B)=m(gB), then m dominates each such gm. 
It follows for g E G that the map 

f - -  g f, gf(x) = f ( g  - 1  X) 

is an isometry of Loo onto L~o and its adjoint 

h--+g-lh, g- lh(x)=h(gx)~m) (X ) 

is an isometry of L 1 onto L 1. (Note (gf, h)=(f,g-lh).) We assume as well that, 
for each hELl, the map 

g-+ gh, G--+ L 1 
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is norm continuous and that {P0[ 0 ~ ~2} is G-invariant, i.e., 

g Po, = e.o, E { PolO ~ ~}  

for all O' ~ t2. 
These hypotheses for a G-invariant model allow a proof of the Hunt-Stein 

theorem requiring hardly more than an application of the fixed point property. 
After the theorem we will indicate why these hypotheses are not as restrictive 
as they might appear. For terms and notation used in the theorem and not 
defined here, the reader is referred to Lehmann (1959). 

Theorem 2.7 (Hunt-Stein). Let G be a locally compact group with the fixed point 
property and let (Y(,N,m, {P010e~?}) be a G-invariant statistical model. Then, for 
every critical function ~ of size c~ and power function fl(O) for testing an invariant 
hypothesis H o against an invariant hypothesis H1, there exists an almost in- 
variant critical function O' of size at most c~ and power function if(O) such that 

inf fl (g 0) __< inf ff (g 0), 0 ~ H 1 . 
gEG g~G 

Proof. Let C~ be the subset of the unit ball of L~ consisting of those f ' s  for 
which Eo(f)<=c~ for all OEH o and Eo(f)> inf fl(gO ) for all O~H 1. C~ is non- 

geG 
void, since the function class in Loo determined by ~ is in it, and C~p is a 
weak* closed subset of the unit ball of Lo~, hence is weak* compact. C~ is 
also convex; and the action of G on L~ is by linear (hence affine) maps, leaves 
C~p invariant and is separately continuous. (For example, if feLoo , one must 
show that the function 

g---, gf, G--+ L~o 

is weak* continuous, i.e., that the function 

g --* (gf h) = Sf(gx) h(x) din(x) 

is continuous for each h ~ L  1. But this follows immediately from the norm 
continuity of the map g --, gh and the fact that (g f, h)-- (f, g -  1 h). The continuity 
of the map 

f--+ g f, C,p ~ C,p 

is easier to establish.) Hence, the fixed point property yields an f 'E  C~ such 
that gf '  = f '  for all g ~ G. Any member ~,' of the function class f '  then has the 
desired properties. 

We wish to make one point immediately: it follows from Theorem 4 in 
Chap. 6 of Lehmann (1959) that one can often get an invariant test function 
from an almost invariant one. 

Generality of the Hypotheses. We would like to draw attention to some results 
mainly of functional analysis. 

1. In our definition of G-invariant model, we assumed the map g--.gf, 
G ~ L  1 was continuous for each f ~ L  1. This conclusion often follows from the 
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assumption that these maps are merely weakly measurable; see Moore (1968), 
Chap. 4. 

2. By Theorem H, p. 275, of Halmos (1950), a measurable group G 1 can 
often be viewed as a special, in particular, dense, subgroup of a locally 
compact group G. It may then be possible to extend a weakly measurable 
representation of G1 to a weakly measurable representation of G. 

3. In this discussion of hypotheses for the Hunt-Stein theorem, it seems 
appropriate to remind the reader of Lemma III.8.5 in Dunford and Schwartz 
(1958) and of the example on pp. 153-4 in de Leeuw and Glicksberg (1965), 
and also to point out that Ll(~r,~,m) need not be separable even when m is 
finite. 

Lehmann (1959a) has generalized the Hunt-Stein theorem by considering 
functions more general than inf]?(g0), such as the regret function which gives 

geG 
the existence of most stringent tests. Further, the Hunt-Stein theorem has been 
extended (Kiefer (1957), Wesler (1959)) to estimation and other decision spaces: 
under fairly general topological conditions, if G is amenable and any decision 
function 80 is given for an invariant statistical decision problem, then an 
equivariant decision function ~' (i.e., one for which cS'(gxlgA)=c~'(x]A)) exists 
such that the risks R satisfy 

supR~,(gO)<supR~o(gO), O~f2. (1) 
geG g~G 

It is this type of result which we shall call the generalized Hunt-Stein theorem. 
The proofs of it in the literature are technical and require extraneous con- 
ditions to circumvent measure-theoretic difficulties. Cleaner and more elegant 
proofs can be given using the fixed point property, an idea first used by 
LeCam and later by Huber. Regrettably, none of these proofs (Brown (1980), 
Portnoy (1975), Zehnwirth (1977)) have yet been published, although a brief 
outline of such a proof is in Kiefer (1966), p. 263. 

