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1. Introduction 

Let X(t), t>=O, be a real stationary Gaussian process with EX(t)=O, EX2(t)= I 
and with continuous covariance function r(t) such that Iimr(t)=0. For t > 0  
and a=a(t)>O with lira a(t)= c~, let ~ 

~ O O  

Mda(t)) = x [IX(s)l >a( t ) ]  ,ts, 
0 

where I [ ' ]  is the indicator function. Recently Berman [1] has shown that 
under suitable normalization and under suitable assumptions on r(t) and a(t), 
the distribution of Mda(t)) converges to the Rosenblatt distribution. 

This paper deals with similar sojourn time problems. For t>O and 
b=b(t)>O with lim b(t)=O, let 

t 

N~ (b (t)) = .[ I [IX (s)I < b(t)] ds, 
o 

and Iet 
R,(a(~), b(t)) = Mda(t)) + G(b(t)). 

We shall first show that Nt(b(t)) has the same limiting distribution as that 
of Mt(a(t)) under suitable normalization and under suitable assumptions on r(t) 
and b(t). Next, we shall show that Rt(a(t), b(t)) has also some limiting distribu~ 
tion, under suitable normalization. But, it will be shown that the limiting 
distribution of Rt(a(t ), b(t)) depends on choosing a(t) and b(t). In fact, for many 
a(t) and b(t), Rt(a(t ), b(O ) has the same limiting distribution as that of Mda(t)), 
but for some specifically chosen a(t) and b(t), Rda(t),b(t)) has a different 
limiting distribution. 

* This research was carried out while the author was visiting University of California., San 
Diego 

0044-3719/81/0057/0001/$02.80 



2 M .  M a e j i m a  

2 .  R e s u l t s  

We start with treating the problem in a general situation. 
Let qS(x) be the standard normal density and let 

~= G~(x) ~ G2(x)(a(x)dx<oo and G~(x)4(x)dx=O. 
- - 0 0  - - O O  

Let H,(x), n =0, 1, 2,... denote the n-th Hermite polynomial defined by 

H,,(x)=(-1)" 6-1(x) ( S~)"c~ (x). 

As is well known, any Gt(x) in N has the expansion as 

oo n 
"~ J~( ) H,(x) a,(x)= ~ 0-7-. (2.1) 

u j (n~ [2 
in the sense that ~olim ~[ G,(x)-~o~2iZH,(x)[ d2(x)dx=O. Here Jt(n)=~G,(x) 

�9 H,(x)4(x)dx, and J~(0)=0 because of condition ~G,(x)c)(x)dx=O. It is 
noted that if X(t) is a stationary Gaussian process with EX(0=0,  EX2(t)=I 
and with continuous covariance function r(t), then 

E{i  It,(X(s))ds}=O, n>l  

and 

t 

= 2(hi) 6,m ~ (t-s)r"(s)ds, n,m> 1, 
0 

where 6,,,=1 for n=m and --0 for nW-m. We shall use these facts implicitly 
below. 

We state the following temma including Lemmas 2.1 and 2.2 in [1], 
although it can be shown by the same argument as in the proofs in [1]. 

Lemma 1. Let X(t), t>O, be a stationary Gaussian process with EX(t)=O, 
EX2(t)=I and with continuous covariance function r(t), and let Gt(x ) be a 
function in (#. If  there exists an integer m > 1 such that 

t 

Var ~ G~(X(s)) ds 
limsup o _< l, (2.2) 

t- .oo 2 t - 
m~. Jt2 (m) .[ ( t -  s) r"~(s) ds 

0 

then 

i a,(X(s))ds 
0 

t q 1 / 2  
(2.3) 
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has the same limiting distribution as 

i Hm(X(s))ds 
o (2.4) 

[2m' i (t-s)rm(s)ds] 1/2 

in the sense that if one exists then so does the other and the two are equal. 

