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1. Introduction 

A discrete memoryless channel (DMC) is determined by a stochastic matrix W 
with rows 

W(' lx )={W(ylx) :  y ~ } ,  x6X. 

Here X and ~/ are finite sets, called the input and output alphabet, respec- 
tively. For  this DMC, denoted by {W: X-~r  the probability that a length-n 
input sequence x = x  1 x2.. .xn~X n yields on output sequence y = y l  Y2--.Yn ~ "  
is defined to be n 

Wn(y Ix) L [ I  W(yi I xl). 
i - i  

An arbitrarily varying channel (AVC) with input alphabet ~; output al- 
phabet ~ and set of states Y is, formally, a DMC {W: X x 6 D -~} .  It is under- 
stood that the components x e X  of the inputs (x,s) of this DMC are selected 
by the "sender" while the components s e n  are selected in an unpredictable 
manner by a malevolent "jammer".  For  a discussion and history cf. Ahlswede 
[2, 3], Wolfowitz [17] and Csiszfir-KiSrner [7]. This paper deals with the case 
when s is finite. The results carry over to infinite ~ by a standard approxima- 
tion argument, cf. e.g. the proof of Theorem 2.6.11 in [7]. 

Any length-n block code for channels with input alphabet X and output 
alphabet ~r can be used for transmitting messages over an AVC {W: X 
x 6~ Consider for each state sequence s e ~ "  the maximum and the av- 
erage over the message set ~ of the probability of not decoding correctly the 

1 
message m~J/ .  Maximizing the rate - l o g l ~ l  under the constraint that this 

n 
maximum resp. average probability of error be small, uniformly in s c Y  n, one 
arrives at the concept of capacity of the AVC for maximum resp. average 
probability of error (formal definitions will be given in Sect. 2). These capa- 
cities, denoted by C m resp. C a, are usually different (unlike for a DMC). 
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C a has been determined by Ahtswede [2] while C m is unknown, in general. 
For AVC's with binary output "alphabet, C,, was found by Ahlswede-Wolfowitz 
[4]. As shown by Ahlswede [1], determining Cm for an arbitrary AVC would 
include as a special case the solution of the famous graph-theoretic problem of 
determing the zero-error capacity of an arbitrary DMC. In the latter problem, 
raised by Shannon [15], remarkable progress has recently been made by Lo- 
v~tsz [13] but the general solution still appears to be a long way ahead. 

Recently Ahlswede [3] succeeded in determining C,, for a fairly large class 
of AVC's. An essential point of his proof was that into the random selection of 
the codeword set he included an expurgation that, combined with an ingenious 
choice of the decoder, enabled him to bound the maximum probability of er- 
ror. The aim of this paper is to give a simpler proof which leads to a more 
general result. This will be done by the combinatorial approach introduced by 
Csiszfir-K6rner-Marton [8] (cf. also Csis~r-K6rner [6]) which was further de- 
veloped in Csiszfir-K6rner [7] and applied also in K6rner-Sgarro [12], Csi- 
szSx [5], etc. 

In [8] and [7], looking at constant composition codes with a fixed "bal- 
anced" codeword set and with various decoders, bounds on error probabilities 
were obtained by simple counting arguments applied separately to each of 
those joint types of sequences that contributed to the error event. Here we 
shall proceed similarly, but since the problem is more difficult, more careful 
bounding is needed in the selection of the codeword set (using large deviation 
bounds as did also Ahlswede [3]). The approach naturally suggests a candidate 
for a good decoder (significantly different from that of Ahlswede [3]). A crucial 
step will be to prove that the definition of this decoder is consistent. 