Here is an outline of a proof using the same approach: let ~o be a decision 
function, i.e., CSo(x,D ) is the probability that if x is observed then a decision will 
be chosen from the subset D of the space d of all possible decisions. Then 

(7"~ ~)(x, 1))= ~(gx, gD) 

for all g, 8, x and D defines a representation T of G by affine maps Tg. Let S be 
the set of 8' satisfying inequality (1) above; S is G-invariant and convex and, 
under fairly general conditions, will be compact in a suitable locally convex 
topology, for which the action of G on S is separately continuous. Now, by the 
fixed point property, there is a cS'eS for which 8'(gx, gD)=8'(x,D) for every 
g e G and D c d .  Since decision functions are identified if they agree for almost 
all x, this is the condition of almost equivariance of ~'. 

The difficult part of this proof is to find the suitable locally convex 
topology on the class of decision functions. To get from an almost equivariant 
8' to an equivariant c~' we must invoke an equivariant version (Berk and Bickel 
(1968), see also comments in Berk (1970)) of Theorem4 in Chap. 6 of 
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Lehmann (1959). It says that 3' is almost equivariant iff 6' is almost everywhere 
equal to an equivariant decision function - provided one has mild measurability 
conditions, plus the condition that there exist at least one equivariant 3, not 
necessarily in S. (An equivariant 6 need not exist; see Berk (1967).) 

It is to be noted that if G acts freely and transitively on both the parameter 
and sample spaces of an invariant statistical model, and if f(x) is the density 
function with respect to # of the observation when 0=e,  then the power 
function fl(0) of a test function 4(x) equals the convolution 

f ,u ~(0-1) = S 4 (x)f(O-1 x) dl~,(x). 

This equality explains why some of our conditions on groups which involve 
convolutions are of statistical interest in their left-handed versions. If G is not 
transitive on s which is usually the case, then, typically, the power function is 
obtainable by integrating such convolutions with respect to the marginal 
probability of the maximal invariant statistic (Bondar (1976)). 

Amenability of G is necessary in the Hunt-Stein theorems: Portnoy (1975) 
constructs a counterexample to the generalised Hunt-Stein theorem for any 
non-amenable G. In Bondar and Mitnes (1977) using an idea of Peisakoff, a 
counterexample to the (ungeneralized) Hunt-Stein theorem is constructed for 
F 2, the free group on two generators: a critical ffmction 4 and two probability 
measures P1 and Pz on F 2 are exhibited which satisfy 

P1 *~ ~(g) >= 1/2 and P2 %, ~(g) <= 1/8 

for all g ~/~. It follows that 4 is a critical function of size c~< 1/8 and power 
>1/2 for testing {(Px)glg~F2} against {(P2)g[g~F2}; and there can be no in- 
variant 4' with ~ '< 1/8 and power > 1/2, since in this setting an invariant 4' 
with cd<l/8 also has power <1/8. Bondar and Milnes also "extend" this 
counterexample to any locally compact group G containing F 2 as a closed 
subgroup (e.g., to non-amenable almost connected G). 

For the next four paragraphs, we assume that G acts exactly and tran- 
sitively on the set s of an invariant statistical model, and consider the esti- 
mation of 0; our statements of hypotheses wilt not be as precise as in the 
previous paragraphs. Take a sequence of prior probability density functions 
(w.r.t. v) on G, 

{nn} --- {v(G,3-11G,,}, 

where {G,,} is an increasing sequence of sets whose union is G. Then for each 
x s ~  the sequence of posterior distributions {B,(.lx)} converges weakly to 
Bv(-]x), the posterior induced from the prior measure v. However, the con- 
vergence is not uniform in x, and in general each B,, differs greatly from B v on 
a set of x of high probability, even for large n. This leads us to examine the 
convergence more closely: let 

d(x) = sup IB.(Alx)- B~(Alx)l, 
A c G  

and consider X,  to be the random variable with the marginal distribution 
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induced from the Bayesian joint distribution which gives 0 the probability 
density function 7c, and X the distribution P0; now d(X,) is a random variable. 
Stone (1970) shows, under regularity conditions, that {d(X,)} converges to zero 
in probability iff G is amenable and {G,} is chosen properly - a summing 
sequence will do. 