The condition (2.2) may be written in more usable form by the computation 
t 

for Var ~ Gt(X(s))ds. Suppose that Gt(x ) is differentiable with respect to x and 
0 

that G't(x ) is integrable over ( -oo ,  c~). Denote by &(u,v;p) the standard bi- 
variate normal density with correlation p, that is, 

1 exp{- 1 (u~_2uvp+v2)}. 
(P(u'v;P)--2~(l_p2)l/2 2(1--p 2) 

Then we have, by using the relation 

8 0 2 

that 

Var i Gt(X(s)) ds 
0 

t t 

= E ~ ~ Gt(X(xl) Gt(X(y))dx dy 
O 0  

0 0 - - e o  - c o  

=2 (t-s)ds ~ dp G(u)at(v) O(u,v;p)dudv 
0 0 - - c o  - c o  

=2  (t-s)ds ~ dp Gt(u)at(v)~vO,(u,v;p)dudv 
0 0 - c o  - c o  

r(s)  

0 0 - c o  - o e  

In the case of the function Gt(x ) being piecewise constant as a function of x, 
G'~(x) may be replaced by a linear combination of delta functions. In [,1], Gt(x) 
=I[x>a(t)] - [-1 - ~(a(t))] and adx)---:I[,Ix I >a( t ) ] -2[ ,1  - cb(a(t))] are consid- 

ered, where ~(x)= i (~(u)du. 
- c o  

Now, our main theorems are the following. 
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Theorem 1. Let X(t), t>_O, be a stationary Gaussian process with EX(t)=O, 
EX2(t)= 1 and with continuous covariance function r(t). Assume that r(t)>O for 
all sufficiently large t>O and lim r(t)=O, and let b=b(t) be a positive function of 

t ~ O 0  

t>O with limb(t)=O. Furthermore, suppose that there exists 6, 0 < 6 < 1 ,  such 
that t-. co 

t 

lim t -~ ~ r2(s)ds = 0% (2.6) 
t ~ o o  0 

and that there exist some positive constants C and y with 0 < ? < (5 such that 

Then 

and 

b2(t)~ Ct -~ for all large t. (2.7) 

Nt(b(t))- 2t[ q)(b(t))-�89 

2b(t)~)(b(t)) [i  ( t-s)r2(s)ds] 1/2 

i tt~(X(s)) ds 
0 

2[ i  (t-s)r2(s)ds] 1/2 
(2.8) 

have the same limiting distributions in the sense that if one exists then so does the 
other and the two are equal. 

Theorem 2. Under the same assumptions as in Theorem 1, let a=a(t) be a 
positive increasing function of t > 0 with lira a(t)= oo such that 

t ~  o9 

O<b(t)<a(t)< oo for all t>O, (2.9) 

a2(t)=o(logt) for t-~ ~ (2.10) 
and 

a2(t)=o for t--+ ~ ,  (2.11) 

where fi= 6 -  7. Furthermore, suppose that there exists a constant c > 0 such that 

a(t)O(a(t)) 1 > c > O  for all large t. (2.12) 
b (t) ~ (b (t)) 

Then 
Rt(a(t), b(t))-  2t [�89 cb(a(t)) + ~(b (t))] 

2[a(t)~o(a(t))-b(t)~(b(t)), [i  ( t-s)r2(s)ds] 1/2 

has the same limiting distribution as that of (2.8) in the sense that if one exists 
then so does the other and the two are equal. 

Theorem 3. In Theorem 2, replace condition (2.6) by 

lira t -~ i r4 (s) ds = 0% (2.13) 
t ~ o o  0 
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condition (2.9) by 
O<b( t )<l<a( t )<o~ for all t > 0  

and condition (2.12) by 

Then 

and 

. a(t)r 
am=v=,, - 1 .  (2.14) 

,~oob(t)r 

R t (a (t), b (t)) - 2 t [�89 q) (a (t)) + q~ (b (t))] 

(]/~)-i [a2(t)_b2(t)]a(t)05(a(t)) (t_s)r4(s)ds] 1/2 

t 

S H, (X (s)) ds 
0 

4]/3 (t-s)r4(s)ds] 1/2 
(2.15) 

have the same limiting distributions in the sense that if one exists then so does the 
other and the two are equal. The limiting, distribution of  (2.15) may be different 
from that of (2.8). 

Remark 1. Under  condition (2.14), (2.10) implies (2.7). In fact, we have 

b (t) e -b2(t)/2 ~ a (t) e -a2(0/2 

>=a(t)e -~l~ (for any e>0)  

=a(t) t -~, 
so that  

b (t) >= a (t) e b2(t)/2 t-~ >= t -  ~, 

because a( t )>  1. Therefore, in Theorem 3, we need not assume (2.7) explicitly. 

3. Proof  of  Theorem 1 

In what follows, we may drop t in a(t) and b(t), and may write simply a for a(t) 
and b for b(t). 

