An Estimate of the Remainder in a Combinatorial Central Limit Theorem

E. Bolthausen

Technische Universität Berlin, Fachbereich Mathematik, Straße des 17. Juni 135, D-1000 Berlin 12

§ 1. Introduction

Let $A=\left(a_{i j}\right)$ be a $n \times n$ matrix of real numbers. Let

$$
\mu_{A}=n a_{. .}, \quad \sigma_{A}^{2}=\sum_{i, j}\left(a_{i j}-a_{i .}-a_{. j}+a_{.}\right)^{2} /(n-1)
$$

where

$$
a_{i .}=\sum_{j} a_{i j} / n, \quad a_{. j}=\sum_{i} a_{i j} / n, \quad a_{. .}=\sum_{i, j} a_{i j} / n^{2} .
$$

Let further $\hat{a}_{i j}=\left(a_{i j}-a_{i .}-a_{. j}+a_{.}\right) / \sigma_{A}$. A theorem which has been proved under various conditions by Hoeffding [3], Motoo [5] and others states that if π is uniformly distributed on the set of permutations of $\{1,2, \ldots, n\}$ then T_{A} $=\left(\sum_{i} a_{i \pi(i)}-\mu\right) / \sigma=\sum_{i} \hat{a}_{i \pi(i)}$ is approximately standard normally distributed. We shall investigate the rate of convergence.

Estimates have been obtained by von Bahr [7] and Ho and Chen [2], but they yield the rate $O\left(n^{-1 / 2}\right)$ only under some boundedness conditions, like $\sup \left|\hat{a}_{i j}\right|=O\left(n^{-1 / 2}\right)$.
i, j
The special case where $a_{i j}=e_{i} d_{j}$ is of particular interest in non-parametric statistics and has been discussed by many authors, e.g. by Husková [4] in the case where the d_{j} satisfy boundedness and smoothness conditions and most recently and successfully by Does [1], whose results may cover most cases of statistical interest. Usually, d_{j} is assumed to be given by so-called score generating functions, e.g. $d_{j}=J(j /(n+1))$, where J is a function on $(0,1)$, satisfying some smoothness assumption. The main advantages of the approach given here are that no smoothness is needed and the $a_{i j}$ are completely general. Von Bahr and Ho and Chen allow the $a_{i j}$ to be random independent of π. The extensions to cover this case are straightforward and therefore omitted.

Theorem. There is an absolute constant $K>0$, such that for all A with $\sigma_{A}^{2}>0$

$$
\sup _{t}\left|P\left(T_{A} \leqq t\right)-\Phi(t)\right| \leqq K \sum_{i, j}\left|\hat{a}_{i j}\right|^{3 / n}
$$

where Φ is the standard normal distribution function.
If one takes a sequence $\left(a_{i j}^{(n)}\right)$ of $n \times n$ matrices, the theorem gives the convergence rate $n^{-1 / 2}$ if $\sum_{i, j}\left|\hat{a}_{i j}^{(n)}\right|^{3} / \sqrt{n}$ remains bounded and $\sigma^{2}=1$.

The proof given in $\S 3$ is simpler than the Fourier theoretic approaches used e.g. by Does [1]. It is based on an improvement of the Stein method. Stein's method has also been used by Ho and Chen.

In $\S 2$ a proof of the classical Berry-Esseen Theorem is given using a version of the Stein method. This has also been done by Ho and Chen [2], but their proof depends on a concentration inequality and seems not to work for nonidentically distributed variables. The approach given here is more flexible and the extension to the non-identically distributed case is straightforward. The proof in the simple situation of $\S 2$ gives the motivation for the proof of the theorem stated above.