This work of Stone sheds light on the claim often made in Bayesian circles 
that the Bayes posterior B v can be viewed as an approximation to B, for large 
n. (Since B, arises from a proper prior, it has coherence and other pleasant 
properties which one could then hope to be at least partially shared by By.) 
This claim is true if G is amenable, and not otherwise in general. 

Here are some properties of the B/s  that are (partially) shared by B,,. 
Heath and Sudderth (1978) show B,, to possess a coherence under betting 
somewhat weaker than the coherence defined in terms of Bayes betting pos- 
sessed by the B/s. Related to this is the consistency between B~ and Neyman- 
Pearson confidence regions: Stone (1976) exhibits an amusing invariant model 
with G=F 2 and a set estimator for 0 whose Bayes credibility level (i.e., the 
probability of covering 0 given x as evaluated by B~) is 7(x)=75 ~ for all x, 
yet, as a Neyman-Pearson confidence set estimator, it has a confidence level of 
only ~(0)=25 ~ for all 0. Such strong inconsistency between the Bayes and 
Neyman-Pearson points of view cannot occur if G is amenable (Bondar (1977)); 
in fact, if m is an invariant mean on G and we define fx(g)=?(gx) and h(g) 
=~(gx), then, under regularity conditions, m(f~)=m(h) for all x (Heath and 
Sudderth (1978)). If 6~ (resp. Q,) is the Bayes decision rule relative to r~ (resp. v) 
for some fixed loss function, and if r. (resp. r~.) is the ~c.-Bayes risk of 6. (resp. 
6~) then r.-r~.-~O as n-~ oo provided G is amenable, and the toss function is 
bounded; furthermore, 6~ is e-admissible for all e >0. One might also ask under 
what circumstances {6.} converges to 6v in some sense, but the answer appears 
to be complex. Stein (1965) looks at the convergence of {B.} to B~ in terms of 
information for G obeying Stein's condition, 

Heath and Sudderth (1978) also show that any invariant mean m on G may 
be used as a prior probability (not a-additive) and gives the same posterior as 
the measure v. The invariant mean m is more pleasing than v from a Bayes 
point of view since m gives measure 1 to f2, unlike v which typically gives v(f2) 
= co. The invariance of m makes it truly non-informative. Zehnwirth (1975) 
shows that a least favourable sequence of prior distributions for estimating 0 
may be chosen to satisfy the asymptotic invariance property of condition P. 

LeCam (1964), Sect. 4, noted a connection between invariant means and 
the comparison of invariant experiments; this has been followed up by Torger- 
sen (1972), see also LeCam (1974), Sect. 3. 

It has been shown (Kesten (1959)) that if G is a countable group, then the 
spectral radius of the transition matrix of a symmetric random walk (whose 
support generates G) is equal to one iff G is amenable. 

Some of the considerations in this paper generalize to semigroups, see Day 
(1957, 1968, 1969) and Lau (1972). In particular, Theorem 2.7 holds if G is one 
of a class of semigroups. 

Knowledge concerning the existence of invariant means and asymptotically 
invariant sequences of probabilities defined on a space acted on by a group of 
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transformations is in a more primitive state than the theory for such means 
and probabilities on the group itself. If H is a closed subgroup of G, then there 
is an invariant mean on the quotient space G/H if G is amenable (Greenleaf 
(1969a)) but the converse is false. A survey of the field was written by Eymard 
(1972). 

