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Summary. Given a random field {iv, vezq}  indexed by q-tuples of positive 
integers and satisfying a strong mixing condition we study the approxima- 
tion of the partial sum field {S,, n~Z q} by Brownian sheet. Setting 

G~={(ni, nq)6zq+ : G>(  I I  ~), k = l ,  ... q} 
l<_i<_q, i4-k 

for 0 < e <  1 we show that in the domain G~ the approximation S~-W(n) 
=O([n] ~/2-~) a.s. is possible where 2>0.  We also construct an example 
showing that in a somewhat larger, similar type domain the above approxi- 
mation is generally impossible, even with 2 = 0. 

1. Introduction 

Let Z q (resp. Z q) denote the set of all q-dimensional vectors with integral (resp. 
positive integral) coordinates. Let {~,  v~Z q} be a random field with values in 
R N, that is a collection of N-dimensional random vectors indexed by Z~+. We 
assume that 

ECv=0 , E l~12+a<C yeN q (1.1) 

for some 6>0 ,  C > 0  and that {~v, v~Zq+} satisfies the following mixing con- 
dition: 

p(sl, s2) %f sup IP(AB)-P(A)P(B)I 
Ae,r{G: w S l }  
Be~r 1~,,: yeS2} 

< Cl ( in f  I/~-vl) q(l+g)(l+2/6) (1.2) 
#eSi  
yES2 

for some 0 < e <  1/2, constant Ct and any disjoint non-empty sets S> S2cZq+. 
(Here a{ '} denote the a-field generated by the random variables in the brack- 
ets.) Set 

z ~_(1) 
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We call the random field {~v, v~Z~} weakly stationary if E~(~)r ~ (#, v~Z q, 
l < i , j < N )  depends only on v - #  i.e. if there exist real valued functions ri, j, 
1 < i,j < N, each having domain Z q, such that 

ri, j (v-#)=E~(~ ) ~) ,  #, wZq~, 1 <=i,j<=N. (1.3) 

For any #, w Z  q the relations # < v  (resp. #<v)  are defined to mean #~<v~ (resp. 
#i<vi) for l < i < q  where #=(#a,- . . ,#q),  v=(vl , . . . ,vq) .  Set e=(1, 1,. . . , lq),  0 
=(0, 0 . . . .  ,0q) and define for v~Zq 

l <=i<=q 

where v=(v 1 . . . .  , vq). Put finally, for any d~(O, 1) 

Ge= ~ { w Z q  : Vk> l~ v~}. (1.4) 
/ ;=1  l< l<q , l*k  

Our main goal is to prove the following theorem: 

Theorem 1. Let q> 2, d~(O, 1) and let {~ ,  w Z ~ }  be a random field with values 
in RN for some N>= 1. Suppose that (1.1), (1.2) hold and that the field is weakly 
stationary. These hypotheses imply that the series 

;:i,j= y, r~,~(v) (1.5) 
wZq 

are absolutely convergent for 1<i, j < N  where the covariance function rl, j is 
determined by (1.3). Moreover, F=(Ti, j)N• U is nonnegative definite. Then, without 
changing its distribution the random field {~ ,  vEZq+} can be redefined on a new 
probability space together with a q-parameter Wiener process {W(z), z~[-0, ~)q} 
in R N with covariance matrix F such that 

sup [hi "t-1/2 sup I ~ ~ , -  W(v)l < oo a.s. (1.6) 
n~Ga e~v<-n ~<=v 

Here G~ is defined by (1.4) and 2 is a positive constant depending on the field 
{~, v~z~}. 

A q-parameter Wiener process {W('c),ze[0, oo)q} in R N with covariance 
matrix F means a (Gaussian) process with values in R N, with independent 
increments such that W(z)=0 if any of the coordinates of z vanishes and the 
increment of W over a rectangle R has normal distribution with mean 0 and 
covariance matrix [R[ F where [R[ is the volume of R. 

It is not hard to find an explicit value for 2, for instance, 2=e6qb 5 d4/8 q+9 

will do. 
Theorem 1 says that under the given conditions there exists a q-parameter 

Wiener process W with convariance matrix F such that 

sup 1~  ~ , - W ( v ) l = O ( [ n ]  1/2-~) a.s. (1.7) 
e--<v<--n / ~ V  
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holds for n~G d. The stipulation "n~Gd" is essential here: in general there exists 
no Wiener process W such that (1.7) holds for all neZq+ (cf. Theorem 3 
below). However, n~G a can be somewhat relaxed at the cost of having a 
weaker error term in (1.7). Put, for instance, 

q 

G~= (") {v~Z1" Vk_>log~( H v,)} (1.8) 
~=~ z_<z_<q,Z,k 

for q > 2 and/~ > 0. Then we have 

Theorem 2. Theorem 1 remains valid if relation (1.6) is changed to 

sup In] - 1/2 (Ioglog In]) ~ sup I ~ ~u-  W(v)l < co a.s. (1.9) 
n~G~ e<--v<--n ll<=v 

for suitable positive constants fl and 2. 

The proof of Theorem 2 yields (I.9) with a large fl, if actually (1.9) is valid 
for every fl > 0 remains open. 

On the basis of Theorems 1 and 2 one might perhaps conjecture that under 
the conditions of Theorem 1 there exists also a Wiener process W such that 

sup q~([n])- 1 sup I ~ ~u-  W(v)[ < co a.s. 
nsG*p* eGv<<-n ~<=v 

holds for some function q~(t)= o(t ~/2) (t-~ co) where 

G~* = ~ {v~Z~ : v k >(loglog)P( H vl)} 
k= i l<i<=q, t~=k 

(here (togtog)~x=(loglogx)~). However, as Theorem 3 below shows, this is not 
the case if fi<1/2. For simplicity, we consider the case q=2.  Set, for any 
function 0 < f( t )  < t 

Gr = {v~Z2+: v 1 >f(v2), v 2 >f(vl)}.  
Then we have 

Theorem 3. There exists a stationary 2-dependent Gaussian random field 
{~, v~Z 2) such that E~,,--O, 70= ~ E ~ o ~ = l  and, for any standard Wiener 

veZ 2 
process (W(t), t~[0, co)z} and any positive nondecreasing function f(t), t>O 
satisfying the conditions 

f(t)<ci(loglogt)~/2(t > to) for a sufficiently small c 1>0 (1.10) 

sup ] f (2 t ) - f ( t ) l  < oo (1.11) 
t > l  

the approximation 

t im([n]loglog[n])- l /z f ([n])I  ~ ~ - W ( n ) [ = 0  a.s. (1.12) 
[n]~ co e<_v<_n 
n~Gf 

cannot hold s . 