§ 2. A Proof of the Classical Berry-Esseen Theorem

If $n \in \mathbb{N}, \gamma \geqq 1$, let $\mathscr{L}(n, \gamma)$ be the set of sequences $X=\left\{X_{1}, \ldots, X_{n}\right\}$ of random variables, such that X_{1}, \ldots, X_{n} are i.i.d. and $E X_{i}=0, E X_{i}^{2}=1, E\left|X_{i}\right|^{3}=\gamma$. If $\gamma<1 \mathscr{L}(n, \gamma)=\emptyset$. Let $S_{k}=\sum_{i=1}^{k} X_{i} / \sqrt{n}, 1 \leqq k \leqq n$. If $z, x \in \mathbb{R}, \lambda>0$, let

$$
h_{z, \lambda}(x)=((1+(z-x) / \lambda) \wedge 1) \vee 0, \quad h_{z, 0}(x)=1_{(-\infty, z]}(x) .
$$

Let

$$
\delta(\lambda, \gamma, n)=\sup \left\{\left|E\left(h_{z, \lambda}\left(S_{n}\right)\right)-\Phi\left(h_{z, \lambda}\right)\right|: z \in \mathbb{R}, \underline{X} \in \mathscr{L}(n, \gamma)\right\} .
$$

Here $\Phi(g)$ is the standard normal expectation of g.
We write $\delta(\gamma, n)=\delta(0, \gamma, n)$. The Berry-Esseen theorem states that

$$
\begin{equation*}
\sup \{\sqrt{n} \delta(\gamma, n) / \gamma: \gamma \geqq 1, n \in \mathbb{N}\}<\infty \tag{2.1}
\end{equation*}
$$

By using $h_{z, 0} \leqq h_{z, \lambda} \leqq h_{z+\lambda, 0}$ one obtains

$$
\begin{equation*}
\delta(\gamma, n) \leqq \delta(\lambda, \gamma, n)+\lambda / \sqrt{2 \pi} \tag{2.2}
\end{equation*}
$$

It obviously suffices to bound $\sqrt{n} \delta(\gamma, n) / \gamma$ for $n \geqq 2$ which is assumed from now on. We simply write h instead of $h_{z, \lambda}$ if there is no danger of confusion.

Let $f(x)=e^{x^{2} / 2} \int_{-\infty}^{x}(h(z)-\Phi(h)) e^{-z^{2} / 2} d z$, which satisfies

$$
\begin{equation*}
f^{\prime}(x)-x f(x)=h(x)-\Phi(h) . \tag{2.3}
\end{equation*}
$$

If $x \leqq 0$, then $|f(x)| \leqq \Phi(x) / \varphi(x)$, where φ is the standard normal density and if $x>0:|f(x)| \leqq(1-\Phi(x)) / \varphi(x)$. Therefore

$$
\begin{equation*}
|f(x)| \leqq 1 ; \quad|x f(x)| \leqq 1 ; \quad\left|f^{\prime}(x)\right| \leqq 2 \quad \text { for all } x \tag{2.4}
\end{equation*}
$$

(The last estimate by using (2.3)). From this one has

$$
\begin{align*}
&\left|f^{\prime}(x+y)-f^{\prime}(x)\right|=|y f(x+y)+x(f(x+y)-f(x))+h(x+y)-h(x)| \tag{2.5}\\
& \leqq|y|\left(1+2|x|+\frac{1}{\lambda} \int_{0}^{1} 1_{[z, z+\lambda]}(x+s y) d s\right) \\
& E\left(f^{\prime}\left(S_{n}\right)-S_{n} f\left(S_{n}\right)\right)=E\left(f^{\prime}\left(S_{n}\right)-\sqrt{n} X_{n} f\left(S_{n}\right)\right) \\
&=E\left\{f^{\prime}\left(S_{n}\right)-f^{\prime}\left(S_{n-1}\right)-X_{n}^{2} \int_{0}^{1}\left(f^{\prime}\left(S_{n-1}+t \frac{X_{n}}{\sqrt{n}}\right)-f^{\prime}\left(S_{n-1}\right)\right) d t\right\} \tag{2.6}
\end{align*}
$$

if $\underline{x} \in \mathscr{L}(n, \gamma)$. Using (2.5) one obtains

$$
\begin{aligned}
E\left|f^{\prime}\left(S_{n}\right)-f^{\prime}\left(S_{n-1}\right)\right| & \leqq E\left\{\frac{\left|X_{n}\right|}{\sqrt{n}}\left(1+2\left|S_{n-1}\right|+\frac{1}{\lambda} \int_{0}^{1} \mathrm{1}_{[z, z+\lambda]}\left(S_{n-1}+t \frac{X_{n}}{\sqrt{n}}\right) d t\right)\right\} \\
& \leqq \frac{c}{\sqrt{n}}(1+\delta(\gamma, n-1) / \lambda)
\end{aligned}
$$

where we used the independence of S_{n-1} and X_{n}. Here and in the future c is used as a positive constant which depends only on the formula where it appears.