Now we describe Ahlswede's theorem (in a formulation different from but 
equivalent to his) and our generalization. We introduce a graph with vertex set 
~r to be called the graph of W or G(W). In this graph xl and x 2 are connected 

w 
by an edge - in symbols xl :-.x 2 - iff there exist distributions Q1 and Q2 on 5: 
such that 

~, W(ylxl,s)Ql(s)= ~ W(y[xz, s)Q2(s) 
s~5  p s ~ S :  

for every ye~. (1.1) 

Notice that G(W) is a graph with loops but without multiple edges. By a well- 
known result of Kiefer-Wolfowitz [11], Cm>0 iff G(W) is not a complete 
graph. The condition of Ahlswede's theorem is that G(W) should consist of 
isolated vertices. Under this condition he proves that 

where 

C,. = max C(P) (1.2) 
P 

C(P)  A min l(X A g) ,  (1.3) 

the minimum being taken for RV's X, g taking values in .~ resp. Yr such that 
X has distribution P and for some RV S with values in 50 

Pr{Y=ylX=x,S=s}=W(ylx, s) whenever 

Pr {X=x, S=s} >0. (1.4) 
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We shall prove formula (1.2) under a considerably weaker condition. Denote 

D(P) ~= min I(X AX') (1.5) 
Pr{X ~Wx'} = 1 

where X and X'  stand for RV's both having distribution P Now we can state 
our 

Main Result. For every distribution P on X, min(C(P),D(P)) is an achievable 
rate for maximum probability of error. In particular, if there is a Po maximizing 
C(P) such that D(Po)> C(Po) then (1.2) holds. 

If the graph of W consists of isolated vertices then clearly D ( P ) = H ( P )  for 
every P Thus the above result contains Ahlswede's theorem as a special case. 

In the literature several variations of the capacity problem for an AVC 
have been considered. One of them, namely when "the states are known at the 
receiver" (cf. Kiefer-Wolfowitz [11], Stambler [16]) is actually a special case of 
the above problem. In fact, codes for an AVC {W: X x 5P--,~} with decoder 
depending on the state sequence s are the same as codes in the original sense 
for a new AVC {W': X x 5~--,~ x 5 ~} where 

W,(y,s, lx, s )~{W(y ,x , s )  ifs'=Selse. (1.6) 

For  average probability of error, the capacity of an AVC with states known at 
the receiver has been determined by Stambler [16]. For maximum probabili ty 
of error, we shall determine this capacity for a wide class of AVC's, specializing 
or main result to AVC's of form (1.6). This will be done in Sect. 5. 

2. Preliminaries 

A length-n block code'for channels with input alphabet X and output alphabet 
q / i s  a pair of mappings f :  Jd-*X",  (p: ~dn--+Jd ' where ~ ' D d g .  The elements of 

are called messages, their images under f are the codewords, f itself is the 
encoder, while (p is the decoder. If message meal{ is sent and a sequence yeOy, 
is received, an error occurs whenever ~0(y)+ m. 

Accordingly, using the code (f, ~0) on an AVC {W: X x 5~--,Yd}, the proba- 
bility of erroneous transmission of an m c J d  for state sequence so5  Pn is 

e(m, s) A W"({y: qo(y)=t=m} If(m), s). 
(2.1) 

The maximum probability of error is defined as 

e = e ( f ,  (p) ~= max max e(m, s). 
s~D ~ m~d4' 

Definition. A number  R > 0  is an achievable rate (for maximum probability of 
error) for a given AVC if to every e>0 ,  ~ > 0  and every sufficiently large n 
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there exist length-n block codes (f, (p) with 

1 
- l o g ] J ~ ] > R - c ~ ,  e(f,q~)<~. 
n 

The largest achievable rate is called the capacity (for maximum probability of 
error) of the AVC; it will be denoted by C,n. 

Remark. The capacity for average probability of error (Ca) is defined similarly; 
its definition is omitted for we shall not need it. 

Throughout  this paper, we shall use the same basic notation as in [6] and 
[TJ, summarized below. 

Distributions, Types 

For RV's X, Y with values in finite sets X, Yg, we denote by Px resp. Pxr the 
distribution of X resp. the joint distribution of X and Y The conditional distribu- 
tion of Ygiven X is denoted by Prlx: 

Px(a)Apr{X=a}, Pxr(a,b)~Pr{X=a, Y=b}, 

Prrx(b ] a) ~= Pr { Y = b ] X = a} = Pxr(a' b). 
Px(a ) ' 

Prlx(bla) is undefined if Px(a)=0. 
The type of a sequence xeX"  is the distribution Px on X defined by letting 

Px(a) be the relative frequency of the symbol aeX in x. The joint type of two 
sequences x~X" and yE~#" is the distribution P,,y on X x ~ defined similarly. 
The conditional type Pylx of y given x is defined by 

a) =P~,y(a,_b). 
PYI~(b I P~(a) ' 

Pylx(b ] a) is undefined if Px(a)= 0. 
A stochastic matrix V of which the rows are distributions on ~ indexed by 

elements of X, will be denoted by V: X ~ f f .  For  a stochastic matrix V: X ~Y /  
the equality Pylx = V or PyEx = V will mean that Prlx(b ] a) = V resp. Pyl,(b [a) = V 
whenever the left-hand term is defined. 

