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Summary. We show that the first-passage times of first-passage percolation 
on Z 2 are such that P(Oo,<n(12-e)) and P(Oo,>n(p+~)) decay geometri- 
cally as n~oo ,  where 0 may represent any of the four usual first-passage- 
time processes. The former estimate requires no moment condition on the 
time coordinates, but there exists a geometrically-decaying estimate for the 
latter quantity if and only if the time coordinate distribution has finite 
moment generating function near the origin. Here, /~ is the time constant 
and e>0.  We study the line-to-line first-passage times and describe appli- 
cations to the maximum network flow through a randomly-capacitated 
subsection of Z 2, and to the asymptotic behaviour of the electrical re- 
sistance of a subsection of Z 2 when the edges of the subsection are wires in 
an electrical network with random resistances. In the latter case we show, 
for example, that if each edge-resistance equals 1 or oo ohms with probabil- 
ities p and 1 - p  respectively, then the effective resistance R, across opposite 
faces of an n by n box satisfies the following: 

(a) if p<�89 then P(R = oo)--,1 as n~oo ,  

(b) if p>�89 then there exists v(p)< ~ such that 

p (p -  1 < lim infR, =< lira sup R n __< v (p)) = 1. 

There are some corresponding results for certain other two-dimensional 
lattices, and for higher dimensions. 

1. Introduction 

Let L be a lattice (such as the square lattice Z2), and suppose that to each edge 
e of L there corresponds a random variable t(e), called the time coordinate of e, 
where {t(e): e~L} is a family of non-negative independent identically distribut- 

* Work done partly while visiting Cornel1 University 
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ed variables with some common distribution function F. If r = ( % , e  1, . . . ,e,,v,) 
is a path in L, comprising edges e i joining vertices v i_ 1 and vi, then the passage 
time of r is defined to be t(r)=~t(ei). If A and B are disjoint sets of vertices of 

i 
L, then the passage time from A to B is defined to be t(A,B)=inf{t(r): r joins 
some vertex in A to some vertex in B}. First-passage percolation studies the 
random variables t(A, B) for certain sets A and B; the origins of the subject lie 
in Hammersley and Welsh (1965), and more recent results are given in Smythe 
and Wierman (1978) and Cox and Kesten (1981). For  historical and mathemati- 
cal reasons, L is usually taken to be the square lattice Z 2 with vertices {(x, y): 
x, y=0 ,  _+1 . . . .  } and edges joining pairs of vertices which are unit distance 
apart. We state most of our results for this case also, and henceforth suppose 
that L is this lattice. Many corresponding results are valid for other two- 
dimensional lattices, and for Z d with d > 3, and we indicate these when appro- 
priate. All our remarks pertain to Z 2 only, unless otherwise indicated. 

Passage times of particular interest are the absolute point-to-point time %, 
and absolute point-to-line time bm.(m < n), given by 

am, -= t((m, 0), (n, 0)), bin, -= t((m, 0), U.) 

where H,  is the vertical line x = n in L. We shall also be interested in cylinder 
times. Let C,,, = {(x, y): m < x < n}. The cylinder point-to-point time tm, and cylin- 
der point-to-line time Sin, are defined to be 

tm,--inf{t(r): r joins (m,0) to (n,0), and r is contained 
in C,,, except for its endpoints}, 

sm,=inf{t(r): r joins (m,0) to H., and r is contained 
in Cm, except for its endpoints}. 

It is known that there exists a time constant # = # ( F )  with the following 
properties: 

(1.1) if F,~F,  in the sense of weak convergence, then/I(F,)~/I(F);  

1 
(1.2) - %,  ~ #  in probability; 

n 

1 
- a 0 , ~ #  a.s. if and only if ~(1 - F ( x ) ) 4 d x <  0% 
n 

(1.3) 1 - b0,~/~ a.s. 
n 

See Smythe and Wierman (1978, Chap. 5), Cox and Durrett  (1981) and Cox 
and Kesten (1981) for proofs of these and other relevant facts. Here, we are 
interested in the passage times a, b, s and t, and their rates of convergence, 
when normalized, and show that, if e>0,  there exists a constant B=B(e)  such 
that 0<B(e)=< ~ and 

(1.4) P(Oo.<n(#-~))<exp(-n(B(e)+o(1))  ) as n~oo ,  
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without any moment assumption on the time coordinates, and 