Ergodic theorems for amenable G acting measurably on a space ~ are 
found in Templeman (1967), Emerson (1974), Greenleaf (1973), Greenleaf and 
Emerson (1974). A typical result is as follows: if f~Lp(X, ~,  2), 1 <p  < 0% where 
2 is an invariant a-additive measure and 

A,f(x) = (V(Gn))-1 S f(xg)  dr(g), 
G. 

where {G,} is a summing sequence, then the sequence A , f  converges in Lp 
norm to an invariant limit f* .  If the summing sequence also satisfies the 
Emerson-Templeman condition, then {A, f}  converges a.e. (v) to f *  (although 
Emerson has also shown that the Emerson-Templeman condition is not neces- 
sary to get this last conclusion). If G is the integers and G, = {j e G I - n  <j < n}, 
then these facts are the classical L v and individual ergodic theorems, re- 
spectively. To be found in Eberlein (1949) is a complete treatment of mean 
ergodic theory, done in the setting of bounded linear operators on a Banach 
space. 

The reader must be warned that not every individual ergodic "theorem" in 
the literature is true (see the comments in Emerson (1974b)). We remark that, 
although the sequence {[--n,n]} of subsets of R satisfies the Emerson-Tem- 
pleman condition, the sequence {A,F} ~ Loo defined by 

Anf(x)=(2n) -~ i f (x+y)dy ,  x E R  
- - n  

where F is defined in Example 1 of Sect. 1, diverges for every x. Thus there is 
no analogue for L~o of the pointwise ergodic theorem that holds for Lp spaces, 
l < p < o o .  

Explicit construction of summing sequences is done in Greenleaf and Em- 
erson (1974), Sects. 4-6, and in Greenleaf (1973), Sects. 5-6, for connected Lie 
groups. 

3. Proofs 

For each of condition GR and the fixed-point property we mentioned right 
after the definition in Sect. 1 where a proof of the equivalence of that 
condition and amenability could be found; also, it is clear that solvable groups 
satisfy Stein's condition and Theorems 2.2 and 2.5 show that groups satisfying 
Stein's condition are amenable. In an appendix we start with condition Mucb 
and proceed through conditions M, J, WCT, SCT and P to S; condition A 1 
essentially appears in this chain as well. It is clear that condition S implies 
condition M (and all the others in the chain) and, with a little effort, that 
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conditions FWx, SC, HI,  /I1 and WC imply M and are implied by S. Also, 
groups satisfying the Emerson-Templeman condition are amenable; the con- 
verse is not known. 

As to the remaining implications in Theorem 1, we note that condition S 
readily implies each of HS, HSU, P3, H2 and K. The proofs of the remaining 
implications we will discuss in a little more detail. Among these proofs, only 
the last (5) has appeared in the literature. 

(1) HS ~ amenable. This follows because the set ~ of linear combinations of 
characteristic functions is (norm-)dense in Loo and any weak* limit point m in 
L* of the net {P~} is a right invariant mean on La, hence on Loo. (To be 
explicit, we note that HS implies directly that m( fg ) -m( f )=O for all f e ~  
and geG;  hence, if F e L ~  and f e t e  satisfies I IF-fH~<8,  then [IF~-fgll~o= liE 
-fl[~o <e and 

Im(F~) - m(F)l < Im(F s-fg)l + Im (fg) - m(f)l + Ira(f-  F)l _-< 2e.) 

(2) P3 =~ H2. (H2 =~ Pa is trivial.) A proof can be conducted along the lines of 
(but is somewhat easier than) step 1 of the proof suggested in the appendix 
that P =~ S. 

(3) Pa or H 2 ~ amenable. If G is Pa (or, equivalently, H2), then it cannot 
contain a closed subgroup isomorphic to the free group on two generators 
(Stone and von Randow (1968), Theorems 3.1 and 3.2); hence, it must be 
amenable if it is almost connected (Rickert (1967), Theorem 5.5) or if it is a 
subgroup of a linear group (Tits (1972)). 

(4) K ~ amenable. Citing Rickert and Tits as above, we conclude that G 
contains the free group on two generators as a closed subgroup if it is not 
amenable. The argument in Bondar and Milnes (1977) shows that such a group 
does not satisfy K. 

(5) Amenable ~ Stein. (See Reiter (1968), 7.1.) If G is almost connected and 
amenable, then Theorem 5.3 of Rickert (1967) implies G/rad(G) is compact, 
where rad (G) is the radical of G, i.e., the (unique and closed) largest solvable 
connected normal subgroup of G. This completes the proof. 