Similarly

$$
E\left|X_{n}^{2} \int_{0}^{1}\left(f^{\prime}\left(S_{n-1}+t \frac{X_{n}}{\sqrt{n}}\right)-f^{\prime}\left(S_{n-1}\right)\right) d t\right| \leqq \frac{c \gamma}{\sqrt{n}}(1+\delta(\gamma, n-1) / \lambda)
$$

Implementing these estimates into (2.6) and using (2.3) and (2.2) one obtains

$$
\delta(\gamma, n) \leqq \frac{c \gamma}{\sqrt{n}}(1+\delta(\gamma, n-1) / \lambda)+\lambda / \sqrt{2 \pi}
$$

Choosing now $\lambda=2 c \gamma / \sqrt{n}$ (c here the same as above), then $\delta(\gamma, n) \leqq c \gamma / \sqrt{n}$ $+\delta(\gamma, n-1) / 2$. Using $\delta(\gamma, 1) \leqq 1$, this proves (2.1).

§3. Proof of the Theorem

c again denotes a constant which depends only on the formula where it appears. In contrast, c_{1}, c_{2}, \ldots are positive constants which depend on nothing.

Let $\beta_{A}=\sum_{i, j}\left|\hat{a}_{i j}\right|^{3}$. If $n_{0} \in \mathbb{N}$ and $\varepsilon_{0}>0$ are arbitrary but fixed then the statement of the theorem is true if $n \leqq n_{0}$ or $\beta_{A}>\varepsilon_{0} n$ (β_{A} is bounded from below). Therefore, we assume that $n>n_{0}$ and $\beta_{A} \leqq \varepsilon_{0} n$ where ε_{0}, n_{0} will be specified later on but $n_{0} \geqq 4$.

We first need a truncation: Let

$$
a_{i j}^{\prime}= \begin{cases}\hat{a}_{i j} & \text { if }\left|\hat{a}_{i j}\right| \leqq 1 / 2 \\ 0 & \text { if }\left|\hat{a}_{i j}\right|>1 / 2\end{cases}
$$

and $\Gamma=\left\{(i, j):\left|\hat{a}_{i j}\right|>1 / 2\right\}$. Clearly, $|\Gamma|$, the number of elements in Γ, is at most $8 \beta_{A}$. Therefore,

$$
\begin{align*}
P\left(\sum_{i} a_{i \pi(i)}^{\prime} \neq T_{A}\right) & \leqq P\left(\sum_{i} 1_{\Gamma}(i, \pi(i)) \geqq 1\right) \\
& \leqq E\left(\sum_{i} 1_{\Gamma}(i, \pi(i))\right) \\
& =|\Gamma| / n \leqq 8 \beta_{A} / n . \tag{3.1}
\end{align*}
$$

If A^{\prime} is the matrix $\left(a_{i, j}^{\prime}\right)$, then

$$
\begin{align*}
\left|\mu_{A^{\prime}}\right| & =\left|\frac{1}{n} \sum_{i, j} a_{i j}^{\prime}\right| \leqq \frac{1}{n} \sum_{(i, j) \in \Gamma}\left|\hat{a}_{i j}\right| \\
& \leqq \frac{1}{n}|\Gamma|^{2 / 3} \beta_{A}^{1 / 3} \leqq c \beta_{A} / n . \tag{3.2}
\end{align*}
$$