1 Here (1.12) is to be unders tood sequentially i.e. in the sense that the given limit relation holds 
with probability one along every sequence nk~Zq + satisfying Ink]--* m,  nkEGf, the exceptional zero 
set depending on {nk}. 
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Choosing f(t)=(loglogt)P,~<l/2 we get our previous remark. Choosing 
f ( t ) = l  we get that for the field {~v, vsZ2} there exists no Wiener process W 
such that 

~-W(n)=o([n]loglog[n])  1/2 a.s. as [ n ~ o e .  (1.13) 
e ~ < v < n  

It should be remarked that Theorem 3 does not imply the impossibility of the 
approximation 

~-W(n)=o(En31oglog[n]) 1/2 a.s. a s n l A . . . A n q ~  (1.14) 
e < v < n  

where n=(n 1 .. . .  , no); whether (1.14) is possible or not remains open. However, 
Theorem 3 implies that, if 9(0 is any function satisfying ~p(t)=o(tloglogO 1/2, 
t --, oe then 

~v- W(n)=o(~o([n])) a.s. as n 1A . . . /xnq~oe 
e < v < n  

is in general impossible. 
The above results show that though the partial sum process {S,, nzZq+} of 

a mixing random field {~, veZq+} can be well approximated by Wiener process 
"far away" from the coordinate planes pk= {nk=0 } (k= l ,  ..., q), the degree of 
approximation gets, in general, worse as we approach the planes Pk. The 
reason of this phenomenon is, as we shall see, the irregular behaviour of ES~ 
close to the coordinate planes: while ES~ is approximately proportional to 
EW(n) 2 away from the planes Pk, this proportionality breaks down gradually 
as we get closer to these planes. There are, of course, special classes of mixing 
random fields (e.g. orthogonal fields) for which ES 2 is proportional to EW(n) 2 
everywhere in Z~;  it is natural to ask if for such fields a good approximation 
of the type (1.7) can be obtained for all neZ~+. The answer is in the affirmative; 
the proof is, however, more involved than that of Theorem 1 and will not be 
given here. In the present paper we will show only (see the end of Sect. 7) that 
the approximation (1.13) holds in the simple case when ~v are independent. (As 
a matter of fact, for independent ~ ,  veZq+ with finite (2+r moments the 
remainder term o([n] loglog I-n]) '/2 is far from the best possible one but we do 
not investigate this question here.) For further related results we mention the 
forthcoming paper Morrow (1980) where a.s. invariance principles of the form 
(1.13) are proved for i.i.d.r.v.'s r veZq+, taking values from a separable Banach 
space B and satisfying the moment condition 

r a log q- ~ L, E ~ = 0 .  (1.15) 

As is shown in the just mentioned paper, under these conditions (1.13) holds 
for some B-valued q-parameter Wiener process W iff ~e is pregaussian and 

lim (In] loglog[n])- 1/2 ~, ~ =0  
[nl ~oo v<n  

in probability. In the Hilbert space case the first condition of (1.15) can be 
weakened to ~ e L  a log q 1 L/loglogLfor q>=2 which is then also necessary. 
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Our next theorem states the analogue of Theorems 1 and 2 for Gaussian 
fields. 

Theorem 4, Let q >2  and let {~ ,  v~Z q} be a (not necessarily stationary) 
Gaussian random field satisfying the conditions 

lEG ~1 < cons t - I#-v l  -qr +~ 

and 

veZq+. (1.16) 

l~, v~Zq,  ~=t =v (1.17) 

IE( ~ ~ )2_[n ] l<cons t . [n3~  a, m>O, neG d (1.18) 
m+e<_v<~m+n 

for some C>0,  e>0, c5>0, 0 < d < l .  Then the conclusion of Theorem 1 holds 
with F replaced by 1. I f  we replace condition (1.18) by 

IE( ~, ~v)2--[n]l <const. In] log- ' [n ] ,  re>O, neG~ 
m + e < v < _ m + n  

for some y > 0 then the conclusion of Theorem 2 will hold with F = 1. 

Notice that the hypotheses of Theorem 4 are satisfied for any stationary 
Gaussian field with mean zero whose convariances r(v) satisfy 

Ir(v)l=<const. Ivl -~(1+~) veZ q, v4=O 
and 

r(v)= 1 
v~Zq 

for some e>0. (See the proof of Lemmas 3, 3(,).) Notice also that the Gaussian 
field {(v, veZ2} of Theorem 3 satisfies these latter conditions and thus the 
counter-examples mentioned in connection with Theorems 1 and 2 are in force 
also in connection with Theorem 4. 

Theorems 1 and 3 will be proved in Sects. 2-6 and in Sect. 7, respectively. 
The proofs of Theorems 2 and 4 are very similar to that of Theorem 1 and will 
only be sketched in Sect. 8. 

2. Preliminary Lemmas 

We shall eventually require a central limit theorem with remainder for certain 
normalized rectangular sums of {~, v e z q } .  The lemmas of the present section 
will be instrumental in obtaining such a result. 

For the purposes of this section we define the symbol Iv] more generally 
than in the Introduction: for any w Z  ~ v=~0 set 

[v3= [[ Ivil. 
i: vi~-O 

For w Z  q this clearly coincides with our earlier definition. Except (2.1) and the 
proof of Lemma 3, [v] will only be used for v~Zq+. 
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Lemma 1 (Dvoretzky 1970). Let ~ be a (possibly complex-valued) random 
variable with 131 < 1 and let ~ be the a-field generated by 4. Then for any a-field 
f# 

ELE(~I~C)-E~I<2~. sup IP(AB)-P(A)P(B)I. 
As .~ ,  Beq# 

Lemma 2 (Davidov 1970). Let ~ and ~l be (possibly complex-valued) random 
variables measurable ~,~ and f~, respectively. Let P l, P2, P3 ~ 1 with p[ l  +p21 
+ p 3 1 = 1 .  I f  II~llpl<oo and IL~llp2< oo then 

I g ~ t / - E ~ .  gr/I < 10(sup IP(AB)-P(A)  P(B)l) ~/p3 Ilff[Ipl lit/l/p2. 
Ae~-  
BEf# 

A consequence of Lemma 2 is found by setting p l = p 2 = 2 + 6  and p3=(2 
+ ~)/6 and taking (1.1), (1.2) into account. One obtains 

E ~(~) ~J) l _-< const �9 Iv - #l-  ~(1 + o __< const �9 I v -  #] -(1 + ~) (2.1) 

for any #, veZq+, # # v  and l < i , j < N .  

Lemma 3. Assume the hypotheses of Theorem 1. Let n=(n 1, ..., nq)EG d where G d 
is defined in (1.4). Then, 

E( ~ ~ -.?(~) -~?(ih,-- ~-~l-nq (7~, j + const �9 0. [hi - e d / 2 )  (2.2) 
e_<~_<n e_< ,0_< n 

where 7i, j is defined in Theorem 1. Moreover, F=(yi,  j) N• is non-negative 
definite. (Here, and in the sequel, 0 denotes various numbers satisfying 101 _-< 1 and 
all the constants will depend on N, q and the field {~}.) 