( 1 . 5 )  P(Oon>n(#+a))<exp(-n(B(~)+o(1)) ) as n~oo,  

if the time coordinates have a moment generating function, in that 

(1.6) feTXdF(x)<oo for some 7>0;  

in cases (1.4) and (1.5) above, 0 may represent a, b, s or t. 
These results have applications to the question of ascertaining the maxi- 

mum network flow through a randomly capacitated subsection of L. Suppose 
that each edge e of L is assigned a random capacity c(e), where {c(e): eeL} is a 
family of non-negative independent identically distributed random variables 
with common distribution function F, and let Bn,, denote the rectangle {(x, y): 
O<x<_n, O<y<m}. By the max-flow min-cut theorem of Ford and Fulkerson 
(see Bollobfis (1979, p. 47)), the maximum flow q~n,, across B,m from left to right 
equals the shortest passage time from top to bottom in the dual network, in 
which the passage time of each edge e* is set equal to the capacity of the 
unique edge e of the primal network which intersects e*. Hence (see Theorem 
5.1) 

1 
(1.7) -~b,,~#(F)a.s.  if ~(1 -F(x))4dx< oo; 

n 

we shall see that, if n(m)=e c", then the value of the limit as m ~  of the 
sequence {m-14,(m),,~} depends on the numerical value of c. 

A closely related physical problem is to determine the electrical resistance 
of B,m when the edges of L are wires in an electrical network and a typical 
edge e has some random resistence r(e) ohms, where {r(e): eeL} is a family of 
non-negative independent identically distributed variables (possibly taking the 
value oo ohms); see Kirkpatrick (1978) and Stauffer (1979) for surveys of this 
area. We are able to make some progress with this problem. For example, 
consider the simplest nontrivial case in which the edge-resistances have the 
Bernoulli distribution 

(1.8) P(r(e) = 1)=p, P(r(e)= oo)= 1 - p  

where 0 <p__< 1; this corresponds exactly to the case of Bernoulli percolation, in 
which each edge of L is deleted with probability 1 - p  (and therefore can 
transmit no electricity) or remains with probability p (and has some standard 
resistance of, say, 1 ohm). We introduce two supplementary vertices, labelled 0 
and oo, in the following way. We join each vertex on the left (respectively 
right) edge of B,m to the new vertex 0 (respectively ~ )  by wires with zero 
resistance. Let R,,, be the resistance of the ensuing electrical network between 
the terminals labelled 0 and oo. We shall show the following: 

(1.9) if p<�89 p ( R n n = ~ ) ~ l  as n~oo,  

>1 (1.10) if p ~, there exists v(p) < ~ such that 

1 
-__< lim infR,~ < lim sup Rn, __< v(p) a.s. 
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In the latter case, we conjecture that limR~, exists. Other partial results are 
available for more general distributions, resistances of rectangles, and certain 
other lattices in two or more dimensions. 
Papanicolaou and Varadhan (1979) and Golden and Papanicolaou (1983) have 
studied the closely related situation in which the conducting medium is the 
sheet N2, the conductivity of which is a stationary random process. For this 
case, Golden and Papanicolaou (1983) have shown that R~  converges in mean 
square so long as the resistances are concentrated a.s. on an interval [a,b], 
where 0 < a  <b < oo. Ktinnemann (1983) has studied similar results for the case 
of Z 2. See Sect. 6 for further discussion. 

Each of the sections of this paper begins with a statement of the results of 
that section; the proofs are collected together at the ends of the sections. 

Here is some notation. For  any vector k=(k~ .... , ka) and x s N ,  we write x k  
and k + x for the vectors 

xk=(xk l , . . . , xka) ,  k + x = ( k l + x ,  ... ,ka+x). 

For vectors k, l~P, a, we write k < !  (respectively k<l)  if and only if k~<l i 
(respectively k~< l) for all i=  1, 2, ...,d. We denote the origin of Z a by 0, and 
write 1 =(1,1 . . . . .  1) for the vector of one's. We denote by 2 the mean time 
coordinate: 

co 

(1.11) 2 = ~ xdF(x). 
o 

The integer part of x is written as Ix]. 
The complement of the event E is denoted by/~; the cardinality of the set A 

is denoted by I A[. 