We claim that

$$
\begin{align*}
\left|\sigma_{A^{\prime}}^{2}-1\right| & \leqq c \beta_{A} / n . \tag{3.3}\\
\left|\sigma_{A^{\prime}}^{2}-1\right| & =\left|E\left(\sum_{i} a_{i \pi(i)}^{\prime}\right)^{2}-\mu_{A^{\prime}}^{2}-E\left(\sum_{i} \hat{a}_{i \pi(i)}\right)^{2}\right| \\
& \leqq\left|E\left(\sum_{i} a_{i \pi(i)}^{2}+\sum_{i \neq j} a_{i \pi(i)}^{\prime} a_{j \pi(i)}^{\prime}-\sum_{i} \hat{a}_{i \pi(i)}^{2}-\sum_{i \neq j} \hat{a}_{i \pi(i)} \hat{a}_{j \pi(j)}\right)\right|+\mu_{A}^{2} \\
& =\left|-\frac{1}{n} \sum_{(i, j) \in \Gamma} \hat{a}_{i j}^{2}+\frac{1}{n(n-1)} \sum_{i \neq j} \sum_{k \neq l}\left(a_{i k}^{\prime} a_{j l}^{\prime}-\hat{a}_{i k} \hat{a}_{j l}\right)\right|+\mu_{A^{\prime}}^{2} \\
& \left.\leqq \frac{1}{n} \sum_{(i, j) \in \Gamma} \hat{a}_{i j}^{2}+\left.\frac{2}{n(n-1)}\right|_{\substack{i \neq j, k+1 \\
(i, k) \in \Gamma}} \hat{a}_{i k} \hat{a}_{j l} \right\rvert\,+\mu_{A^{\prime}}^{2}, \\
\frac{1}{n} \sum_{(i, j) \in \Gamma} \hat{a}_{i j}^{2} & \leqq c \beta_{A} / n \text { and } \frac{1}{n(n-1)}\left|\sum_{\substack{(i, k) \in \Gamma}} \sum_{j \neq i, l \neq k} \hat{a}_{i k} \hat{a}_{j l}\right| \\
& =\frac{1}{n(n-1)} \sum_{(i, k) \in \Gamma} \hat{a}_{i k}^{2} \leqq c \beta_{A} / n .
\end{align*}
$$

Therefore (3.3) is true.
If we choose ε_{0}^{\prime} small enough (depending on c in (3.3)), one has

$$
\left|\sigma_{A^{\prime}}^{2}-1\right| \leqq 1 / 3 \quad \text { if } \quad \beta_{A} \leqq \varepsilon_{0}^{\prime} n
$$

Therefore,

$$
\begin{aligned}
\left|\hat{a}_{i j}^{\prime}\right|= & \left|\frac{1}{\sigma_{A^{\prime}}}\left(a_{i j}^{\prime}-a_{i .}^{\prime}-a_{. j}^{\prime}+a_{.}^{\prime}\right)\right| \\
& \leqq \frac{3}{4}+\frac{3}{2}\left(\left|a_{i .}^{\prime}\right|+\left|a_{. j}^{\prime}\right|+\left|a_{.}^{\prime} .\right|\right) .
\end{aligned}
$$

By taking ε_{0}^{\prime} small enough, this is easily seen to be $\leqq 1$. Therefore,

$$
\begin{equation*}
\left|\hat{a}_{i j}^{\prime}\right| \leqq 1 \tag{3.4}
\end{equation*}
$$

A simple calculation shows that

$$
\begin{equation*}
\beta_{A^{\prime}}=\sum_{i, j}\left|\hat{a}_{i j}^{\prime}\right|^{3} \leqq c_{1} \beta_{A} \tag{3.5}
\end{equation*}
$$

if $\gamma>0$, let $M_{n}(\gamma)$ be the set of $n \times n$ matrices B satisfying

$$
\sigma_{B}^{2} \neq 0, \quad\left|\hat{b}_{i j}\right| \leqq 1 \quad \text { and } \quad \sum_{i, j}\left|\hat{b_{i j}}\right|^{3} \leqq \gamma .
$$