Let  
at(x)=I[[x[ < b ] -  2 [ ~ ( b ) -  �89 

Then, by (2.5), 

i t r(s) 
Var Gt(X(s))ds=4 S ( t - s )ds  ~ [O(b,b;y)-05(b,b; -y ) ]dy ,  

0 0 0 

and 
Jr(2) = - 2 05 (b) H 1 (b) = - 2 b 05 (b). 
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By L e m m a  1, it is sufficient to show that 

t r(s) 

(t - s) ds ~ [05 (b, b; y ) -  05 (b, b; - y)] dy 
limsup o o N 1. 

t 

t~ o~ b 2 052 (b) ~ (t - s) r 2 (S) ds 
0 

Let f l = 6 - 7 .  It is shown by the same way as in [1] that  

r(s) 

i (t - s) ds ~ [05 (b, b; y ) -  05 (b, b; - y)~ dy 
tl~ 0 

bZ 05Z(b) i ( t - s ) r2(s )ds  
0 

is asymptotical ly less than or equal to 1. So, it suffices to 
following ratio. By the argument  similar to that  in [11, we have 

t~ r(s) 

( t - s ) d s  ~ [05(b,b;y)-05(b,b; - y ) l d y  
0 0 2 e  b2 t I +B 

t - ~ - - ~ - x  t , 
b2 05 2 (b) ~ (t - s) r z (s) ds ~ ( t -  s) r 2 (s) ds 

0 0 

and by condit ion (2.7), this is less than or equal to 

Ct l +~ 
t (for some constant C > 0 ) ,  

(t - s) r 2 (s) ds  
0 

which tends to 0 as t ~ oo by (2.6). The proof  is thus completed. 

(3.1) 

estimate the 

4. Proof of Theorem 2 

Let  
Gt(x ) = I  [Ix I > al  + I [Ix[ < b] - 2 [ � 89  qS(a) + ~b (b)]. 

Then, by (2.5) 

t r ( s )  

Var i Gt (X (s)) ds = 4 ~ ( t -  s) ds 5 { [05 (a, a; y) - 05 (a, a; - y)] 
0 0 0 

- 2[05(a, b; y ) -  05(a, b; - y ) ]  + [05(b, b; y ) -  05(b, b; - y ) ] }  dy, 

and 

(4.1) 

Jt (2) = 2 [05 (a) H 1 (a) - 05 (b) H 1 (b)] = 2 [a 05 (a) - b 05 (b)]. 

In order  to show that  (2.2) holds for m = 2 ,  we first consider the integral (4.1) 
over t ~ N s N t. Then  we have 
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11 - 1 t i ( t -  s) ds 
[a d) (a) - b ~ (b)~ 2 S ( t  - -  S) r 2 (S) ds tp 

0 

r(s) 

{[~(a,a; y ) -~ (a ,a ;  - y ) ] -  2[~(a,b; y ) -~(a ,b ;  - y)] 
O 

+ [q5 (b, b; y ) -  ~b(b, b; -y ) ]}  dy 

1 t i ( t -  s) ds 
[a q5 (a) - b q5 (b)J 2 ~ (t - S) r 2 (s) ds te 

0 

�9 '~s)(1-0 y2)-1/2 {~b2(a)[exp \ l + y ] -  [a2y ~ exp \_~_y/]( a;y t 

(a2+b2)y2~[exp(  aby ~ ( aby ~] 
-2~(a)(p(b)exp (. ~-(i_~y2) ! \ l _ y 2 ] - e x p  \-l-~yGy2] j 

+&,~(b) [exp(b2~y) -exp( -b l@y)]}dY .  

Note that 

(4.2) 

and 

(:+,) exp - e x p  - ~ 2 z y  (4.3) 

exp - e x p  - ~ 2 z y  (4.4) 

for small y and zy. But, when t is large, y is sufficiently small because lira r(t) 
t ~ o o  

=0 and ae(t)y is small because a2(t)r(t ~) is small under condition (2.11), by the 
same reasoning as in [1]�9 a(t)b(t)y and b2(t)y are also small. Therefore we can 
apply (4.3) and (4.4) to (4.2), and we have 

1 
11 , j ( t -  s) ds 

[a 4 (a) - b 4 (b)] 2 S (t - s) r 2 (s) ds tfi 

0 

r(s) 
�9 ~ 2[aed)2(a)-2abO(a)c~(b)+b2r 

0 

i (t--s)r2(s)ds 
=t~t <= 1. 