Remark. The authors would like to thank a referee for pointing out the 
relevance of the paper of Tits (1972) to our survey. Among other things, the 
referee pointed out the following analogue of (5) (see Tits (1972), Theorem 2). 
Let V be a vector space over a field k of characteristic different from 0 and let 
G be a subgroup of GL(V)furnished with the discrete topology. If G is 
amenable, then G has a solvable normal subgroup H such that G/H is locally 
finite (i.e., a finite subset of G/H generates a finite subgroup of G/H. The 
amenability of locally finite groups follows from Theorem 2.6.) 

Appendix 
Our purpose here is to start with a not necessarily o--compact, locally compact 
group G satisfying M,c b and to give, all in one place, in a logical order, using 
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right Haar measure, an account of the construction of a summing net for G as 
in condition S. (An alternate route for part of this construction appears in 
Eymard (1975). Also, limitation of space dictates that only an indication of 
proof can be given at most stages.) This net will be made to satisfy both (i) and 
(ii) of S if G is unimodular. If G is not unimodular, we can make the net satisfy 
either (i) or (ii) of S," it is not known if a summing net satisfying (i) and (ii) 
simultaneously exists in this case. 

An account, as just described, has not yet appeared in the literature, 
although the various parts of it have, by and large, appeared (as will be 
mentioned in due course). The construction of summing nets for groups that 
are not ~r-compact is, to our knowledge, not yet in the literature. 

Remark 1. In the course of this appendix, it is shown that the summing net can 
be chosen to be a sequence if G is o--compact; however, even in this case, the  
use of nets in the proof is unavoidable, and it can be shown only at quite a 
late stage in the proof that the summing net can be chosen to be a sequence. 

As above, we will here identify the probabilty density functions (with 
respect to v) with the functions h e L l ( G , v ) = L  1 that satisfy ]]h[[l=l and h > 0  
a.e. (v). We recall that the modular function A of G is defined by 

Sf(sg)dv(g)=A(s)Sf(g)dv(g), f e L l ,  s e G 

(which is equivalent to 

Sf(gs) d#(g) = A (s- 2) ~f(g) dl~(g), f e  L 1 (G, #), s e G 

Hewit t  and Ross (1963), p. 195)), and that, if heL~,  then h*, defined by 

h*(g)=h(g-1)A(g), gEG, 

is in L t as well, [[h*[[~= [[hl]l and (h*)*=h; also h* is a probability density if h 
is. G is called unimodular irA (g) = 1 for all g e G. 

Remark2. If {ha} is a net of probability density functions as in condition 
SCT, it follows that any weak* accumulation point in L*  of {ha, h* } is a 
topologically (left and right) invariant mean. 

M~c b ~ M and J. Suppose m is a right invariant mean on L U C c ~ R U C =  UC, 
the bounded uniformly continuous functions on G. We note first that m is 
already topologically right invariant. (Two proofs of this fact appear in Green- 
leaf (1969).) If h is a probability density on G, one extends m to a topologically 
right invariant mean m, on RUC by the formula 

m l( f )  = re(f* h), f e  R u e .  

(Recall such an f ,  h is in UC.) m s is extended to a topologically right invariant 
mean m 2 on L~ by the formula mz( f )=ml(~*f ) .  (Recall such an /~ , f  is in 
RUC.) See Greenleaf (1969), Sect. 2.1, for details. 

J ~ WCT. That J implies the existence of a net {ha} of probability densities 
such that 
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Sf(h~) - f ( h  a �9 h) -~ 0 
N 

(for all f ~ L ~  and all probability densities h 

(where, for example, 
f(ha) = ~f(g) h~ (g) dv (g)) 

follows from the facts that the probability densities are weak*-dense in the 
space of all means on Loo and that, for f, h a and h as above, f(h a ,  h ) = f .  h*(h~). 

WCT ~ SCT. (The result here is due to M.M. Day, while the proof is due to 
I. Namioka.) 

The assertion �9 of the previous step may be read as follows: for every 
probability density h on G, ha-ha*h~O weakly in L 1 (i.e., for every f s L *  
= L ~ , f ( h a - h  ~* h ) ~  0). One then proves that a net of convex combinations of 
the members of the net {ha} must satisfy SCT. This proof involves the fact that, 
in a locally convex, linear, topological space (E, ~), the weak and z-closures of a 
convex subset coincide. See Greenleaf (1969), Sect. 2.4. 