Let

$$
\delta(\lambda, \gamma, n)=\sup \left\{\left|E h_{z, \lambda}\left(T_{B}\right)-\Phi\left(h_{z, \lambda}\right)\right|: z \in \mathbb{R}, B \in M_{n}(\gamma)\right\}
$$

and $\delta(\gamma, n)=\delta(0, \gamma, n)$.
The considerations above show that if A is a $n \times n$ matrix with $\sigma_{A}^{2}>0$ and $\beta_{A} \leqq \varepsilon_{0}^{\prime} n$, then

$$
\begin{align*}
\sup _{t}\left|P\left(T_{A} \leqq t\right)-\Phi(t)\right| & \leqq \sup _{t}\left|P\left(\sum_{i} a_{i \pi(i)}^{\prime} \leqq t\right)-\Phi(t)\right|+\frac{8 \beta_{A}}{n} \\
& \leqq \delta\left(c_{1} \beta_{A^{\prime}} n\right)+\sup _{t}\left|\Phi\left(\left(t-\mu_{A^{\prime}}\right) / \sigma_{A^{\prime}}\right)-\Phi(t)\right|+\frac{8 \beta_{A}}{n} \\
& \leqq \delta\left(c_{1} \beta_{A^{\prime}} n\right)+c \beta_{A^{\prime}} / n . \tag{3.6}
\end{align*}
$$

We now want to show that $\delta(\gamma, n) \leqq c \gamma / n$, which together with (3.6) proves the theorem.

As $\beta_{A} \geqq c \sqrt{n}$, we may assume that $\gamma \geqq 1$. We fix $A \in M_{n}(\gamma)$ and estimate $\left|E h_{z, \lambda}\left(T_{A}\right)-\Phi\left(h_{z, \lambda}\right)\right|$. Of course, we may assume $a_{i j}=\hat{a}_{i j}$ and therefore $a_{i .}=a_{. j}$ $=0 ; \frac{1}{n-1} \sum_{i, j} a_{i j}^{2}=1$. We denote the set of these matrices by $M_{n}^{0}(\gamma)$.

In order to apply the method of $\S 2$ we need some manipulations on the permutations which replace the independence of the summands in $\S 2$.

We define a random element $\left(I_{1}, I_{2}, J_{1}, J_{2}\right)$ in N^{4}, where $N=\{1, \ldots, n\}$, in the following way: $\left(I_{1}, I_{2}, J_{1}\right)$ is uniformly distributed on N^{3}, and given this, one has $J_{2}=J_{1}$ on $\left\{I_{1}=I_{2}\right\}$ and J_{2} is uniformly distributed on $N-\left\{J_{1}\right\}$ on $\left\{I_{1}\right.$ $\left.\neq I_{2}\right\}$. Let π_{1} be a random permutation, which is uniformly distributed on the permutations of N and independent of $\left(I_{1}, I_{2}, J_{1}, J_{2}\right)$. Define

$$
\begin{gather*}
I_{3}=\pi_{1}^{-1}\left(J_{1}\right), \quad I_{4}=\pi_{1}^{-1}\left(J_{2}\right), \quad J_{3}=\pi_{1}\left(I_{1}\right), \quad J_{4}=\pi_{1}\left(I_{2}\right) . \tag{3.7}\\
I=\left(I_{1}, I_{2}, I_{3}, I_{4}\right), \quad \underline{J}=\left(J_{1}, J_{2}, J_{3}, J_{4}\right) .
\end{gather*}
$$

Of course, $I_{1}=I_{2}$ holds if and only if $I_{3}=I_{4}$. For each fixed \underline{i} $=\left(i_{1}, i_{2}, i_{3}, i_{4}\right) \in N^{4}$ which satisfies the condition $i_{1}=i_{2} \Leftrightarrow i_{3}=i_{4}$, we fix once for all a permutation $t(\underline{i})$ of N, which maps i_{1} to i_{4} and i_{2} to i_{3} and which leaves the numbers outside $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ fixed. Let further $s\left(i_{1}, i_{2}\right)$ be the transposition of i_{1} and i_{2}. We put $\pi_{2}=\pi_{1} \circ t(\underline{I}), \pi_{3}=\pi_{2} \circ s\left(I_{1}, I_{2}\right)$.

Lemma. a) $\pi_{1}, \pi_{2}, \pi_{3}$ have the same law.
b) π_{2} is independent of $\left(I_{1}, J_{1}\right)$.

Proof. A simple calculation shows that \underline{I} and π_{1} are independent. Given \underline{I}, π_{2} is a one to one function of π_{1}. Therefore, π_{2} is also uniformly distributed and independent of \underline{I}.