The set of sequences of type P in X" will be denoted by Yp" or simply Yp. 
Of course, fp"4=0 holds only for "a  few" distributions on X; the family of 
these distributions will be denoted by ~,(X). For  a given x~X" and stochastic 
matrix V: X ~ ,  the set of sequences yE~"  of conditional type PyI* = V will be 
called the V-shell of x, denoted by Jr(X). The family of conditional types of 
sequences y ~ "  given an xeX"  depends on x only through its type P~=P; this 
family will be denoted by ~ ( ~ ] P ) .  With some abuse of terminology, we con- 
sider ~(~#[P)  as a family of stochastic matrices V: X- - ,~  even if P ( a ) = 0  for 
some a~X; we understand that the rows of these matrices indexed by elements 
a~X with P ( a ) = 0  are defined in some arbitrary but fixed way. Further, we 
write 

~ . ( ~ J X ) g  ~ ~. .(~IP).  
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Information Quantities 

If Px=P, Prlx = K the entropy H(X), conditional entropy H(YIX) resp. mutual 
information I(XA Y) will also be denoted by H(P), H(V]P) resp. I(R V). We 
shall also use "non-probabilistic" information quantities (cf. Goppa [10]) de- 
fined for length-n sequences (rather than RV's). They will mean, by definition, 
the corresponding information quantities for RV's with joint distribution equal 
to the joint type of the sequences in question. E.g., I (xAy[s )  means the con- 
ditional mutual information I(X/~ YIS) for RV's X, Y, S having joint distribu- 

tion PxYs ~P~,y,~. 
For two distributions P and Q on X resp. stochastic matrices V: X-,~J, 

W: X ~ Y / w e  denote by D(P 1i Q) resp. D(Vll WtP) the Kullback-Leibler infor- 
mational divergence 

D(P II Q)~ ~ P(x)loNPY! 

resp. conditional informational divergence 

D(VIE Wl P) a= ~ P(x) D(V(" Ix) Jl W(" Ix)). 
x E ~  

A useful inequality of Pinsker [14] is 

J P ( x ) -  Q (x) j=< c } D/~(p 11 O), (2.3) 

where c is an absolute constant. 
We shall use the same elementary bounds as in [6]. For their proof cf. [9] 

or [7]: 
I~.(X)I < (n + 1) I~1 (2.4) 

1 ~ ( ~  I X)I < (n + 1) IXI t~I (2.5) 

<I~ <exp{nH(P)} for PE~,,(X) (2.6) ( n + l )  -l~rl exp {nil(P)} =,  p[ 

(n + 1)-rxl ImI exp {nH(gj P)} < j~.(x)J < exp {nH(VI P)} (2.7) 

for every xe.Y~, V~#,](Y/1 P) 

Q' (x)=exp { - n [ D ( P  II Q)+H(P)]} for x s ~ "  (2.8) 

Wn(yjx)=exp{-n[D(VllWlP)+H(g[P)]} for x ~  n, y~~ ) 

(2.9) 

Throughout the paper, [all denotes the cardinality of the finite set ~ .  All exps 
and logs are to the base 2. 

Finally, we shall use the notation 
z~ 

itl + ~ max(0,  t) 
[tJ =largest integer not exceeding t. 
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3. Statement and Discussion of the Results 

Our capacity result will be a consequence of the following coding theorem for 
fixed composition codes. 

Theoreml.  Given an AVC {W::~xSe--*~J} and any 8>0, 3>0,  for every 
Pe~,(:~) and 0_<R<min(C(P), D(P)) - cf (1.3), (1.5) - there exists a length-n 
block code ( f  (p) with codewords of type P such that 

1 
- l o g l J g [ > R - ~ ,  e ( f  ~o)<-_8, 
n 

provided that n > n o (W, 8, 3). 