2. Line-to-line Passage Times 

Let Bnm be the subgraph of L with vertex set {(x,y): O<x<_n, O<:y<m}, and 
define the line-to-line passage time l.m by 

(2.1) /nm=inf{t(r): r joins (0,a) to (n,b) for some O<a, b<m, 

and r is contained in Bnm }. 

In this section we investigate the asymptotic behaviour of lnm for large m and n. 
The most interesting case is when m = n. 

Theorem 2.1. Suppose that m=m(n)~  oo. 
1 

(a) I f  m(n)=O(n) then l iminf- l~,~># a.s. 
n ~  oo n 

1 
(b) I f  ~(1-F(x))*dx<oo then l i m s u p - / , m < #  a.s., and if, further, re(n) 

=O(n) then, as n~oo, ~co n 

1 
n l , , ~ #  a.s. and in L 1. 
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We shall see later (see Corollary 4.2) that similar conclusions are valid subject 
to the weaker condition that n -1 logm(n)~0 as n~oo in place of the condition 
that m(n)=O(n). The referee has pointed out that, for the case m(n)=n at least, 
the almost sure convergence of n -1 l , ,  is valid without any assumption on F. 
We do not explore this here, but note that this is a consequence of the 
argument of Cox and Durrett (1981, pp. 589-590) if F(0)>�89 and follows more 
generally by the truncation argument of Cox and Kesten (1981, Lemma 2). 

The method of proof of Theorem 2.1 is easily adapted to provide a 
corresponding result for first-passage percolation through 7Z d where d>3.  Let 
B,(d) be the box {x~Za: 0 <x  < n l } and let I,(d) be the shortest passage time of 
the paths within B,(d) which join two vertices of the form (0,x a .. . .  ,xe) and 
(n, Yz ... .  , Yd) for some 0 < x2, ..., xd, Ya, ..., Ya <= n. 

Theorem 2.2. I f  d> 3 and ~xZdF(x)< oo then, as n--,o�9 

1 
-1,(d)--+#(d) a.s. and in L 1, 
n 

where #(d) = #(d, F) is the time constant of •d. 

Proof of Theorem 2.1. We consider the case m(n)=n only; the more general 
case proceeds in exactly the same way. 

(a) First we show that, if e >0, 

(2.2) P ( l , n < n ( # - O ) ~ O  as n~oo.  

We shall truncate the time coordinate distribution. Let M > 0, and replace each 
time coordinate t by 

tM={ M if t < M  
if t > M ,  

with distribution function F M, associated passage times 0 M (O=a,b,s, t,l) and 
time constant #M. Let t />0 and let P,(q) be the vertices on the left edge of B,, 
whose coordinates are of the form (0,[kv/n]) for k=0,1  . . . . .  [ t /- l] .  Note that 
I P~(t/)[ __< 1 +t/-1.  Choose M and ~ such that 

(2.3) #<#M+e,  t lM<e; 

this is possible by (1.1). Now, 

(2.4) P (l.. < n (# - 3 e)) < P (l~ < n (#M _ 2 e)) 

<(1 + t / -  i )e(bM <n(# M - 2 g ) + M t l n  ) 

<(1 +q-1)P(b~,  <n(#M-e)) ,  

v n(gM--2e) then some point Q=(0, q) on the left edge of B,, is since if 1,,< 
joined to the line x = n  by a path with passage time less than n(#M--20 in the 
truncated system; the vertex in P,(q) which is nearest to Q may be joined to Q 
by a straight segment with at most t/n edges and passage time not exceeding 
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Mrln, and therefore to the line x=n by a path with passage time less than 
n(#M--2a)+Mrln. Now (2.2) follows immediately from (2.4) by using (1.3). In 
the next section we shall see that (2.2) implies that P(b~,<n(#M-e)) decays 
geometrically in n, and part (a) of the theorem follows by summing (2.4) over n 
and applying the Borel-Cantelli lemma. 

(b) Let ao,(k ) be the infimum of the lengths of paths joining (0,0) to (n,0) 
which lie entirely within the horizontal cylinder {(x,y): [yl<__k}. By the usual 
subadditivity argument, 

1 
(2.5) - ao , (k )~# (k  ) a.s. and in L 1, 

n 

where #(k)=#(F,k) is a constant; the ergodic theorem for subadditive pro- 
cesses is applicable since, if k__> 2, 

Eaol(k)< oo, 

by virtue of the assumption that ~(1 -F(x))4dx < oe (see Smythe and Wierman 
(1978, p. 68)). An easy adaptation of the argument of Smythe and Wierman 
(1978, p. 88) yields that 

For all n>lk we have that 

#(k)- ,# as k~oe .  