Proof. By weak stationarity, 

e<#<_n e<v<_n --n<<_v<n l < k < q  

+ c o n s t - 0 . 2  ~ [ri, j(v)[ 2 [vh "'" vz~l (2.3) 
k = l  - n < v < - n , v * O  nl  1 Ill k 

where the innermost sum is extended over all l < l l < . . . < l k <  q. Clearly, the 
just mentioned sum is 

<( ~ Ivil/ni)k<const" ~ [vii~hi, 
l<=i<=q l<=i<q 

since Ivil_-<nl for 1 <_i<_q. Also, by (2.1), 

Iri, j(v)l < const - Iv] -(1 +~) (v #:0) 

and an easy calculation shows 

[v]-(1 +~)< oo, ~, Iv]-(1 +~ L -~ 
v~Zq v~Zq 
v * O  [vkl=>L 
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for L > 0, 1 < k__< q, Therefore 
q 

~ Iv] -(I +~)Ivkl/n~ 
k = l  -n<v_<_n ,v~O 

q 

-5_ Z( Z [v]-"+~;~/~+ Y Iv] -"+~) 
k= 1 v~Zq, v=~O v~Zq 

l~k I -<--/ffs b 'kl>~ 
q 

< const �9 ~ (ns ~/2 + ni-~/2). 
k = l  

Also, observe that 

neGa implies nk>[n] e/2 ( l < k < q ) .  (2.4) 

These considerations show that the last expression in (2.3) is [n](?~,j 
+ c o n s t . 0 - [ n ]  -"e/2) i,e. (2.2) holds. Apply now the just proved statement of 
Lemma 3 to the random field ~=lul-~<u, G> (uffRN) to get 

E( ~ <u, ~>)2=[n](<u, Fu>+const. O. lul2D~] -~a/2) n~G e 
e<_v<_n 

where < . , . )  denotes the inner product. Thus, 

lim [ n ] - l E (  ~, <u,~))Z=<u, Fu)>O 
[ n l ~  ~ ,  n~Ga e<_ v ~ n  

i.e. F is nonnegative definite. 

Lemma 4. Assume that the hypotheses of Theorem 1 hold. Then there exist two 
constants 0 < ~ < c~ and B > 0 such that 

El ~ ~vl=+=~BEn] l+=/z (2.5) 
~ t + e < v < # + n  

uniformly for #=(#1, ..., #q)>__0 and n=(nl,  ..., nq) ~Z~ . 

Proof We can assume N =  1 since (2.5) can be reduced to showing the anal- 
ogous inequality for the coordinate fields {~(i), v~Zq+}, l< i<q .  We shall also 
assume q=2 since the proof in this case reveals that the lemma is proved in 
general by induction on q. Define 

S~(y) = nT ~/2 Y~ ~,, 
a+ i <= Vl <=a+nl, V2= y 

for each y =  1, 2, ..., a>0 .  According to Lemma (2.5) of Kuelbs and Philipp 
(1979) we have uniformly in a and y 

glSo(y)?  +~' <=B~ 

for some positive constants a 1 =<3 and Bx. Then, because the random variables 
{S,(y), y = 1 , 2  . . . .  } are mixing in y and have zero means and uniformly bound- 
ed (2+ ~l)-th moments, we conclude by the same reasoning that 

T,,b=n2 llz ~, S.(y) 
b+l<=y<=b+n2 
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satisfies 
E 2+~ [Ta, b[ <=B 

uniformly in a, b where a and B are positive constants. 

I. Berkes and GJ. Morrow 

3. The Characteristic Function 

For  each z=(z i ,  ..., ~q)>0, n=(n l ,  ..., nq)eZq+ and ueR N define 

f,,~(u) = E  exp (i(u, In] -i/2 ~ ~)) .  
~+e<v<z+n  

The statement and proof of the following lemma encompass the subject matter 
of this section. 

Lemma 5. Under the hypotheses of Theorem 1 there exists a constant te(O, 1) 
such that 

sup If,, ~(u)- exp ( - �89 @, Fu))l _-< const. In] - t  (3.1) 
M__<M * 

uniformly for z>O and neG d where G d is defined in (1.4). I f  the random vectors 
?,~ are independent, one obtains (3.1) with the stipulation neG d removed. 

Proof The uniformity in z is a consequence of the assumptions of zero means 
and weak stationarity and Lemrna 4. This will be evident from our demonstra- 
tion that (3.1) holds when "c=0. To begin, define: 

-~ i - ~  k = l ,  2, . . ,q} L~={#~Zq+ :(vk--1)n~ <#k <vk 'G  , 

tbr each veZq+ where w is a number satisfying O<w<c~d/166 and ~ is the 
constant appearing in Lemma 4. Set 

1Gv~:<n~,k= l ,  2 , , , , ,q  

(where the index set means {v: 1 <vk<=n ~. for 1 <_k<_q}). Next, put 

q 
K.= ~ {geL,,: vanl -w-~k--" ~-..i/2~.a 

k=l 

and set 
a~= ~ ~ ,  r , =  Z 4,,. (3.2) 

#~ Lv ". Kv lt~ Kv 

From our choice of w (note that w<d/16) and the assumption that neG e one 
finds that 

/ q \1/2 
t ~ hi /2  ~ n l - w /  ( c a r d  K,;)  1/2 N I n ]  w 1/-- .  t~ 1 1  l ] 

l <=vk <=n'~, k= 1, 2, .,., q 
q 

-- In] w Z 
k--1 l ~ k  

< const �9 In] 1/z-w. (3.3) 
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Fur thermore ,  f rom (1.2), (2.4) and q > 2 there results 

p(L~\ K~, L~\ K~)< const �9 ( min  n~/2) -q(1 +~}(~ +2/~} 
2<_k<_q 

< const [hi  - d ( 2  + e)(1 + 2 /~ ) /2  

i f p ~ v  and neG d. 
Let us now express 

(3.4) 

f~, 0 ( u ) -  exp ( -  (u, Fu>/2) 

as the sum e 2 + 8 2 + e  3 where 

Q =f~,o(u)-E exp (i (u, In] -2/2 ~, a~)) 
1 <_ vk<_n'~, k -  2, ..., q 

e 2 = E exp (i (u, [n] - 2/2 ~ G)) 
l <=vk <=n~, k-- 1 . . . . .  q 

- 1~ E exp (i (u, [n]-l/2av)) 
1 <:vk--<n~ v, k =  1 . . . . .  q 

e3= l-[ Eexp(i(u,[n] 1/2G>)-exp(-(u, Fu>/2) 
2 <=Vk<=n~, k= 1, ..., q 

and a~ is defined in (3.2). F r o m  familiar facts abou t  the expecta t ion opera to r  
and the inequali ty 

lexp (ia)- exp (ib)[ < [ a -  b[ 

valid for real numbers  a and b, one readily observes that  

1~2i<=lul[n]-'2 EI Y r~+ ~ ~l. 
2 <=vk <_n~,k-- 2 , . . . , q  e < v < n ,  vq~L 

The H61der and Minkowsk i  inequalities thus yield 

]e2]<constlul[n]-l/2{E1/(2+~] ~ rv[ 2+~ 
1 <  Vk_--<n~, k =  2 . . . . .  q 

e < v < n ,  ve)L 

The set K~ can evidently be wri t ten as a union of q disjoint rectangles and thus 
G in (3.2) can be represented as ~ G(/) where the rv(/)'s are rec tangular  sums 