The proof will be given in the next section. A corresponding converse-type 
result is the simple 

Theorem2. Given an AVC { W : W x J ~ J }  and any 8>0, 3>0,  for every 
P~N,(W) and R> C(P) every length-n block code with codewords of type P such 
that 

1 
- l o g [ / g ] > R + 6  
n 

has 
e ( f  ~o)>e 

provided that n>no([~r [, [~[, 8, 6). 

Proof Consider the triple X,S, Y achieving the minimum in the Definition (1.3) 
of C(P). Clearly, every code ( f  ~0) for the AVC {W: W • ~ - - .~}  is also a code for 
the DMC {Prlx: X ~ }  with at most the same maximum probability of error. 
Hence the statement follows by the strong converse to the DMC coding theo- 
rem for fixed composition codes, cf. e.g. [-7], Corollary 2.1.4. 

Combining Theorems 1 and 2 we get 

Theorem 3. Suppose that the AVC {W: W x ~9~ has the property that for a 
distribution Po achieving max C(P) we have D(Po)> C(Po). Then this AVC has 
capacity 

C m =max  C(P)= C(Po). 
P 

Proof One easily checks that C(P) is a continuous function of P. Thus the 
direct part follows by applying Theorem 1 to distributions P~E~,(X) with 
Pn~P0. The converse follows from Theorem 2 and (2.4). 

Let us now discuss what improvements of these results might be hoped for. 
In this respect, a constant composition code analogue of the zero-error ca- 
pacity problem seems relevant. 

Recall that a subset of the vertex set of a graph G is called an independent 
set if no pair of its elements is connected by an edge. The maximum size of 
such sets is called the independence number of G, denoted by c~(G). The n'th 
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power of a graph G having vertex set ~" is the graph G" with vertex set ,~" in 
which x=x l , . . x , ,  and x'=x' l . . .x ' ,  are connected by an edge iff xi and x~ are 
connected in G, i=  1, 2, . . . ,  n (with the understanding that each x is connected 
with itself). The zero-error capacity of a graph G is the (always existing) limit 

Co(G) ~= lim ~ log ~(G'). 
n ~  o:3 n 

Clearly, the codewords of a length-n block code for an AVC {W: Y' 
x 5 ~  '} with maximum probability of error less than �89 form an independent 

set of [G(W)]" (which is the same graph as G(W")). Thus Co(G(W)) is a trivial 
upper bound of C,,. Further, if all codewords are of type P, then 

1~1 < ~.(P) (3.1) 

must hold, where %(P) stands for the independence number of the subgraph of 
[G(W)]" spanned by the subset ~ "  of :g". Introduce the notation 

A (P) A sup (lim sup I log cr (P,)) 
n~oo n 

(3.2) 

where the supremum is taken for all sequences P,--+P with p,~,(~r) .  Then in- 
equality (3.1) enables us to sharpen Theorem2 replacing the condition 
R >  C(P) by R>min(C(P) ,  A(P)). In particular, we certainly have 

Cm < max min (C (P), A (P)). (3.3) 
P 

This implies that C m can be strictly smaller than both max C(P) and 
Co(G(W))" e 

Although (3.3) is not a computable bound (for no computable characteri- 
zation of A(P) is known), it would be interesting to decide whether it is sharp. 
The reason for our method giving only the weaker direct result 

C,, __> max min (C (P), D (P)) 
P 

consists in our applying random selection. In this way one gets an independent 
subset of -Y-e" but of size exp {nD(P)} rather than exp {hA(P)}. 

4. Proof of Theorem 1 

We start by a simple combinatorial lemma stating, intuitively, that for any 
prescribed number R > 0  there exist exp(nR) not necessarily distinct sequences 
in Yen such that in no V-shall does their "local density" substantially exceed 
their "global density" in Yv'. 

Lemma 1. Given arbitrary finite sets s#, y{; to every, R > 0 ,  n>max(l~ IXI) and 

P ~ , ( ~ ' )  there exist M ~=[exp(nR)J not necessarily distinct sequences xi~J'e" , 
i= 1, ..., M such that for ever), u~ql" and V: ott-~W we have 

1{i: xiEYv(U)} [ < 3(n+ !) Ixl exp {n[R-I (P . ,  V)I+}. (4,1) 
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Proof. We shall show that if M&[exp(nR)] elements of 4 are chosen at ran- 
dom then with positive probability the inequalities (4.1) hold simultaneosly. 