SCT ~ P. (The result here and its proof are due to A. Hulanicki.) 
Let e = 5 e ' > 0  and compact K c G  be given, and let k be a fixed probability 

density on G. By choosing a sufficiently small compact neighbourhood E of the 
identity, we can have 

![k* tP~-kill <e'  
and 

l!kg-kftl <e', gEE, 

where O~=Ijv(E) (Hewitt and Ross (1963), (20.15) Theorem, p. 293). Since K 
n 

is compact, we may choose {gl , . . . ,g ,}cG so that K c ~ g i E ,  and we may 
assume g~ = e. Putting 

Oi=O(Egc~)=(O~)g~, l <_i<n, 

we get from SCT a probability density h a such that 

l!h~* Oi-h~iil <~', l<__i<n, 
and 

l!h~ *k-haill <e'. 

Then h=h~.k  is the probability density we need. See Greenleaf (1969), Sect. 
3.2, for details. 

P ~ S. We begin by showing the existence of a summing net satisfying (i) of S 
(and then, in Step 5 ahead, we deal with the existence of a summing net 
satisfying (ii) of S, while still satisfying (i) of S if G is unimodular). This portion 
of the development must be given in two parts, one part for unimodular 
groups and one part for non-unimodular groups. The proof for a-compact, 
unimodular groups was first given by Chou (1970); it was given independently 
by Emerson (1974a), who also den t  with a-compact, non-unimodutar groups. 
We consider first the 
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UnimoduIar Case 

We first remark that the probability density h=h(K,e)of  P may be assumed to 
be a symmetric function, since h* �9 h wilt serve for P as well as h and 

h* *h(g-a)=h* *h(g), g6G. 

We now proceeds by steps, the first two of which are due (except tbr the part 
about symmetry) to I. Namioka and C. Ryll-Nardzewski, respectively. 

Step 1. Given e>  0, 6 >0  and compact K c G, there exist a compact set U c G 
and a Borel set N c K  such that v(U)>0,  v(N)<6 and v(UgAU)/v(U)<e for 
all g e K \ N .  

The proof here can proceed like Namioka's (see Greenleaf (1969), Theorem 
3.6.3), once we note that all probability densities we get from condition P can 
be assumed symmetric (by the remark above), as can all simple functions 
approximating them. 

Step 2. Given e > 0 and compact K c G, there is a symmetric compact set U c G 
such that v(UgA U)/v(U)<s for all g e K .  

Ryll-Nardzewski's idea goes as follows. Assume v(K)>0  and apply Step 1 
to e/2, 6=v(K)/2  and cQmpact set A = K u K K ;  the resulting set U will do for 
Step 2. See Greenleaf (1969), Sect. 3.6 tbr details. 

Step 3. We now assume G is a-compact and construct a summing sequence for 
cO 

G. Since G is a-compact, we can write G =  U Ore, where each O,, is symmetric 
1 

and open and has compact closure Kin, O,,cOm+l, m= 1,2, ..., and frO,,)~ oe. 
By Step 2, we have, for each m, a symmetric compact set UmcG with v(Um)>0 
such that 

v(U~gA Um)/v(Um)<l/m, g~K m. 

It follows, by a measure-theoretic argument of Emerson (1968), that v(U~)~ oe. 
(We note that Chou (1970), and also Emerson and Greenleaf (1968), exhibit 
ways of choosing the sets {Urn} so that it is perhaps a little easier to show 
v(a~) --, ~ . )  

We now choose the summing sequence {G.} by induction. Let G I = U1, and 
suppose G 1 c G 2 = . . .  ~ G. have been chosen so that 

G,~=G~,~O.~, v(GmgAG,.)/v(Gm)<l/m 

for all g ~ K,., m = 1, 2, ..., n. Then, choosing G.+ 1 = Uj,, u G. u 0., where 

j , > 3 ( n + l ) ,  v(Uj,)>=3(n+ l)v(G,~JO,) 
we have 

v(G,+ l g A G,+ O/v(G,+ 1) 

<= [v(Uj, g A Uj.) + v((G, ~ 0,) g) + v(G, w O,)]/v(G,+ 1) 

< 1/(n + 1) 
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for all g~Kj , ,  hence for all g e K , +  1. Since each compact set K c G  is con- 
tained in K,  for all large enough n, {G,} is indeed a summing sequence as 
required. 