2_<Z<q 
of the r a n d o m  variables r Then, by Minkowski ' s  inequality, L e m m a  4 and 
(3.3) we have  

E2/(2§ ~ G] 2+~ 
1 N v k < n ~ ' ,  k =  1, . . . ,  q 

q 

< ~ 2 E 1/(2+~) [G(/)12+~< const In] 1/2-w. 
I = 2  l<=vk<=n'~' ,k--1, . . . ,q  

Similarly, decompos ing  ~, ~ into a sum of q rectangular  sums, we have, 
using n~Gd, e<=v<_n, v~L 

q 

E2/(2+~) I ~, ~t  2+~ < c o n s t  ~ (n~-W~Inl)2/2<const[n] 1/2-w~ 
e<=v<n, v~L k= 2 l::#k 

for a suitable small 0 < w 1 < w. Thus, [e 1 [ < const  �9 [u] [n] - w~ 
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Next, by repeated applications of Lemma 2 with p ~ = p 2 = 2 + e  and p 3 = l  
+ 2/e one has from (3.4) and our choice of w that 

[e21 __< const �9 In] w-a~ + ~)(1 + 2/6)(1 + 2/~)- 1/2 

< const �9 In] "-~a/2~ < const - In] - w. 

Finally, we apply Lemma 3 to the random field r /~=lul-X(u,~)  which 
clearly satisfies the conditions of Theorem 1. Observing that the volume of 
L~/ K~is 

[n]l-W (l +O ~ n~(1/2-w))=[n]l-W(l +const. O[n]-e/8) 
k=l  

(see (2.4)) we get 

E(u, av) 2 = [n] 1 -w(1 + const - O[n] -a/8)((u, Fu) + cO [ul 2 [n] -~a/2) 

= [n]~-W((u, ru5  +cO[n]-~')  ( 3 . 5 )  

for lul<[n] w' with some 0 < w ' < w  and a constant c'. Therefore, by a well 
known expansion of the characteristic function of a random variable with a (2 
+ c0-th moment (Lo6ve (1977) p. 212) 

E exp (i (u, [n]-l/Zav)) = 1-�89 -1 E(u, av)Z+c~O[rt] -a-~/2 E](u, av)[ 2+~. 

But by the Cauchy-Schwarz inequality and Lemma 4 

El(u, av)12 +~ < lul2 +~ E [avl2 +~< const �9 [ul2 + ~ [ n ]  (1-w)(1+~/2)  

Hence, a routine calculation yields, by way of (3.5), that 

le3[ < exp ( - � 8 9  Fu)). lexp ( - � 8 9  -1 ~ E(u, a~) 2 
1 < v k < n f f ,  k= 1 . . . . .  q 

+ �89 (U, flU) + C" O [n] - w= l u 1 4 + 2 ~ )  - 1 I 

< const [n] -~ 

for some constant 0 < t < l  provided that lul<l-n] ~ (we use here that F is 
nonnegative definite). Thus, upon recalling the upper bounds computed for I~1 
and le21 we evidently have 

sup (le 11 + I%1 + I%1) < const [n ] - t  
t ul < [nl t 

for some t > 0  and nEG e. This proves Lemma5  in the mixing case. Further- 
more, when analyzing the characteristic function in the independent case, we 
have 

E exp (i (u, [n] - 1/2 E iv ) )  -- exp ( - (u, Vu)/2) 
e<_v<_n 

= ]7[ ( 1 - 1 [ n ] - i  E(u, ~)2+caOlul2+agl~vlN+O[n]-l-a/2 ) 
e<~v<~n 

= const. O-exp ( - ( u ,  Fu)/2)lul '~§ [ n ] - ~ / 2  
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for lul ~[n] 0/I2 by the reasoning used above to establish a bound for 1831. (In 
' - E r 1 7 6  ) since all the terms of the sum (1.5) vanish, this case, of course, y~,j- 

except that belonging to v = 0.) This completes the proof of Lemma 5. 

4. C o n s t r u c t i o n  o f  B l o c k s  

Let ds(0, 1) and put p =d/8. Define, for any #=(#~,  ..., #q)>0 

for 

/Lk 

tu(k) = ~, 1 ~ k = 1, 2, ..., q 
/ = 1  

fl = [240 N/ptT]  (4.1) 

where 7 is the constant appearing in Lemma 7 below and t appears in 
Lemma 5. Put 

and 

for p > 0. Let 

and write 

Also, for each #~L, put 

t ,  = (tu(1), ..., tu(q)) 

H~= {veZ~+ : t~ +e<_v <t,+~} 

L = {#EZ~+ " H e  Go} 

H =  ~ H , .  
Fze L 

and 

q 
Au= ~) {vEH,:  tu+e(k)--#9N/P < Vk <=tu+e(k)} 

k = l  

veH~'..A~ 

Define further, for each n~H and p = 1, ..., q 

by 

vEA~ 

(4.2) 

(4.3) 

ntk p) , min Vk+(1--6k, p) nk k = l ,  2, q. 
~t~k Pv~H vz=ntforl:~k " ' ' '  

As usual, &,. stands for the Kronecker 6-function. Now let {W(z), zE[0, ~)a} 
be a q-parameter Wiener process in R s with covariance matrix F and set 

Dp(n) = max I ~ ~,1, Be(n ) = max I W(v)l (4.4) 
v =  <n(p) / ~ V  V= <n(p) 

for each p = l, ..., q and n~H. 
We prove in this section an almost sure bound for each of the above 

maximum terms. 
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L e m m a  6. Under the hypotheses of  Theorem 1 we have 

sup [n] (~~ max max(Dr(n),/Sv(n))< oo a.s. (4.5) 
n~Gd p= 1,. . . ,  q 

for any 20~(0 , d/16). 