[. ( t -  s) r 2 (s) cls 
0 

Next we estimate the integral (4.1) over O<_s<_t p. We have, by exactly the 
same way as in [1], 
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so that  

tt~ r(s) 

( t - s ) d s  ~ [(o(a,a; y ) - O ( a , a ;  - y ) ] d y  
0 0 

t~ ~(s) ~o (a,  a ;  y )  - 4) (a, a ;  - y )  dy 
=q~2(a) o ~ ( t - s ) d s  o ~ (a2 (a) 

<2~b2(a)t 1+~ 

1 t/~ 
12 - ~ (t - s) ds 

[aO(a) -b~(b)]  2 i ( t - s )r2(s)  ds 0 
0 

r(s) 

�9 ~ [c~(a ,a;y) -4(a ,a;  " y ) ] d y  
0 

< 2q~2(a) t 1+~ 

= L Wt J ut/-'tujlra'ata\--t"~tt'~12 x t 
( t -  s)r2(s)ds 

0 

By condit ion (2.6), 

t 1 +~ 
~ 0  a s  t - ~  o 0 .  

t 

S ( t -s )rZ(s)  ds 
0 

On the other  hand, 

@ ( a )  1 1 
--+0 as t--, oo - -  • 

[ac~(a)-b(a(b)] 2 a 2 [ l _bq~(b ) ]2  

[ aq~(a)J 

(N c 
because of condit ion (2.12). ote that  (2.12) implies that bqb(b)_ > l ~ c > 0 ,  aq)(a) 

\ 

if we choose c < 1.) Therefore,  12 ---, 0 as t ~ oo. 

Similarly, but  noting that  exp (ha( t ) )~ 1 as t ~ o% we have 

1 t~ 
(t - s) ds  t 

[a q~ (a) - b q5 (b)] 2 ~ (t - s) r 2 (s) ds 0 

0 

r(s) 

�9 ~ [ O ( b , b ; y ) - O ( b , b ; - y ) ] d y  
0 

< 2~b2(b) t 1+~ 
• 

= [ a ~ ( a ) - b ~ ( b ) ] 2  i ( t -s )r2(s)  ds 
0 

2 1 t 1+~ 
- [ a  ~ ( a )  _ x ~ • 

[bq5 (b) 1] 2 i (t-s)r2(s)ds 
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2 t ~+~ 
x <_ [_a4(a) - ]z t 

[b(b(b) 1 Co ~ (t-s)r2(s)ds 

(by (2.7)), which tends to 0 as t ~ oo. 
Finally, we have to estimate 

13 =_ ~ ~ ( t -  s) ds 
[a~(a)-b4(b)] 2 ~ (t-s)r2(s)ds o 

o 

r(s) 
�9 ~ [4(a,b;y)-4(a,b;-y)]dy. 

o 

Note  that for O~lyl ~ 1, 

c~(a,b;y) (l_y2)_a/2exp{ 1 (_a2y2 b2y2 + 2aby)} 
q5 (a) q~ (b) 2(1 - yZ) 

=(1-YZ)-l/Zexpfl (a-b)2y z ~}aby ) 
2 ( 1 " y 2 )  l - ( l + y ) j  

~(1  _y2) -1 /2  exp \1 +y] 

(1 --  y 2 ) -  1/2 e a b  

Then, by the same argument  as in [1], we have 

tr r(s) 

(t-s)ds S [dp(a,b;y)-O(a,b;-y)]dy<2~(a)~(b)tl+~e "b. 
o o 

Hence  we have 

1 
I 3 - m  t 

[ad)(a)-bdp(b)] 2 ~ (t-s)r2(s)ds 
o 

tt~ t(s) 

�9 ~(t-s)ds S [~(a,b;y)-~(a,b;-y)]dy 
o o 

< 24(a)~,(b) e"btl+~ 
t 

[a4)(a)-b4)(b)] 2 S (t-s)r2(s) ds 
0 

2 eab t 1 +fl 

- [1 _br [aqS(a) _ 1] x ab- x t 
[ aq~(a)] [bqS(b) ! (t-s)r2(s)ds 

If we could show 

c2a(t)  b(t) 
. . . .  0 (U) a (t) b (t) 

for  t --* 0(3, (4.5) 



10 M. Maxima 

13 tends to 0. However,  we have 

_ _  - -  t ~ b ( t )  e2a(t)b(O (e2a(t))b(t) 
a(t)b(t) a(t)b(t)=a(t)b(t) 

for any e>O because of (2.10), and by (2.7), this is asymptotically less than or 
equal to 

fftv/2 
C1/2a(t) 

which has the order of o(t~+~/2). Thus we have obtained (4.5), and the proof  of 
the theorem is completed. 