Given $\pi_{2},\left(I_{1}, I_{2}\right)$ is a one to one function of $\left(I_{1}, J_{1}\right)$. As $\left(I_{1}, I_{2}\right)$ is uniformly distributed on N^{2}, it follows that π_{2} is independent of (I_{1}, J_{1}). This proves b). Using this, an identical argument as that above shows that π_{3} is uniformly distributed.

Let $T_{i}=\sum_{j} a_{j \pi_{i}(j)}, i=1,2,3 ; \Delta T_{i}=T_{i+1}-T_{i}, i=1,2 . \Delta T_{1}$ depends on $(\underline{I}, \underline{J})$, ΔT_{2} on ($I_{1}, I_{2}, J_{1}, J_{2}$).

Therefore, if $f=f_{z, \lambda}$ from §2:

$$
\begin{aligned}
E\left(T_{A} f\left(T_{A}\right)\right)= & E\left(T_{3} f\left(T_{3}\right)\right)=n E\left(a_{I_{1} J_{1}} f\left(T_{3}\right)\right) \\
= & n E\left(a_{I_{1} J_{1}} \Delta T_{2} \int_{0}^{1}\left(f^{\prime}\left(T_{1}+\Delta T_{1}+t \Delta T_{2}\right)-f^{\prime}\left(T_{1}\right)\right) d t\right) \\
& +n E\left(a_{I_{1} J_{1}} \Delta T_{2} f^{\prime}\left(T_{1}\right)\right),
\end{aligned}
$$

where we used the independence of T_{2} and $a_{I_{1} J_{1}}$ (Lemma b). Using the independence of π_{1} and $\left(I_{1}, I_{2}, J_{1}, J_{2}\right)$ the second summand above equals $n E\left(a_{\mathrm{I}_{1} J_{1}} \Delta T_{2}\right) E\left(f^{\prime}\left(T_{1}\right)\right)$. Using this and (2.5), one obtains

$$
\begin{align*}
& \left|E\left(f^{\prime}\left(T_{A}\right)-T_{A} f\left(T_{A}\right)\right)\right| \\
& \quad \leqq \\
& \quad 2\left|n E\left(a_{I_{1} J_{1}} \Delta T_{2}\right)-1\right|+n \int_{0}^{1} E\left\{| a _ { I _ { 1 } J _ { 1 } } \Delta T _ { 2 } (\Delta T _ { 1 } + t \Delta T _ { 2 }) | \left(1+2\left|T_{1}\right|\right.\right. \\
& \left.\left.\quad+\frac{1}{\lambda} \int_{0}^{1} 1_{[z, z+\lambda]}\left(T_{1}+s \Delta T_{1}+s t \Delta T_{2}\right) d s\right)\right\} d t \\
& \leqq \\
& \quad 2\left|n E\left(a_{I_{1} J_{1}} \Delta T_{2}\right)-1\right|+n E\left(\left|a_{I_{1} J_{1}} \Delta T_{2}\right|\left(\left|\Delta T_{1}\right|+\left|\Delta T_{2}\right|\right)\right. \\
& \quad+2 n E\left(\left|a_{I_{1} J_{1}} \Delta T_{2}\right|\left(\left|\Delta T_{1}\right|+\left|\Delta T_{2}\right|\right)\left|T_{1}\right|\right) \\
& \quad+\frac{n}{\lambda} E\left(\left|a_{I_{1} J_{1}} \Delta T_{2}\right|\left(\left|\Delta T_{1}+\Delta T_{2}\right|\right)\right. \tag{3.8}\\
& \quad \\
& \left.\quad \cdot \int_{0}^{1} \int_{0}^{1} 1_{[z, z+\lambda]}\left(T_{1}+s \Delta T_{1}+s t \Delta T_{2}\right) d s d t\right) \\
& =
\end{align*} A_{1}+A_{2}+A_{3}+A_{4}, \quad \text { say. } \quad \text {. }
$$