In the proof  of Lemma  6 and also in those of Lemmas  8, 9 below we shall 
need the maximal inequalities given by the following lemma: 

Lemma 7. Suppose that the conditions of Theorem 1 hold and put 

S(m, n)= F 
m+e~v<m+n 

M(m,n )=  max IS(m, v)t 
e~v<=n 

for m,n>O, m, n e Z  q. Then we have 

P{M(m,n)>x[n]i/Z} <const.x-(2+~) ( x>0 )  

uniformly in m, n where c~ is the constant appearing in Lemma 4. Further, for any 
2e(0, 1) we have 

P{m(m,n)> [n]~/2(log[n]) q+l} <cons t -  [n] -~ for nEG z 

uniformly in m where 7 is a positive constant depending on 2 and the field {~,  

Proof As in L e m m a  4, it suffices to consider the case when ~ are real valued. 
The  first inequality of L e m m a  7 is a consequence of  L e m m a  4 and Theorem 7 
of Mdricz (1977). To prove the second inequali ty we use the s tandard bisection 
technique. We can assume, without  loss of generality, that  [n] > 4  q. Define, for 
any v = ( v l , . . . , v q ) ~ Z  q, # = ( # l , . . . , # q ) ~ Z  ~ 

v- 2 u = (v 1" 2uL --. , v~. 2u~), 2" = (2~*,..., 2",). 

Let  us choose N = (ND ..., Nq)eZ q such that  

2 N-~ < n < 2 zv (4.6) 

and put, for #, k e Z  q, #, k>O 

E(v, k) = {co: IS(v. 2 k, 2k)[ > [n] 1/2 log[n]} 

E= U U 
0_<k_<N O_<v<2 ~-~: 

Then we have, setting ~7 = N1 + . . .  + N ,  

P(E(v, k)) <__ const �9 [2 N-k] -(1 +~/2) (4.7) 

P(E(v, k)) <= const �9 { e x p ( -  ~ 1 log 2 [n]) + [2~1- 7} 

_<_const- { e x p ( - y 2 N 2 ) +  [2k] -~} if 2k~G~4s (4.8) 

I. Berkes and  G.J. M o r r o w  
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for some positive constants 7, ~1, ~2. (Clearly, (4.7) is a direct consequence of 
L e m m a  4 while (4.8) follows from L e m m a  5 and Esseen's lemma.) Set, for any 
integer l > 0 

P(l) = ~ P(E(v, k)). 
{v,keZq:O<:k<N, k l §  O<=v<2 N k} 

By (4.7) we have for 0_<_l_< h7 

P(1) <= const-  2-(x-~ q (4.9) 

since the number  of those k~Z q, k>_O such that k~+...+kq=l is at most  hTq 
for 0_<l_<hT. We further claim that  for (1-)VS)hT_</_<N we have 

P(l) <= const �9 { e x p ( -  ~2/~2) + 2 -  ~l} 2(x-l)hTq" (4.10) 

To this end we observe that  neGx, (2.4), [n]=>4q and the choice of N imply 
N~>__2]V/4 for l<_i<_q. Hence if k--(k~, ...,ka) is a q-vector such that O<_k<_N 
and k~ < N]2 for at least one 1 __< i _< q then 

k 1 + . . .  +kq<N-N]2<(1  - 3~/8)h7. 

Thus for (1-X/8)hT</_<h7 the sum defining P(l) contains only such terms 
P(E(v, k)) for which k i > Ni/2 > 2h7/8 > 2(k 1 +... + kq)/8 for 1 < i_< q i.e. 2keGx/s. 
Consequently,  (4.10) follows from (4.8). Let  now 0 < c < l  be a number  suf- 
ficiently close to 1. Clearly 

P(0 
1=1 

and applying (4.9) for O<l<cIq, (4.10) for c_~<l<=_N we get 

P(E) < const - hTq{2-(1 - ~)~/2 + e x p ( -  ~3 h72) + 2-((1 + 7)c- 1)~} 

__< const �9 exp( - ~4h 7) __< const �9 In] - ~4 

for some ~3>0,  74>0.  Now, for every e<#<n, S(O,#) can be writ ten as the 
sum of at most  N1N2...Nq of the S(V'2k, 2k)'S above (use the dyadic expansion 
of each of the coordinates of n) and hence for toqUE 

M(0, n) =< [n] 1/2 log [//] g 1N2... fq < [n] 1/2(logEn])q + 1. 

This proves the second inequali ty of L e m m a  7 for m = 0 ;  for general m the 
p roof  is the same. 

Proof of Lemma 6. It suffices to estimate Dp(n), Dp(n) for one value of p, say p 
= 1. We show the argument  for Dl(n); f o r / ) l ( n )  we can proceed similarly. By 
the first inequali ty of L e m m a  7 we have for nsG e 

p{Dt(n)> in](* - xo)/2} < const([n(1)]/[n](1 - xo))l +~/2 

< const .  (h i  (1 -)'~ ( / /2 . . . / /q)p + ~o)1 +a/2 

__< c o n s t  �9 ( / / i  (1 -)~o)+(p+Xo)/d)l +a/2 

__< const -//~- 3/4 __< const [//] - 3 a/s (4.11) 
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where we used the fact n~l)<__const.(n2...nq) p, (2.4) and the choice of  2 o. N o w  if 
t.  -e----< n < t, then clearly 

D,(n)/[n](1 - ~o)/2 < const .  Dl(t,)/[t~] (1 - ao)/Z 

and for n =  t ,  the estimate (4.11) becomes 

p{Dl(t~) > [ t , ]( i  - ;to)/2} < const �9 [ t , ]  - 3a/8 

< const - [#3 2 3a(a + 1)/8 < const - [p]  - 2 

by the choice of  the parameter  fl in (4.1). Hence L e m m a  6 follows from the 
Borel-Cantelli  lemma. 

5. Deviation Estimates for the Partial Sum and Wiener Processes 

Let zu be as defined in (4.3) and take W(A~) to be the corresponding increment 
of  a q-parameter  Wiener  process in R u with covariance matrix F. The follow- 
ing lemma establishes that these increments will not  be significant in so far 
attaining the error term in (1.7) concerns us. 