Remark. We note that Emerson (1968) has shown (again via a measure- 
theoretic argument) that, if {Gn} is a sequence of compact subsets of G 
satisfying v(G, gAG,)-~ 0 for all g~ G, then this convergence is already uniform 
(in g) on compact subsets of G. See Sine (1976) for a related result. 

Step 4. If G is a locally compact group that is not a-compact, it can be written 

as a union of a-compact open subgroups G =  U G~; for each 7, G~= ~) K~ for 
~ c J  n =  1 

?, oo suitable compact increasing {K.}.= 1 (as in Step 3). Since each G ~ satisfies (M), 
), co we have a summing sequence {G,},= 1 satisfying 

v(G~gA G~)/v(G~) < 1/n, g ~ K~. 

If we define (nl,yl)>(n2,72) to mean 

G'IDG '2, nl>n2, K~I~K~ and G~IDG~, 

it follows readily that {G~ I (n, 7) s N x J} is a net satisfying 

7 __+ v(G~gaG.)/~(G.) 0 

uniformly on compact subsets of G as required. 

Non-Unimodular Case 

The program here proceeds exactly as in the unimodular case up to the end of 
Step 2 with the sole exception that the probability densities h=h(K, 0 of P 
cannot be assumed symmetric and hence the compact set U =  U(K,e) of Step 2 
satisfying v(UgA U)/v(U)<e for all g~K cannot be assumed to be symmetric. 
However, since v(sU)=A(s)-~v(U), it follows that V=sUuU-~s  -~, which is 
symmetric, also satisfies 

v(VgAV)/v(V)<~, g~K, 

if A(s)-i  is large enough. Thus we have the conclusion of Step 2 for the non- 
unimodular case and can apply Steps 3 and 4 to get the desired conclusion. 

Step 5. It remains to show that, in the a-compact case, a summing sequence 
can be chosen satisfying (ii) of S, while still satisfying (i) of S if G is uni- 
modular. (An argument as in Step 4 then shows how to construct in a non-a- 
compact group a summing net for which the analogous assertions hold.) The 
artful, though basically elementary, arguments alluded to here are almost all 
due to Emerson (1968); see also Emerson and Greenleaf (1968) and Emerson 
(1974a). 

What needs to be shown is that, given e > 0 and compact K c G, we can find a 
compact (symmetric in the unimodular case) U cG such that v(UK)/v(U)<I 
- F &  
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It then follows (using arguments as in Step 3) that we can find compact 
U. ~o with v(U,.K')/v(l.~)--,1 for all (s?1nmetric in the unimodular case) sets { ,.}.,= 1 

compact K'cG. (For a-compact groups, this is the assertion of condition A1. ) 
In the non-unimodular case, when the sets {Urn} are not known to be sym- 
metric, {v(Um)}m~=~ might not tend to infinity; but we can use the non- 
unimodularity to find a sequence {s,.}cG for which v(smU,.)-~oo and 
v(smU.~K')/v(s,~Lr)'-+ 1 for all compact K'cG. Thus we may assume v(L~)-~ oo 
in both cases. And, to finish, a straightforward argument shows that 
v(UmK'AUm)/V(Um)~O for all compact K'cG and we can use ideas of the 
latter part of Step 3 to produce the required summing sequence. 

So, given e>0  and symmetric compact KeG,  we must find a compact 
UcG such that v(UK)/v(U)<I+e. We know that there is a sequence {G.} of 
symmetric compact subsets of G with 

v(G.gAG.)/v(G,,)-.O, geG. 

The proof of Emerson (1968) shows how to get the required U in the form 
Gno\E,o for some large no, i.e., by chipping away a relatively small amount E.o 
from G.o; in the unimodutar case, U=(G.o\E,,o)~(G.o\E.o) -1 also will do and 
is symmetric. See Emerson (1968), for details. 

The only thing we should add here is that a covering property of locally 
compact groups, which is used in the proof just mentioned and is proved in 
Emerson and Greenleaf (1967) as a consequence of a difficult, much stronger 
result in the setting of Lie groups, is now known to have a quite elementary 
proof. See Milnes and Bondar (1979). 

Acknowledgement. The authors wish to thank friends and colleagues who read and commented on 
the manuscript, notably Lawrence D. Brown, whose advice and encouragement were of great 
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