Formally, let Z 1 . . . . .  Z M be independent RV's taking values in 4 and uni- 
formly distributed on 4 .  If Vis not in Y~(,~']ag), inequality (4.1) trivially holds. 
Fixing now an ueOg" and VeY~(2F[~), consider the independent and identically 
distributed RV's 

a [1 if Z i e ~ ( u )  
Z~= ~0 else. 

Since the number of possible pairs (u, V) is less than tagl"(n + 1)r~l I~l, it suffices 
to show that 

Pr )~i > 3(n + 1)l~rl exp[n]R-I(P,,  V)[ + 
i= (4.2) 

< lagI--"(n + 1)-l~t 1~rl. 

This can be done by a standard Bernstein argument. Introducing the notation 

a(n) ~ 3(n + 1) Is;I exp [nlR - I(P., V)[ +], (4.3) 

the left-hand side of (4.2) equals 

{exp i~l } Pr Zi > exp a(n) , 

which, by Markov's inequality, is upper bounded by 

e(n) ~ (E exp Zl) M exp ( -  a(n)). (4.4) 

Here (recalling that exp's are to the base 2) 

E exp)r = Pr {Xi =0} + 2 P r  {X1 = 1} 

=1 + Pr{z ~ = 1} =1 + - -  
141 

=<1 + ( n +  1) le'l exp {-nI(P~, V)} 

where the last inequality follows from (2.6), (2.7). Hence, using the inequality 
(1 + t )< e t = exp(t log e) and the definition of M, we get 

(E exp X1) M < exp {m(n + 1) I~xl exp [ - nI(P~, V)] log e} 

< exp {(n + 1) I~1. log e.exp [n(R -I(P,,  V))] }. 

Substituting this and (4.3) into (4.4) gives 

e(n) < exp { - (3 - log e) (n + !)l~rl}. 

Since e(n) is an upper bound of the left-hand side of (4.2), the last bound establishes 
(4.2) for n sufficiently large. A simple calculation shows that already for 



Capacity of AVC for Maximum Probability of Error 95 

n > m a x  [l~Ul, IXl] we have 

exp { - (  3-1og e) (n + l )t~Cl} < log l-~(n + l )- I~Ul le'l 

What we shall actually need in our code construction is the following con- 
sequence of Lemma 1. It will play the same role for an AVC as did for a DMC 
our Corollary of Lemma 2 in [6 l, 

Lemma2.  Given finite sets X , ~ ,  to every 6>0,  R>0 ,  n>no(If],[5~ and 
P ~ . ( X )  with H(P)> R there exists a subset c~ Of Jp~  X" such that 

(i) t-log]Cgl > R - 6  
n 

(ii) for every x e X  ~, s ~ Y  '~, V: X x Y ~ X  we have 

lYv(X, s)r~U[ < 3(n + 1) Ie'l exp {n]R -t(P~,~, V)[ + } 

(iii) for every pair of elements x +-~ of U 

I(x A ~) <R. 

Proof Applying L e m m a l  with q / ~ = ( f x Y ) w f  we get M=Lexp(nR)J (not 

necessarily distinct) sequences x~,x2, .... x M in Je  such that for every xeX" 
and s~5 e" 

[{i: xi~J~v(x, s)}] < 3(n + 1) I~1 exp { n l R -  I(P~,~, V)I+} 
(4.5) 

for every V: Y;x ~ S f ;  

]{i" xi~Ye(x)}I < 3 (n + 1) I~rt exp { n l R - I  (P~, V)l*} 
for every ~': X ~ X  (4.6) 

It suffices to show that at least M e x p (  -nc~] sequences x0 can be selected out 
of these x~'s such that \ z /  

l(xo Axi~)<R for ii=t=ik; (4.7) 

in fact, this also implies (by the assumption R<H(P) )  that the sequences x 0 
are all distinct. To do this, notice that (4.6) implies for every l<  M 

1{i" x~Yc(x~)}[ < 3 ( n + l )  t~1 if I(P, ~)>R. 