Lemma 8. 

sup [#] l -e /2( iz .  I +IW(A.)I)< co a.s. (5.1) 
/~eL 

Proof. We shall treat the term Iz.I separately in (5.1); the p roof  for I W(A~)I is 
the same since the inequalities we are going to use below are valid for the 

q 
Wiener process as well. The set A. in (4.2) can evidently be written as kU1A.(k)= 

where the A.(k)'s are disjoint rectangles and the volume of  A.(k) is at mos t  

9 N i p  _ _ 9 N / p  fl #~ H(t..e(/) t.(1))-#~ H~,. 
l :~k l ~ k  

Setting 

~.(k)= E ~ 
veA.(k) 

and not ing that  # e L  implies #k_--> const H # f  and consequently #k> c o n s t .  [ # 3  p /2  

l~:k 

we get by the M a r k o v  inequality and L e m m a  4 

P{lzu(k) l >= [#]z/2-1} = const �9 ([#3~- 2/(#9 N/o 1-[ #f))-(1 +~/2) 
l*k 

=< const  �9 (/~k ~- 2 - 11 N/o)- (1 + ~/2) 

-< const  �9 [#3 - (~- 2-11 N/#)a/2 

< c o n s t -  [ p ] - 2  for # e L  

by our  choice of  fl in (4.1). Since the sum of the last probabilities is finite, we 
are done. 
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Define now, for any nonempty subset J of {1,2, ...,q} and any #~Zq+ 

M(uJ) = max 1 ~ ~,,l- (5.2) 
tu(k)+ l <=eok <s l <=vk <=t~(k),k~J 

k~Y t~(k) + 1 <-- vk <= r k~J 

Define by M~u J) the analogous quantity for the Wiener process i.e. the quantity 
we get if we replace the sum in (5.2) by the increment of W over the given 
rectangle. We then prove 

Lemma 9. With probability one, 

sup [t,] (~ - 1)/2 max max(M~ s), 52I~)) < oo 
t~eGp J 

for any 2E(0, p/4fl). 

Proof Choose the index l<l<_q such that teJ. Setting n=(ni , . . . ,  nq) where n k 
= tu+~(k ) -  tu(k) for k~J and nk= t,(k) for kCJ we clearly have 

[n] < const- l~i#k p I-[ #k ~ +~ < const �9 [#]~ + ~/#, 
k~J k(iJ 

[n] > [#3~. (5.3) 

We observe further that tu~Gp implies nEGp/4. Applying the second inequality 
of Lemma 7 for the quantity M (J) we obtain 

- . . ( j )  _ P{IVl, >-const. ([#]~+ 1/#~)UZ(log[#])q+ i} < p{M~)>= [nJi/2(log[nj)q+ i} 

< const �9 [#]-r < const �9 [#] - 2 

by (5.3) and the choice of fl in (4.1). Hence by the Borel-Cantelli lemma we get 

M(u s) < const. ([#]~ + t/#l)l/2(log [#])q + 1 

const - [#](~ + I)(1 -i)/2 < const - It#I(1 - ~)/2 

almost surely for t,6Gp. (In the second step we used O<2<p/4fl  and the 
observation that tusG o implies #t > const. I-I #~ and consequently 

#r const-[#]o/2.) Repeating the same argument for )~t(J) we get the statement 
of the lemma. 

6. Proof of Theorem 1 

Let n~G d. Here G d is defined in (1.4) and d~(0,1). 
+l<G<tu+e(k) ,  k = l , 2 ,  ...,q. Put 

hu = card(H,'-. A ui 
and let 

Define #=#, ,  by tu(k) 

go: {1, 2, ...}-+L 
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be a one-to-one mapping of the set of positive integers onto L where L is 
defined in the beginning of Sect. 4. Let ~o(k)=(q0~(k) .. . .  ,q0q(k)) and p = d / 8  as 
before. Consider 

2k(U ) = E ] E { e x p ( i ( u ,  1/2 X~(k)/ho(k)))lX~(1) . . . .  , Xo(k- 1)} -- exp( - (u ,  Fu) /2 ) l  

for each u ~ R  s and k = l , 2 ,  ... where F-(y- i,j,~N• is determined by (1.5) and x,  
is defined in (4.3) for #~L. 

Lemma 10. One has 

2k(U ) < const �9 [~0(k)] -9N 

f o r  ]ul ~ [qo(k)] 9N. 

Proof. By the triangle inequality we have 

] L k ( U ) ~ E  �9 1/2  1/2 IE {expO(u, X~(k)/ho(k)))lX~(1), . . . ,  X~o(k_ 1)} -- E exp(i(u, X~o(k)/h~o(k)))l 

+ E [ E e x p ( i ( u ,  1/2 Xo(k)/hq,(k)))-- exp( -- (u,  Fu) /2)[  = I + II, say. 

Using Lemma 1 and the definition of Ae(k) in (4.2), together with the mixing 
condition (1.2), we obtain 

I <= 2 n p(He(k) "-. A o(k), l?k(Ho(1) \ A o(z))) 

< const-( min ~0j(k))-(9N/o)q(1 +~)(i + 2/~) 
l < j < q  

< const- lop(k)] - 9N 

the last inequality following because qo(k)eL and, as we already observed in the 
proof of Lemma 8, #~L implies # j>cons t .  [#]p/z for 1 < j < q .  

To estimate II we employ Lemma 5 (with d replaced by p) which yields 

II __< const �9 [cp(k)] -~t 

for lul<l-~o(k)]~t. Here f l t > g N  by the choice of fl in (4.1) and this completes 
the proof of Lemma 10. 

We now define the quantity 

T k = lOSN[q)(k)]  3/2 (6.1) 

and apply Theorem 1 of Berkes and Philipp (1979). Said theorem guarantees 
the existence of a probability space supporting independent N(O,F)  random 
vectors {Yk, k>=l} and a random field {4*, v ~ z q }  having the same distribution 
as the field given in Theorem 1 such that 

n{I ~ , 1/2 ~/h~(k) -- Ykl > ilk) < flk 
v~Hq,(k) "-. A q, (k) 

where by Lemma 10, (6.1) and the aforementioned theorem of Berkes and 
Philipp, 

fik =< c~ 1 log T k + [~o(k)J - 9N/2 Tk N + p {lYkl > Tk/4}). 
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In particular, 

k = l  

so the Borel-Cantelli lemma implies that 

[ 2 2:*/hl/2 " <c~ '~,~/ rp(k)- -Yk ~- 
vEH~(~:) \ A,~(k) 

a . s .  

Finally, by passing to a richer probability space (if necessary) there exists 
(see Lemma A1, Berkes and Philipp (1979)) a q-parameter Wiener process 
{W(z), ze[0, oo) q} in R N with covariance matrix F and a random field 
{~'~, v~Z~+} having the same distribution as the field {~, wZ~} such that 

h -  i/2 ' \ (6.2) ~(k) l ~ ~-W(It~(k) Ao(k))l<Const-flk a.s. 
w H~ (k) " A rp (k) 

But, using the definitions of the maximum terms D and M in  (4.4) and (5.2) 
respectively, we have tbr any v__<n with n~Ge and In] > const, 

I2 ~'-w(v)l < 2 1 2 ~;',,-W(H~"A.)I 

q 

+ q 2 (Dp(n) + ~p(n)) 
p = l  

+ E I E ; ' -  

+ ~ (M.~ " (J)+M}2)' (6.3) 
J r  2, .,.,q}, Y :1= q) 

Therefore, from Lemmas 6, 8 and 9 and (6.2) the expression in the first line of 
(6.3) is almost surely bounded by 

k-- #~L,  tz=<#n 

= const(co) ([#,]8/2 + [n](~- ;~ 

< const(co) (In] B/2~ + 1) + in](1 - ;.)/2) 

=< const(co) In] (1 - x)/2 

for a constant 2>0.  (In applying Lemma 9 we need the fact that n~Gd, 
[hi >const. imply t~EGp.) Hence Theorem 1 is proved. 