A_{1} is 0 and A_{2} is easy to estimate:

$$
E\left(\left|a_{I_{1} J_{1}} \Delta T_{2}\right|\left(\left|\Delta T_{1}\right|+\left|\Delta T_{2}\right|\right)\right)
$$

contains summands of the form

$$
E\left(\left|a_{I_{1} J_{1}} a_{\alpha \beta} a_{\mu \nu}\right|\right)
$$

where

$$
\alpha, \mu \in\left\{I_{1}, \ldots, I_{4}\right\}, \quad \beta, v \in\left\{J_{1}, \ldots, J_{4}\right\}
$$

An easy calculation shows that these summands are bounded by $c \gamma / n^{2}$. So

$$
\begin{equation*}
A_{2} \leqq c \gamma / n \tag{3.9}
\end{equation*}
$$

In order to estimate A_{3} and A_{4} we look at the conditional distribution of T_{1}. given $\underline{I}=\underline{i}, \underline{J}=\underline{j} . T_{1}$ depends only on π_{1} and the conditional distribution of π_{1} is easy to describe: π_{1} takes any permutation φ which satisfies $\varphi\left(i_{k}\right)=j_{k}$, $1 \leqq k \leqq 4$, with equal probability. If B is the matrix which is obtained from A by cancelling the rows $i_{1}, i_{2}, i_{3}, i_{4}$ and the columns $j_{1}, j_{2}, j_{3}, j_{4}$, the T_{1}, conditioned on $\underline{I}=\underline{i}$ and $\underline{J}=\underline{j}$ has the same law as

$$
\sum_{i \in\left\{i_{1}, \ldots, i_{4}\right\}} a_{i \pi_{1}(i)}+\sum_{j=1}^{n-t} b_{j \sigma(j)}
$$

where l is the number of (distinct) elements in $\left\{i_{1}, \ldots, i_{4}\right\}$ and σ is uniformly distributed on the permutations of $\{1, \ldots, n-l\}$. As $\left|a_{i j}\right| \leqq 1$ for all i, j, one has

$$
\begin{aligned}
E\left(\left|T_{1}\right| \mid \underline{I}=\underline{i}, \underline{J}=\underline{j}\right) & \leqq 4+E\left(\left|\sum_{i} b_{i \sigma(i)}\right|\right) \\
& \leqq 4+\left(E\left(\sum_{i} b_{i \sigma(i)}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

which is bounded, uniformly in \underline{i} and \underline{j}. Therefore, A_{3} can be estimated in the same way as A_{2}, leading to

$$
\begin{equation*}
A_{3} \leqq c \gamma / n \tag{3.10}
\end{equation*}
$$

If $1 \leqq l \leqq 4$, let $M_{n}^{l}(\gamma)$ be the set of $(n-l) \times(n-l)$-matrices, which can be obtained from matrices in $M_{n}^{0}(\gamma)$ by cancelling l rows and l columns. Introducing

$$
\alpha(\lambda, \gamma, n)=\sup \left\{\left\|P\left(T_{1} \in[z, z+\lambda] \mid \underline{I}, \underline{J}\right)\right\|_{\infty}: z \in \mathbb{R}, A \in M_{n}^{0}(\gamma)\right\}
$$

we have:

$$
\begin{equation*}
\alpha(\lambda, \gamma, n) \leqq \sup \left\{P\left(\sum_{i=1}^{n-l} b_{i \sigma(i)} \in[z, z+\lambda]\right): z \in \mathbb{R}, B \in M_{n}^{l}(\gamma), 1 \leqq l \leqq 4\right\} \tag{3.11}
\end{equation*}
$$

If $B \in M_{n}^{l}(\gamma)$, then $\left|b_{i .}\right|,\left|b_{. j}\right|,\left|b_{. .}\right|$are $\leqq c / n$. Using this, one obtains

$$
\left|\sigma_{B}^{2}-\frac{1}{n-l-1} \sum_{i, j} a_{i j}^{2}\right| \leqq \frac{1}{n-l-1} \sum^{\prime} a_{i j}^{2}+o(1),
$$

where the $\sum_{2 / 3}$ is the sum over the cancelled matrix elements. Furthermore, $\sum^{\prime} a_{i j}^{2} \leqq c n \varepsilon_{0}^{2 / 3}$ if $\beta_{A} \leqq \varepsilon_{0} n$ and if $\varepsilon_{0} \leqq \varepsilon_{0}^{\prime}$ is small enough and n_{0} sufficiently large, we have $\left|\sigma_{B}^{2}-1\right| \leqq 1 / 2$ and therefore $\sigma_{B}^{2} \geqq 1 / 2$. Using this, one gets

$$
\begin{equation*}
\beta_{B}=\sum_{i, j}\left|\hat{b}_{i j}\right|^{3} \leqq c_{2} \beta_{A} \tag{3.12}
\end{equation*}
$$