5. Proof of  Theorem 3 

We shall show that (2.2) holds for m = 4. Note  that 

d~(4) = 2 [95 (a) H 3 ( a ) -  95 (b) H a (b)] 

= 2 [a (a 2 _ 3) 95 (a) - b (b 2 - 3) 95 (b)] 

~ 2(a2 - b2) a95 (a) 

by (2.14). We first consider the integral (4.1) over d<s<t.  Then we have 

12 t ris){95(a,a;y)_~(a,a;_y ) J -  t ~ (t - s) ds a 2 952 (a) 
(a 2 -  b2) 2 ~ (t - s)r*(s)ds 

0 

dp(a,b; y)-95(a,b; -y )  ~_95(b,b; y)-95(b,b; - Y) ~ dy 
ab95(a) 95(b) b 2 952 (b) 3 

_ 12 i (t-s)ds 
( a 2 - b 2 )  2 i (t-s)rr ds ,e 

0 

r(s) f [ �9 ~ (1_y2)_1/2 1 / a 2 Y t _ e x p ( _ a 2 y l ]  
0 ~2 e x P \ l + y ]  \ 1 - y l J  

2 exp{  (a2+b2)y2~[exp(aby ~ (_  aby ~ 
ab ~(~_~) J \ l _ y 2 ] - e x p  \ l _ y 2 ]  ] 

+ ~ [ e x p ( b 2 y ]  ( b2y]]}dy. 
\ l ~ y y l  - exp \ - ~ l  

When  zy and y are small, we have 

and 

zy 2 exp - e x p  - ~ 2 z y + ~ - ( z  - 6 z + 6 )  

exp - e x p  ~ 2 z y + ~ - ( z  +6). 

(5.1) 

(5.2) 

(5.3) 
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Recall that a2y, aby and b2y are small for large t. Thus, if we apply (5.2) and 
(5.3) to the integrand in (5.1), then we have 

J~" t 12 i ( t-s)ds 
(a 2 _ b2)2 ~ ( t -  s) r 4 (s) ds t# 

0 

�9 ! 3~{(a4-6a~+6)-2(a2b~+6)+6(a~+b2)+(b4-6b2+6)}dY 

i (t-s)r4(s)ds 
=re < 1. 

t 

(t- s) r~(s) ds 
0 

It remains to show that 

1 

l(a2 - b2) 2 a 2 4 2 (a) i ( t -  s) r4(s) ds 
0 

t# r(s) 

�9 4 ~ (t-s)ds ~ {[6(a,a;y)-~(a,a; - y ) ]  
0 0 

- 2[4(a,b; y)-~(a,b;  - y ) ]  + [4(b,b; y)-4(b,b;  - y ) ] }  dy 

tends to 0. But it is carried out in the same way as in the proof of Theorem 2, 
if we use (2.13) in place of (2.6). The proof of Theorem 3 is thus completed. 

6. Further Discussions 

6.1. When Gt(x ) does not depend on t (G(x), say), the limiting distribution of 
(2.3) has been studied by Dobrushin and Major [2] and Taqqu [3, 4]. In the 
case Gt(x)=G(x), we call m=min{qlJt(q)#O } the Hermite rank of G(x). The 
underlying Gaussian process X(t) considered in [2-4] is assumed to have the 
covariance function r(t) which is regularly varying of inder - a  for t J o e  for 
some e with 0 < a < 1/m. However, we can show a statement similar to Lemma 1 
in Section 2 under relatively weaker conditions on r(t) as in Theorems 1-3. 