(2.6) 1-I .<l-a.(k) 
n n --l~ 

where a.(k) is the absolute passage time between (0,k) and (n,k) over paths 
within the cylinder {(x, y): [y - k] < k} ; {a.(k): n > 1} has the same joint distri- 
butions as {ao.(k): n>  1}. Thus 

lim sup ! 1..<_.~olim 1-a.(k)n 

=#(k) a.s. 

--*# a s  k - + o %  

and a.s. convergence follows. L 1 convergence follows from (2.5), (2.6) and 
uniform integrability. 

The proof of Theorem 2.2 follows the proof of Theorem 2.1, the only 
substantial difference being that we are unable to use truncation and the 
continuity of the time constant. Before presenting this proof, we recall some 
facts about first-passage percolation on Z a. Let 

Co={x~Xd:O<Xl<n} and H.={xeZa:xl=n}, 

and define the usual passage times 

ao. = t(O, (n, 0 , . . . ,  0)), bo,  = t(O, H,) ,  
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So.=inf{t(r): r joins 0 to H.  and r is contained 

in Co. except for its endpoints}, 

to. = inf{t(r)" r joins 0 to (n, 0 . . . .  ,0) and r is contained 

in Co. except for its endpoints}. 

Lemma 2.3. I f  the time coordinates have finite variance then, as n ~  0% 

1-Oo,--*#(d ) a.s. and in L 1, 
n 

where #(d)=#(d,F)  is the time constant of ~a, and 0 may represent a, b, s or t. 

Proof. By the ergodic theorem for subadditive processes, there exist constants 
#i and #2 such that, as n~o% 

1 1 
(2.7) -tOn-*#2 a . s .  and in L 1. naon---~#1~ n 

By the ergodic theorem for "superconvolutive sequences" (see Theorem 2.9 of 
Smythe and Wierman (1978) or Theorem 3.3 of Kingman (1976)), there exists a 
constant #3 such that, as n ~  oo, 

1 
- s 0 , ~ # 3  a.s. and in L 1. 
11 

By Theorem 6 of Cox and Durrett  (1981), 

1 
(2.8) -bo,--*#la.s .  as n--*oo. 

n 

Cox and Durrett  proved this for the case d=2 ,  but their proof applies also to 
higher dimensions. Theorem 3 of Cox and Durrett  (1981) imposes a less 
stringent condition on F than that it have finite variance; it seems clear that, in 
this lemma also, a rather weaker condition would suffice. Next we note that #1 
=Pz;  this is proved by Smythe and Wierman (1978, Theorem 5.1) for the case 
d = 2, and their proof is valid in higher dimensions even though it is not known 
whether or not routes exist in general. Finally, the inequality 

(2.9) O<bo <So <to, 

implies that # 1 = # 1 = # 3  , and this shared value is the time constant #(d). The 
L 1 convergence of n - l b o ,  follows from (2.7), (2.8) and (2.9). 

Proof of Theorem 2.2. Let L,, be the face 

{(O, x2, . . . ,xa):O<x 2 .... ,xa<n } of B,(d). 

Let q > 0  and let P~(t/) be the vertices of L n which have the form (0, [k2t/n j . . . .  , 
Lkdt/nJ) where 0 ~ k  2 . . . . .  ka<Lr/- tJ ;  we call P,(q) the set of special vertices. 
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Note that 

(2.10) [ P~(r/)I ~(1 + q- a)d- 1. 

Let v be a typical vertex in L,, and let E(v) be the event that there exists a 
path in L, joining v to some special vertex with passage time not exceeding 
2(n~/+l)(d-1)2,  where 2 is the mean time coordinate (see (1.11)). Ln has 2(d 
-1)  bounding hyperplanes of the form H(k,m)={xeZd: Xk=m } for m=O,n 
and k = 2,. . . ,d. If v belongs to exactly h of these hyperplanes, then there are at 
least 2 ( d - 1 ) - h  edge-disjoint paths joining v to some special vertex, having at 
most e(n)= L(t/n+ 1)(d-1)J edges. Thus, by 12ebygev's inequality, the comple- 
ment of E(v) satisfies 