Therefore

$$
\sup _{z} P\left(\sum_{i} b_{i \sigma(i)} \in[z, z+\lambda]\right) \leqq \sup _{z} P\left(\sum_{i} \hat{b}_{i \sigma(i)} \in[z, z+2 \lambda]\right),
$$

which, if $c_{2} \varepsilon_{0} \leqq \varepsilon_{0}^{\prime}$ according to (3.6), is

$$
\begin{aligned}
& \leqq 2 \delta\left(c_{1} \beta_{B}, n-l\right)+c \beta_{B} / n+\lambda / \sqrt{2 \pi} \\
& \leqq 2 \delta\left(c_{1} c_{2} \beta_{A}, n-l\right)+c_{2} c \beta_{A} / n+\lambda / \sqrt{2 \pi}
\end{aligned}
$$

Using (3.11), one has

$$
\alpha(\lambda, \gamma, n) \leqq 2 \max _{1 \leqq l \leqq 4} \delta\left(c_{1} c_{2} \beta_{A}, n-l\right)+c\left(\lambda+\frac{\beta_{A}}{n}\right)
$$

Using this with the estimate (3.9) of A_{2}, one obtains

$$
A_{4} \leqq \frac{c \gamma}{n}\left(1+\frac{1}{\lambda} \frac{\gamma}{n}+\frac{1}{\lambda} \max _{1 \leqq l \leqq 4} \delta\left(c_{1} c_{2} \gamma, n-l\right)\right)
$$

Combining this with (3.9) and (3.10) in (3.8) and using (2.2) and (2.3) one obtains

$$
\delta(\gamma, n) \leqq c_{3} \frac{\gamma}{n}\left(1+\frac{1}{\lambda} \frac{\gamma}{n}+\frac{1}{\lambda} \max _{1 \leqq l \leqq 4} \delta\left(c_{1} c_{2} \gamma, n-l\right)\right)+\frac{\lambda}{\sqrt{2 \pi}}
$$

Now one may choose λ at ones liking, so we take $\lambda=2 c_{1} c_{2} c_{3} \gamma / n$ leading to

$$
\delta(\gamma, n) \leqq \frac{c \gamma}{n}+\frac{1}{2 c_{1} c_{2}} \delta\left(c_{1} c_{2} \gamma, n-l\right)
$$

and if $n \geqq 8$, this gives

$$
\sup _{\gamma} \frac{n \delta(\gamma, n)}{\gamma} \leqq c+\frac{1}{2} \max _{1 \leqq l \leqq 4} \sup _{\gamma} \frac{(n-l)}{\gamma} \delta(\gamma, n-l) .
$$

This proves $\delta(\gamma, n) \leqq c \gamma / n$ and, using again (3.6), this proves the theorem.

References

1. Does, R.J.M.M.: Berry-Esseen theorems for simple linear rank statistics. Ann. Probability 10, 982-991 (1982)
2. Ho, S.T., Chen, L.H.Y.: An L_{p} bound for the remainder in a combinatorial central limit theorem. Ann. Probability 6, 231-249 (1978)
3. Hoeffding, W.: A combinatorial central limit theorem. Ann. Math. Statist. 22, 558-566 (1951)
4. Husková, Marie: The Berry-Esseen theorem for rank statistics. Comment. Math. Univ. Carolina, 20, 399-415 (1979)
5. Motoo, M.: On the Hoeffding's combinatorial central limit theorem. Ann. Inst. Statist. Math. 8, 145-154 (1957)
6. Stein, Ch.: A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Sympos. Math. Statist. Probability 2, 583-602 (1972)
7. von Bahr, B.: Remainder term estimate in a combinatorial limit theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 131-139 (1976)