It follows by (2.5) that for every l < M  

1{i: I(xi/xxz)>R}l<=3(n+l)l~Cl(n+l)l~12. (4.8) 

Now sequences x 0 meeting (4.7) can be chosen successively: Suppose that 
xi,, xi~ . . . . .  xi~ satisfying (4.7) have already been selected. Then, on account of 
(4.8), a further x ~ , ,  can also be selected without violating (4.7) unless 

m- 3(n + 1)l~rl(n + 1)l~rI~> M. 
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To prove Theorem 1, we shall use the set ~ of Lemma 2 as codeword set, 
letting the encoder f be the identity mapping on ~. Our decoder ~0 will map 
each y ~ "  into an x~Cg such that for some s e ~  ~ 

and 

I(~/x y Ix, s)<r/ 

D(PyI,,,, II WIPx, ~) < ~ (4.9) 

for every i e ~  which for some ~e2~" satisfies (4.9) (4.10) 

provided that such an xeCg exists; here t />0 will be specified later. 
Notice that (4.9) is a kind of "joint typicality" condition; for a DMC every 

decoder satisfying this condition would do. For an AVC the decoder should be 
chosen more carefully. In our proof it is exactly condition (4.10) which will be 
needed to make the maximum probability of error small. The content of the 
next lemma is that (4.9) and (4.10) unambigously define ~0(y) whenever an xeCg 
satisfying these condition does exist. 

Lemma 3. Given an AVC {W: : Y x J ~ } ,  to every c5>0 there exists an 7 > 0  
such that for any subset cg of 3--pCf" satisfying (iii) of Lemma 2 with R<D(P)  
- 6 ,  to every y e ~ "  at most one x~Cg can be found with the properties (4.9), 
(4.10). 

Proof. We have to prove that if two pairs (x, s) and (~,~) in ~ • 6 e" both satisfy 
(4.9), (4.10), then necessarily x =5~. 

In fact, suppose that 

O(P, ix,~ II Wl Px.~)< ~, D(Pyl~,~llWlP~)<tl, (4.11) 

I(~ A ylx,  s)<t/, I(xA y l~ ,~)< t  / . (4.12) 

Let X, S, 2 ,  S, Ydenote RV's having joint distribution equal to the joint type of 
(x,s, 5~,~, y). Then the first inequality of (4.11)resp. (4.12) means, by definition, 
that 

s(ylx, s) 
~, Pxsr(X,s,y)l~ s ) <tl 

X, S, y 

resp. 
P ~ I ~ )  <~. 

I (X  /x Y] X, S) = x,s, ~ ,  y Pxs2r(x' s, 2, y) log rlxs(Yl , ) 

Adding these two inequalities we get 

Pxs~r(x, s, 2, y) log Pxs~r(x, s, 2, y) 
.... ~,y W(ylx ,  S)Pxs~(X, s, 2) <2~ '  

Here the left-hand side is the informational divergence of two distributions on 
~g x 60 x s x ~ Projecting them to X x ~r x ~ the divergence does not increase, 
and thus 

O(Px2r II Px2 x V) <2q,  (4.13) 
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where V: f x f ~ Y r  is the stochastic matrix defined by 

V(yt x, ~) ~= ~ wo,  t x, s) 81x~(SlX, Y:). 
s e J  

(Recall the notation (2.2); if Px~(X, 2)=O then V(y]x, 2) and tT(ylx, 2) below 
can be arbitrary.) Similarly, we get from the remaining inequalities of (4.11) 
and (4.12) that 

D(Px~-t] Px~ x ~') <2~/ (4.14) 

where l?: 5f x f ~  is defined by 

TT(yIx,2)= E W(yl~,s38~x~(~lx,2). 
ge5  p 

Using (2.3), the inequalities (4.13), (4.14) give rise to 

Z Px~( x, 2)ZI V(y[x, ~) - f/(ylx, :z)[ < 2c 1 ~ .  (4.15) 
x,.2 y 

Lemma 3 will be proved if we show that (4.15) can not hold for x + ~  pro- 
vided that ~/=~7(1~6) is sufficiently small. To this end, notice that as ~ c ~  
meets condition (iii) of Lemma 2 with R<D(P)-6, we have 