P(E(v) ) < { P(q +... + re(n)> 2e(n) 2)} 2(d- 1)-h 
0.2 ~2(d- 1)-h 

--<-- ~2q(~--l)n]  =Ph, say, 

where q,  ..., te(,) are independent time coordinates and 0-2=var(q)< oo. The 
event E,, that every v~Ln is joined to some special vertex of L, by a path 
whose passage time is "not too large", satisfies 

d-1  
P(Eo)=< ~ NhPh, 

h=O 

where Nh=O(n d-l-h) is the number of vertices of L, which are in exactly h of 
the bounding hyperplanes of L,. Thus 

( l )  (1) 
(2.11) P(E,)<= ~ O(nd-l-h)O n2(d-1)_h =0 ~ . 

h=0 

Let e > 0 and pick ~/such that 

(2.12) 3 t /2(d-1)<e .  

Then, as in (2.4), for all large n, 

{l.(d)<n(u(d)-2e)}c_~.u{ U {b(v,n)<n(~(d)-e)}} 
v~Pn(~l) 

where b(v,n) (=t(v,H,)) is the point-to-hyperplane time between v (in Ln) and 
the hyperplane H , =  {xe7Zd: x 1 =n}. By (2.11) and Lemma 2.3, we have that 

(2.13) P(In(d)<n(l~(d)-2e)) 

<O(n~l~)+(l+tl-1)d-lP(bo,<n(#(d)-e))~O as n~oe.  

We shall see in the next section (see Theorem 3.4) that (2.13) implies that 
P(bon<n(l~(d)-8)) decays geometrically in n, and the Borel-Cantelli lemma 
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then gives that 

P (lim in f l  l,(d)> #(d)] = 1 
\ n ~ o 9  n / 

as required. 

To show the appropriate upper bound for limsup-I/,(d), let k be a positive 
n~ m n 

integer and define ton(k ) to be the infimum of the passage times of paths 
between 0 and (n,0,. . . ,0) which are entirely contained in the box {xeT/d: 
0 < x ~ < n ,  [x~[<k for i = 2  .. . .  ,d} except for their endpoints. The argument of 
the proof of Theorem 2.1 is easily adapted to yield, for n>�89 

1-I (d )<l t , ( k )~#(d ,k )  a.s. and in L 1 
n n : n  

as n ~  0% where {t,(k): n > 1} has the same joint distributions as {t0,(k): n >  1} 
and {#(d,k): k=  1,2 .. . .  } is a sequence of constants satisfying 

#(d, k)~#(d) as k--, oo. 

3. The Rate of Convergence to the Time Constant 

In this section we prove that the random variables n -10o.  converge to the 
time constant at a geometric rate, where 0 may represent a, b, s, or t. First, we 
deal with first-passage times on the lattice 7/2 . 

Theorem 3.1. I f  e>0,  there exist constants A(e), B(e)>0 such that 

P(Oo, <n(#-e ) )<A(e )exp( -nB(e ) )  for all n, 

where 0 = a, b, s or t. 

Theorem 3.2. I f  e > 0 and there exists 7 > 0 such that 

co  

exp(Tx)dF(x) < oo 
o 

then there exist constants C(e), D(e)> 0 such that 

P(Oo,>n(#+e))< C(e)exp(-nD(e)) for all n, 

where 0 = a, b, s or t.- 

It is clear that the finiteness of the moment generating function of F is also 
necessary for the conclusion of Theorem 3.2 to hold for any 0; this follows 
from the observation that 0o, is at least as big as the minimum of the time 
coordinates of the four edges incident with the origin. 

We shall prove Theorems 3.1 and 3.2 for the cases O=b and O=t respec- 
tively; the other cases follow from the obvious inequalities bo,__<ao, , So, < to,. 

It will appear as a direct consequence of Theorem 3.1 that P(Oo,<n(#-~)) 
decays approximately geometrically as n ~  0% where 0 may represent a, s or t. 
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Corollary 3.3. Suppose that /~>0. For each 5, there exists B(8) such that 
O<_B(e)<= oo and 

P(Oo~<n(#-8))=exp(-n(B(e)+o(1)) ) as n~oo, 

where O=a, s or t. Furthermore 

(a) B(8)--0 if e<0  and B(8)>0 if 5>0, 

(b) B(8)< o�9 if 8<fl and B(e)= oo if e> fi, where f l=sup{e:F(#-~)>0}>_0,  

(c) /f fi >0  then B is convex and continuous on ( - c ~ ,  fl) and strictly increas- 
ing on [0,fl). 