Theorem 4. Let X(t), t>=O, be a stationary Gaussian process with EX(t)=O, 
EX2(t) = 1 and with continuous covariance function r(t). Assume that r(t)> 0 for 
all sufficiently large t > 0  and lira r( t )=0.  Furthermore suppose that G(x) has the 

t ~ o o  

Hermite rank m and that there exists 6, 0 < 6 <  1, such that 

t 

lira t -a .f r"(s)ds= oo. (6.1.) 
t~O0 0 
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Then 
t 

G (x  (s)) ds 
0 

IJ(m)l [ 2  i (t-s)rm(s)ds] 1/2 

has the same limiting distribution as (2.4) in the sense that if one exists then so 
does the other and the two are equal, where J (m) = ~ G (x) H,, (x) 0 (x) dx. 

Proof. We have 

t t 

0 0 n = m + l  n~-.~ ! H.(X(s))ds. 

Hence it suffices to show that 

We have 

Note that 

EIZ(t)I2=-E ,,=~+1 n! ;H"(X(s))ds 

(i ) =o (t-s)rm(s)ds . 

EIZ(t)12=2 JZ(n) i(t-s)r~(s)ds 
n = m + l  n !  0 

_<2 max i(t-s)r"(s)ds x ~ J2(n) 
- -  n > m + l  0 n = m + l  n !  

j 2 ( n ) -  ~ Ge(x)qS(x)dx < ~ 
n=O n !  -co 

Therefore, for some constant C>0,  

t 

gl/(t)12< C max ~ (t-s)rn(s)ds 
n > = m + l  0 

= C max ( i  ~  (t-s)r"(s)ds 
n>=m+ 1 \ 0  t O I  

<=C 1+~+ (t_s)rm+l(s)d s 
\ t o 

for large t, since r(t)>0 for all large t, where 3 is the one in (6.1). It follows 
from (6.1) that 

t l+,~ 
lim =0. 
~co i (t-s)rm(s) ds 

0 
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We also have 

i (t--s)rm+l(s) ds 
td 

t 

~(t-s)r~(s)ds 
0 

The proof is thus completed, 

sup r(s) i ( t - s )  rm(s)ds 
~ s > t  6 t 6 

t 

(t-s)r~(s)ds 
0 

-_< sup r (s) (for large t) 
S > t  O 

--~0 as t--~ oo. 

Remark 2. It follows from Theorem 4 that 

Var ~ G(X(s))ds 
lim 0 - 1, 

t~~176 Y2(m) 2 i (t-s)rm(s)ds 

Therefore, we see that the m in condition (2.2) coincides with the Hermite rank 
of G(x) in the case where Gt(x ) does not depend on t. However, in the case 
where Gt(x ) may depend on t, it is not necessary that Jr(n)=0 for n <m. 

Remark 3. For the case of the stationary Gaussian process the covariance 
function of which r(t) is regularly varying of index -c~ for t ~  ~ ,  for some 
with 0 < e <  i/m, where m is the one in (2.4), the existence of limiting distri- 
butions of (2.4) is known. (See [2, 3, 4].) Berman [1] also gave the limiting 
distribution of (2.8), which is known as the Rosenblatt distribution. 

6.2. Finally, we give a result about the joint limiting behavior of Mt(a(t)) and 
N(b(t)), being motivated by Theorem 4.2 in [1]. 

Theorem 5. In each case of Theorems 2 and 3, we have 

lim Corr (M t(a (t)), Nt (b  (t))) = - 1. (6 .2)  
t ~ O o  

Proof Berman [1] showed that 
t 

Var M,(a) ~ 4a z 4)2(a) ~ ( t -  s) r 2 (s) ds. 
0 

On the other hand, it follows from Theorems 1-3 that 

and 

t 

Var N t (b) ,,~ 4 b2 4) 2 (b) S (t - s) r 2 (s) ds 
0 

Var R t(a, b) ~.  

t 

4(aO(a)-b4)(b)) 2 ~ ( t - s )  r2(s)ds 
0 

for a and b in Theorem 2 

�89 a2 - bZ)Z aZ 4) a (a) i ( t -  s) r4 (s) ds 
0 

for a and b in Theorem 3. 

(6.3) 

(6.4) 

(6.5) 
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In the case of Theorem 3, (6.2) can be obtained by the same argument as in the 
proof of Theorem 4.2 in I l l .  As to the case of Theorem 2, we have, from 
(6.3)-(6.5), that 

Var R,(a, b) ~ Var M t (a) + Var N~ (b) - 2 (Var M t (a)) 1/2 (Var N~(b)) 1/2, 

which implies (6.2). 

Acknowledgement, The author wishes to thank the referee whose comments led to Lemma 1 and 
the relation (25). 
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