I(XAX)=I(xA~)<R<D(P)-cS= min I(XAf; ')-5.  
Pr{XWX'}= 1 
P x  = P x , =  P 

This implies that 

1 - Pr {xWx} > q  (4.16) 

for some a, =~t(G(W), (~)>0. Further, if x and ~ are not connected by an edge 
of G(W), then by the definition (1.1) of G(W) 

min ~, I ~ W(yix, s)Ql(s)- ~ l/V(yl2, s)Q2(g)t>0, 
Ql, Oz yeqg se5 ~ seS" 

where Q1 and Q2 range over the distributions on ,~ Denoting by e ;=e2(W) 
the minimum of these minima for pairs ,Ix, 2) not connected by and edge in 
G(W), it follows that if Px~(x,2)>0 and x:r does not hold then 

I r ( y  I x, 2 ) -  V(yI x, 2)[>~ 2. 

This and (4.16) yield the desired contradiction with (4.15) if t/ is chosen suf- 
ficiently small. 

Now we turn to the 

Proof of Theorem 1. Consider an AVC {W: : Y x S e ~ } ,  fix some a > 0 , 6 > 0 ,  
n>=n o, Pe~.(~') as in Theorem 1, and suppose that 

R < min (C (P), D (P)) - 6. (4.17) 
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This is not a real restriction compared with the condition R<min(C(P) ,  D(P)) 
of Theorem 1. In fact, if the assertion of Theorem 1 is true under the hy- 

6 
pothesis (4.17) then, applying if for R - ~  and ~ in the role of R and 6, the same 

assertion follows for every R<min(C(P) ,D(P)) .  Define a length-n block code 
(f, ~0) as follows: Let the message set be the set cg of Lemma 2 and the encoder 
f b e  the identity mapping on cs Let the decoder (p map each yEOY ~ into an xCd  
which for some s~5 ~ satisfies (4.9), (4.10). If no such s~Y" and x ~ ' "  exist, 
~0(y) may be arbitrary. Here, the threshold t/ of (4.9), (4.10) is chosen to satisfy 

6 
Lemma 3, t /<~, and the additional condition that for every triple of RV's )(SY 

and a RV Ywith Pflg~& Wwe have 

I(J(A Y)>(J?A ) - ~  if D(PvI~IiWIPy:s)<tl. (4.18) 

(Such a choice is possible by inequality (2.3) and the uniform continuity of I(X 
/x Y) as a function of Pxe.) We claim that this code (f, q)) has maximum proba- 
bility of error less than ~, i.e., 

e (x ,s )<e  for every x ~ , s ~ 6  e" (4.19) 

(of. (2.1)), provided that n o =no(W, ~, 6) is sufficiently large. 
Fix an x~Cd and s~6 e', and consider the subsets of ~ 

~r {y: D(Pyl.,~ I1Wl Px,.)--> r/} 

:~A={y:I(~Aylx,  s)=>t / for some ~C~(y)} 

where 

C~(y)~{~: ~c~, D(Prl~,, N WIP~,,~)<tl for some w 

By the definition of our decoder q~ an error ~0(y)=~x can occur only if y ~ 4  
u ~ ,  thus 

e(x, s) < W ~  I x, s) + w " ( ~  Ix, s). (4.20) 

By (2.7), (2.9) and (2.5) we have 

W"(~4 Ix, s) < (n + 1) I~11Sl I~1 exp ( -  n6). (4.21) 

In order to bound W ' ( ~ l x ,  s), we consider separately the intersections of 
with the various V-shells of (x, s): 

W"(~ ] x, s) = ~ W"(~C~Jv(X, s) lx, s). (4.22) 
vc%(~lPx, s) 

For notational convenience, joint types of length-n sequences will be repre- 
sented as joint distributions of RV's. The cardinality of ~C~Yv(X, s) is bounded 
from above by the number of pairs (:k, y ) ~  • such that P,,,s,~,,y=Pxs~r for 
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RV's X, S, Ywith joint distribution given by 

A 
Pxsy(X, s, )2)=P~, dx, s) V (y l x, s) 

and some RV J~ such that P~? = P and 

I(J~A YIXS)>rl,  

D(Prl~ll WIP~)<~ for some RV S. 