Results similar to Theorems 3.1, 3.2 and Corollary 3.3 hold for lattices 
other than Z 2. For example, the proofs of Theorems 3.1 and 3.2 may be 
adapted readily to deal with a large family of infinite graphs in two and higher 
dimensions; see Kesten (1982, Chap. 2) for a description of such a family. 
Rather than explore such generalizations in depth, we restrict ourselves to a 
statement of a corresponding result for percolation in ~ga. 

Theorem 3.4. Let a, b, s, t denote the passage times of first-passage percolation 
in 7/, a, and suppose 8 > O. 

(a) I f  the time coordinates have finite variance, then there exist constants 
A(8), B(8)>O such that 

P(Oo.<n(l~-e))<=A(e)exp(-nB(e)) for all n, 
and 

(b) /f there exists 7 >0 such that 

oo  

exp(7 x) dF(x) < 0% 
0 

then there exist constants C(e), D(e)> 0 such that 

P(Oon>n(ll+e))<C(e)exp(-nD(8)) for all n, 

where 0 may represent a, b, s or t. 

Proof of Theorem 3.1. We may suppose that /z>0, and shall show that, for 
0<8<~/5 ,  

(3.1) P(bo~ <n(l~-5~))< Ae -"B 

for positive constants A and B depending on 5. The idea of the proof is based 
on a "block approach". We shall suppose that r is a path joining 0 to the line 
H,={(n,y):  y=0 ,  +1, . . .} with passage time smaller than n ( # - 5 0 ,  and shall 
divide r into segments, each of whose two endpoints are fairly distant from 
each other. Almost all of the passage times of these segments will be close to 
that predicted by the limit theorem for first-passage times, and it is cor- 
respondingly unlikely that such a path r exists. 
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First we need some notation. For  any k = ( k p k 2 ) e Z  2 and integers M, N 
satisfying M > N > 1, 

S(k) = {veL: N k  < v < N(k  + 1)} 

T ( k ) = { v e L : N k - M < v < N ( k + l ) + M } .  

S(k) is a square box, side length N - I ,  with bottom left hand corner at Nk; 
T(k) is a larger square box, containing S(k) at its centre, with side length 2 M +  N 
- 1 .  Thus {S(k): &E• 2} is a partition of L; each veL belongs to exactly one of 
the S's. We think of M as being much larger than N, but much smaller than n. 

Suppose that r=(v(0), e(1) . . . . .  e(v), v(v)) is a path in L joining v(0)=0 to 
some vertex v(v) on the line H,. We divide r into segments by following its 
progress amongst the S's and T's. Let k (0)=0 and a(0)=0. Let v(a(1)) be the 
earliest vertex v(a) in r with the property that v(a)~T(k(O)); let k(1) be the 
unique k such that v(a(1))~S(k). Continue recursively to find sequences a(0), 
a(1) . . . .  , a(z), k(0), k(1), ..., k(z) such that 

(a) 0 = a ( 0 ) < a ( 1 ) <  ... < a ( z ) < v  

(b) v(a(i))~S(k(i)) 
(c) a(i + 1) is the smallest integer a, exceeding a(i), such that v(a)(~ T(k(i)). 
The final terms a(r) and k(v) satisfy 

(3.2) v(j)~T(k(~)) if a(z)<j<=v. 

The sequence o- = (k(0), ..., k(z)) may contain double points, since r may visit 
some S twice. We remove all such double points by the process of "loop- 
removal". Let u I be the largest index for which there exists Pl (<Ua) with the 
property that k(pa)=k(tq). From the collection of possible such values of Pa, 
choose the smallest. Form the subsequence o- l=(k(0),  ..., k(pO, k(u 1+1), ..., 
k(v)) of o- by removing the loop (k(p 1 + 1) . . . . .  k(uO). The section (k(ua), ..., 
k(z)) of the original sequence is free of double points, and, by the minimality of 
Pl, it has no points in common with the earlier portion (k(0) . . . . .  k ( p l - 1 )  ). 
Thus, if the new sequence o-a has a double point, then there exist P2, u2 such 
that p2<u2<pz and k(p2)=k(u2). Again we choose the largest such u 2 and 
then the smallest such P2 and remove the section (k(p 2 + 1), ..., k(u2) ) to obtain 
a subsequence 0- 2 of o-a. We continue in this way until we arrive at a sub- 
sequence 