To get the explicit value of 2 stated after Theorem 1 we note that by a 
lemma of Sotres and Malay Ghosh (1977) the value of c~ in Lemma (2.5) of 
Kuelbs and Philipp (1979) can be chosen as c~= ed/8. Applying this to the proof 
of Lemma 4 we get that the value of c~ in Lemma 4 can be chosen as c~=~q5/8 q. 
The explicit value of e in Lemma 4 yields automatically an explicit value of t 
in Lemma 5 and continuing we can make all the constants in the proof of 
Theorem 1 explicit and we arrive at the given value 2-=~6qcSSd4/8q+9. 
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7. Proof of Theorem 3 

Let ~k, - o o < k < o o  be independent N(0,1) r.v.~ and se t  t/k=(~k_lq-~k)/2. 
Consider independent copies {t/~ ~), - 0o < k <  oo} ( -  oo < / <  oo) of the sequence 
{t/k , --OO<k<OO} and put 

~v=,, (v~) v=(vl ,v2)eZ 2. "IV 2 

Evidently {~, v e Z  2} is a stationary 2-dependent Gaussian field with E ~ = 0  
and y0 = ~ E~o~v=l ;  we show that it satisfies the requirements of Theorem 
3. v~z2 

Suppose (1.12) holds for a standard Wiener process {W(t), ts[0,  oo) 2} and a 
positive nondecreasing function f satisfying (1.10), (1.11); we assume also f(co)  
= oo (the case of bounded f will be treated later) and, without loss of gener- 
ality, that f is integer valued. Then we have, setting t k = ~ f(i) ,  T k = k f (k ) ,  

i < k  

I F~ ~ -  W(k , f ( k ) ) l=o( (Tk log log  Tk)i/2/f(Tk)) a.s. (7.1) 
l__<vl<k 

1 <= v2 <=f(k) 

Notice also 

E( ~ t/i)2=m-1/2. (7.2) 
l <_i<_m 

Let nk=min {j : f ( j )>k} and set, for k = l , 2 ,  ... 

xk= ~ iv 
Vl=k 

1 <= v2 <- f ( k )  

yk= ~ ~. 
l <=vl < n k  

v2=k 

Since the r.v.'s x k are independent and normally distributed we can apply the 
upper-lower class form of the law of the iterated logarithm (see Feller (1943) p. 
399) to get 

xi < ]~kk (21oglogs k + 4log 3 Sk) i/2 
l < i < k  

--<_]~kk(]/21oglOgSk+l ) a.s. for k > k  o. 

where 

Sk= ~ Ex2~ = ~ ( f ( i ) - - 1 / 2 ) =  t k -  k/2 (7.3) 
i<=k i<=k 

by (7.2). On the other hand, Yk is normally distributed with E y k = 0  , 2 E y  k <-tz k 
and thus the Borel-Cantelli lemma gives 

lykL<l~kklOgk a:s. for k > k  o. 

From (1.11) it follows that there is an integer d__>l such that n k d>=2(nk 
-1 )>=]/2n  k for k > k  o and thus k /~- i+ . . .+  t]//~__<const. ]/~-u for M=>I. 
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Hence 

1 ~ y~]<const ~ M  logM a.s. for M > M  o. 
l = < i < u  

But we have clearly nf(k)< k and consequently 

I<=vl~k l~i<=k l<i<=f(k) 
1 __< v2 < f(k) 

<- (2s k 1oglogsk) 1/2 + s~/Z + const I lk  l o g f  (k) 

<(2SglOglOgSk) 1/2 +2Tk 1/2 a.s. for k > k  o. (7.4) 

x* v~Z 2 such that On the other hand, there exist independent N(0, 1) r.v.'s ~ ,  
W(n)= 2 r for neZZ+. Repeating the above argument for the 4" instead of 

e<_vNn 

~, using the lower class function q~(t)=(21oglogt) i/2 in place of cp(t)=(2toglogt 
+41og3t) ~/z we get 

P { W(k,  f ( k ) )  >= (2t k loglogtk) 1/2 - 7~ ~/2 i.o.} = 1. (7.5) 

To deduce a contradiction from (7.1), (7.4), (7.5) it sufficies to show that for 
sufficiently small c we have 

(2s k loglOgSk) 1/2 + 2 rk  1/2 -}- c(T k loglog Tk)l/2/f  (Tk) 

<(2tkloglogtk)l /2--T~/2 for k > k  o (7.6) 

which follows by a simple calculation using the assumptions made on f, 
const. T k < t k < T k (which is evident from (1.11)) and noticing that, by (7.3), 

<_ ]//~ (1 - 1 /2 f  (k)) ~/2 < ] / ~  (1 - 1/4f (k)) 

and consequently 

(2SklOglOgSk) 1/2 < (2t k loglOgtk)l/2 (1 -- 1/4 f (k)). 

Hence Theorem 3 is proved in the casef (oe)=  oo. 
Assume now (1.12) holds for a bounded f ;  let m denote an integer such that 

f (oe)<m.  Then (7.1) holds w i t h f ( k ) = m ;  on the other hand, using (7.2) and the 
ordinary law of the iterated logarithm we get 

l i m s u p ( ( 2 m - l ) k l o g l o g k )  -*jz ~ 4, =1 
k-~ ~ 1 < v~ <k 

l < v z ~ m  

a.s .  

limsup(2mk loglog k)-  i/2 W(k,  m) = 1 a.s. 
k ~  

The latter two relations together evidently contradict to (7.1). 
To conclude this chapter we prove a remark made in the introduction, 

namely we show that if ~ ,  v~Z q are independent random vectors in R N 
satisfying (1.1) and having a common nonzero covariance matrix F then there 
exists a q-parameter Wiener process {W(v), ve[0, oQ)q} in R N with covariance 
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matrix F such that (1.13) holds. This result is closely related to Theorem 1' of 
Major (1976) where a somewhat restricted form of (1.13) is proved for i.i.d. ~ 
with finite variances. For a proof of the statement above we first note that by 
adapting the "patching-together" argument of Major (1976) pp. 223-224 to the 
multiparameter case it sufficies to show that under the given conditions there 
exists, for every s>0,  a q-parameter Wiener process {W(z), z~[0, ~)q} in R N 
with covariance matrix F such that 

limsup([n] loglog [hi)- 1/21 ~ ~ -  W(n)l ~ e a.s. 
[ n ] ~  v < n  

holds. Let now 7~(0, 1/64q 2) be given, define (~=(~,(1) . . . .  , ~,(q)) by 

( , (k)=[ ( l+?)u~+~~ "~ 

for # = (#1 ... .  , #q) > 0 where a 0 is an integer satisfying 

(1 + ~)~o __ 4/% 

Set, for #~Z~ 

flu = {~ez~" ~._~<v____~.} 

Y. = ( ~ ~)/(card/4.) 1/2. 
vEH~ 

(7.7) 

Define also, for any nonempty subset J of {1,2, ...,q} and any #eZq+ 

~ ( j )  _ 
Mu - max I F~ ~vl. 