(4.23) 

(4.24) 

(4.25) 

By Lemma 2 (ii), the number of sequences 2~cg with P~,~,~ =Pxss is at most 

3(n + 1) I~rl exp {n I R -  I(XS/x J()l + }, 

while for every such i the number of sequences y ~ d  n with Px, s,~,y=Pxs~r is, by 
(2.7), at most 

exp {nH(YJ XS)~)} = exp {n [H (YI XS) - I()~ A Yt XS)]}. 

Combining the last two bounds and using (2.4) we get 

I ~ J v ( X ,  s) =< (n + 1) I~1~ Isq I~13 (n + 1) lel exp {n [H(YI XS) 

- r a in  (I()~ A Y I X S ) - I R - I ( X S A ~ ) I + ) ] } ,  (4.26) 

where Pxsy is given by (4.23) and the minimum is taken for all RV's J~ satis- 
fying P~ = P and (4.24), (4.25). 

Now we show that this last minimum can not be less than ~/. To verify this, 
on occount of (4.24) it suffices to consider RV's )( with I (XS/x) ( )  <R. Then 

I (X  A YI X S ) - I R -  I (XS  A 2)[ + 

= I()~ A YI XS) - R + I (XS  A )() = 1(2 A YXS) - R 

>I()~ A Y ) -  R > C ( P ) - ~ - -  R 
~ 2 

where the last step follows from (4.25) by assumption (4.18) and the definition 

C(P), cf. (1.3), (1.4). Since R < C ( P ) - b  and ~ < 2  by assumption, our of  claim 

that the minimum in (4.26) is not less than r/is herewith established. Using this 
result and (2.9), the bound (4.26) yields 

W " ( ~  Jv(X, s) j x, s) < 3 (n + 1) 1~12 I~11~1--I"Xl exp ( - nt/). (4.27) 

Comparing (4.20), (4.21), (4.22) and (4.27) completes the proof of (4.19). 

Remark. We have actually proved that under the conditions of Theorem 1 the 
maximum probability of error of the optimal length-n block code tends to zero 
exponentially as n--.oo. Counting more carefully, we could have got tighter 
exponential bounds quite easily. Still, it remains to be seen whether these im- 
proved bounds are tight in any interesting case. 
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5. States Known at the Receiver 

As pointed out in the Introduct ion,  our results have immediate implications 
for an AVC whose states are known at the receiver. Formally,  a length-n block 
code for an AVC {W: ~r x SPRY/} with states known at the receiver is a pair 
of  mappings f :  J/~--*~", ( p : ~ " x s o " - - > J d '  where JCd'~JCd. The remaining defi- 
nitions are the same as in Section 2 except that  the analogue of e(m, s) of for- 
mula  (2.1) is now defined by 

r A n 
e (m,s)=  W ({y: ~o(y,s)4=m} If(m), s). 

Obviously, the above (f, (p) and e'(m,s) are the same as a length-n block 
code in the original sense and the corresponding e(m,s) for the new A V C  
{W': SV x 5 O - - ~  x 5 ~ defined by (1.6). Hence, applying our  results to this new 
AVC, we get their analogues for the AVC {W: ~ x 5O~Y/} with states known 
at the receiver. The relevant quantities of formulas (1.3) and (1.5) now have the 
analogues 

C'(P) A min I (X A YS), 
P x  - P 

P Y I x s = W  

O'(P)g min I (X AX'). 
P r { X ~ W ' x  '} = 1 
P x = P x , = P  

The definition of D'(P) becomes simple upon  observing that  in the graph of  
W' two elements x 1 and x 2 of  ~ are connected by an edge iff there exists an 
seso  such that  

W(y]xl , s )=W(ylxz ,  S) for every y ~ .  

In particular, the analogue of  Theorem 3 is 

Theorem 4. Suppose that the AVC {W: &r x 5O--,~} has the property that for a 
distribution Po achieving max C'(P) we have D'(Po)> C'(Po). Then the capacity for 
maximum probability of error C'm of this AVC with states known at the receiver 
is 

C" = max C' (P) = C' (Po). 
P 
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