(3.3) ~ = (k(0) . . . . .  k(p2), k(u z + 1) . . . . .  k(p i), k(u 1 + 1) .. . .  , k(z)) 

without double points. We re-label the terms in (3.3) to obtain 

= (/(0),..., l(p)) 

where l(a)=k(ja) and O=jo<ja<. . .< jo<z;  it is mostly with this loopless 
sequence that we shall work. Note that jp and r may not be equal, since uz 
may equal z; however, it is easily seen that k(jo)=k(z ). Now, 

I k , . ( j+ l ) - l%( j ) [<M+l  for m=1,2 ,  j=O,  1 .. . .  , r - l ,  
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where k(j)=(ka(j),k2(j)), since the first exit from T(k(j)) takes r to a vertex 
distance 1 from some vertex in T(k(j)). This property is not changed by loop- 
removal, in that 

M 
(3.4) [l,,(j+ 1 ) - l , , ( j ) l < ~ - + l  for r e= l , 2 ,  j = 0 , 1  .. . .  , p - 1 .  

To see this, note that if i<j  and k(i)=k(j), then S(k( j+ l ) )  contains a vertex 
distance 1 from some vertex in T(k(i)). 

Consider the portion r(i)=(v(a(i-1)),...,v(a(i))) of r which stretches be- 
tween S ( k ( i -  1)) and S(k(i)), and define 

L(i) = m a x  [ v , .  ( a  ( i ) )  - v , .  ( a  ( i  - 1))L 
m =  1 , 2  

to be the maximum of the two coordinate differences between its endpoints. It 
is clear from the construction of the a's and k's that 

(3.5) M < L ( i ) < M + N  for l_<i_<z. 

Until now, we have merely specified those segments of r in which we are 
interested. Next, we proceed to colour the l's in a way which depends on the 
random time coordinates of L. For 1 < i < p ,  consider the vector l(i)=k(j~)~Z 2. 
Examine the segment r(ji), stretching between S(k(j i -1))  and S(k(ji)), and let 
t(r(j/)) be its passage time. Let 5>0. We colour l(i) white if 

(3.6) t(r (j~)) < (/z - 2 e) L(j,); 

otherwise we colour l(i) black. Thus each l(i) is coloured white if and only if 
the segment of r which leads to S(k(]~)) has a passage time which is small 
compared with #L(jz). Let w be the number of white points in the sequence of 
l's. We need to estimate p and w in terms of e, n, M, N, and do this in the next 
lemma. 

Lemma 3.5. Suppose that e, n, M, N and r satisfy the following: 
(i) e is small, in that 0 < e < 1~/5, 

(ii) M / N  is large, in that M ( i z - 3 e ) > ( M  + N)(#-4e) ,  
(iii) n is large, in that ne>(M + 2N)(#-4e) ,  
(iv) the passage time of r is small, in that t ( r )<n (# -5e ) .  

Then w >_ .e p and n 
- 2 #  P > M + N  1. 

Proof. Suppose that (i)-(iv) hold. By the definition of r, the x coordinates of the 
vertices of r are such that 

(3.7) n=vl  ( v ) -v  l (O)=(vl ( v ) - v l  (a(z))) + (vl (a(r))-v l (a(j p))) 
P 

+ ~ (vl(a(Ji))-vl(a(Ji- 1))). 
i = 1  
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Now 
Ivl(v)-vl(a(z))] < M + N ,  by (3.2), 

Ivl(a(~))-vl(a(ip))[ <N, since k(z)=k(jp), 

[ v i (a (Ji)) - v 1 (a  (Ji- 1 ))1 ~ [ V 1 (a (Ji)) - -  V 1 (a  (Ji - -  1 ))l 

-~1 I)l (a (J i  - -  1)) - - / )1  (a  (J ' i-  1))1 

< L(j) + N, 

since, by the definition of loop-removal, v(a(j i_ 1)) and v(a(] i -  1)) belong to the 
same S(k), for some k. Thus, from (3.7), 

P 
(3.8) n < M + 2 N +  ~, (L(j,)+N). 

i = l  
However, by (3.5), 

and so (3.8) yields 

N M < N  L �9 N = ~  = ~  ~) ~ r  all j, 

Hence 

(3.9) 

P M (n-(M+2N))>n {#-5~] 
LO',)>M + N = \ ~ - ~ ]  

i = t  
by (ii) and (iii). 