~-e ( k )+  l <=~ <--~,,~(k) l <~vk <-~,,-e(k),kf~J 
keJ ~ _~(k)~- lr~vk ~=tok, keJ 

Now, if ~(k) is a one-to-one mapping of the set of positive integers onto Z~ 
then Theorem 1 of Berkes and Philipp (1979) applies to the sequence 
{Y~,~k),k>=l} with Tk----const. [~(k)] 4 and one gets (using the second half of 
Lemma 5) that there exists a sequence {Yk, k->_l) of independent N(0,F) 
random vectors such that 

P{LYO(k)--Ykl >= EqJ(k)] -2} ~ [0(k)]- 2 (k>= 1). 

Also, using Theorem 1 of Wichura (1969) together with the central limit 
theorem with remainder and the Borel-Cantelli lemma we get 

limsup([(uJ loglog[r 1/2 ~ {J) < 2 q M,  = N~ 1/4 a.s. 
[tz] ~ co 

for any fixed J. Arguing as in the proof of Theorem 1, we easily get from these 
two statements that relation (7.7) holds with e=23qNy 1/4. Since 7 can be 
chosen arbitrary small, the proof is completed. 

8. Proof of Theorems 2 and 4 

As we mentioned in the introduction, we shall only sketch the proof of 
Theorems 2 and 4 since minor changes to the proof of Theorem 1 are all that 
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we require. We show these changes first in the case of Theorem 2. In what 
follows, we formulate modified versions of the lemmas in Sects. 2-5 which 
are needed in the proof of Theorem 2. 

Lemma 3 (.). Suppose n~G~ where G~ is defined by (1.8). Then 

E( ~, ~ ~(iu)~(~))=[n3(Ti,j+const. O.log-~P/Z[n]) 
e<#~ne<_v<_n 

r )Nx  N where 7i,2 is defined in Theorem 1. Moreover, F=kTi, j is nonnegative definite. 

Proof The 1emma follows immediately from the proof of Lemma 3 and the 
observation (playing the role of (2.4)) that n EG~ implies n k > const, log ~/2 [n] for 
l<k<_q. 

Lemma 5 (,). Under the hypotheses of Theorem 1 there exists a constant t* >0  
such that 

sup [f,,~ (u)- e x p ( -  (u, Fu)/2)l < const, log-~*[n] (8.1) 
lul _-< logt*[n] 

uniformly for z >O and n~G~. The constant t* can be made as large as desired by 
choosing fl large. 

Proof In the proof of Lemma 5 we modify the definition of L~, L and K as 
follows: 

L~ = {/~ ~ Z~" (v k- 1) n k log- ~ In] < #k < Vk nk log-  7 In], k = 1, ., q} 

L =  U L~ 
1 <vk<logV[n], k= 1 , . . . ,q  

q 
.~1/2)  K~ = 0 {#~L~: Vknklog-'/[n]--#k <="k S 

k = l  

where ~>0  is a suitable constant. Then (3.3), (3.4) get replaced by 

~, (card Kv) 1/2 ~ const [n] l/Zlog- 71 [n] 
1 < Vk < log'/In], k= 1, .. . ,q 

p(L, \ Ku, L~ \ K~) < const �9 log- ~ I-n] 

with a constant 71 >0. From this point on, we can follow the proof of Lemma 
5 with evident changes to get (8.1). 

We introduce the blocks H ,  as in Sect. 4 but the edges of the blocks will 
grow now at a subexponential rate (instead of polynomial rate). Specifically, we 
set for any # = (#1, --., #q) > 0 

#k 

t,(k)= ~ exp(l') 
l = l  

t .  = ( t . (1 )  . . . .  ,t~(q)) 

H u = {veZq+ �9 tu+e<v<tu+e} 
q 

A s = ~) {v~H u" tu+e(k)--exP(�89 
k = l  
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* (resp. * for a suitable yE(0,1). Next, put Gr G,/8) in place of G d (resp. Go) 
throughout Sects. 4, 5. Then Lemmas 6, 8, 9 remain valid if we replace the 
norming factors 

by 

[n](~o-1)/2, [~]1-~/2, [t.](~ 1~/2 

In] - 1/2 logS[n], [t,] - 1/2 log~[t,]. [#]2, [t,] - 1/2 (loglog [tu])~ 

respectively, where z > 0  is a suitable constant. (To prove the analogue of 
Lemma 9 we need an exponential version of Lemma 7, namely 

P{m(m,n)>x[n]l/Z} <const.exp(-clx 2) for Ix[ < cjlogl/2[n] 

for some constant c a >0. Such an estimate can be proved in a standard way.) 
To conclude the proof of Theorem 2 we proceed just as for the proof of 
Theorem 1 in Sect. 6. 

We turn now to the proof of Theorem 4. We observe first that by (1.16), 
(1.17) 

E( ~ ~)2--<const. In] m>O, nEZq+. (8.2) 
m+e<v<_m+n 

Hence Lemmas 4 and 5 are trivial in this case by (8.2), (1.18) and the fact that 
{~, v~zq+} is a centered Gaussian field. Next we notice that in the proof of 
Theorem 1 Lemmas 6-9 were deduced from Lemmas 4, 5 and thus they remain 
valid also in the case of Theorem 4. The only point in the rest of the proof of 
Theorem 4 where change is required is the estimate for I in the proof of 
Lemma 10 (which was deduced from mixing condition (1.2) in the case of 
Theorem 1). Here we use the method of Morrow (1980) where a one-parame- 
ter version of Theorem 4 is proved. One readily verifies that the estimates for 
the quantity 2k(U ) in (3.1) of the just mentioned paper carry over for the case 
q > 2  (just order the blocks Hu contained in Ge) and yield the estimate 
]II<const �9 [q)(k)] -gN for u f fR  N. The conclusion of the proof is again the same 
as in w 
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