P 
(# -3e)~L( j )>n(#-5e)>t ( r )  by (iv) 

1 
p 

_-> F, t ( , ' ~ ) )  
i=1  

> ~, L(j)(11-2~) by condition (3.6) 
i:l(i)black 

=(#-2~)  L ( j ) -  ~, L(j) . .  
i:l(i)white 

Therefore, by (3.5), 

giving that 

(3.10) 

w(M+N)>= 2 L(]' i)>~_2~L(J,)>--~_2~PM 
i:l(i)white 

w > e p  by (i) and (ii). 
- 2 #  

Also, it is a consequence of (3.2) and the fact that v~(v)=n that 

11 (p) - 11 (0) > 1 (n - M - g ) ,  

and hence, by (3.4), 
n - M - N  

p > - -  _ 

M + N  ' 

completing the proof of the lemma. 
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Lemma 3.6. The event {l(i) is white} is contained in the event g(i )={some 
vertex in S(k(ji) ) is joined to some vertex outside the square {veL : Nk(ji ) - ( M  
-N)<v<Nk( j~ )+M}  by a path with passage time less than ( M + N ) ( # - 2 e ) } .  
For any subcollection A= {i(b(i)): 1 <i<a} of the l's one has 

(3.12) P(all l(b(i)) in A are white) 

<P(g(b(i)) occurs for each 1 <i<a)<p 5~, 

where p=p(M,N,e) is the probability that some vertex in S(O) is joined to some 
vertex outside the square [ - M  + N,M) 2 by a path with passage time less than 
(M + N) (# - 2 e), and ~5--6(M,N)>0. 

Proof The first statement follows from the observation that r(j~) joins some 
vertex inside S(k(j~)) to some vertex outside 

{wL: Nk(ji ) - ( m  - N )  <= v < Nk(ji ) + M}. 

To prove (3.12) note first that P(g(i))=p(M,N,a). Next note that the event 
d~ depends only on the time coordinates in the square {veL: Nk(ji ) 
- M  <_ v < N k(ji ) + M}, and thus the events g(a) and r are independent if 

(3.13) Ilm(a)-lm(b)[> 4 M + 3 N  for either m = l  or m=2,  
- N 

But for any collection A, containing a distinct l's, we can select a subset of the 
l's, each pair of which satisfies (3.13), in the following way. Pick/(1)  arbitrarily 
in A. Assume /(1), l(2) . . . .  , l(j) have already been picked and denote by C(i) 
the square {l=(ll,12): Ilm-Im(i)l<__(4M+3N)N -1 for m = l  and m=2},  for 
1 < i <  j. Then pick l(j + 1) arbitrarily from A \ (C(1)w...  u C(j)), so long as the 
last set is nonempty. Since each C(i) contains at most ( ( 8 M + 6 N ) N - l + 1 )  2 
points of Z 2, one can select at least 6a l's in this way, where 6=8(M,N) is 
given by 

N 2 
(3.14) ~(M,N)= (S()~+ N) ) . 

Let A '=  {l(e(i)): 1 <iN 6a} be such a subcollection of A. Then 

P(A is white) < P(A' is white) < l-[ P(g(c(i)) occurs) < p(M, N, e) ~r 
i~6a 

Here is a final lemma before we complete the proof of the theorem. 

Lemma 3.7. I f  0<~</~/5, then 

p=p(M,N,~)~O, as M , N ~ ,  

so long as M>=N(2#/~). 

Proof. Let B1, B:, B 3, B4 denote the following rectangles: 

B ~ = [ - M  + N,M] x IN, M], B : = [ N , M ]  x [ -  M + N,M],  

B 3 = [ - M + N , M ] x [ - M + N , O  ], B g = [ - M + N , O ] •  ]. 
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If a vertex in S(O) is joined to a vertex outside the square [ - M + N , M )  2 by a 
path with passage time not exceeding ( M + N ) ( # - 2 e ) ,  then one of the B's is 
crossed between its longer sides by a path with passage time not exceeding (M 
+ N)(# - 2 e). Thus 

p(M, N, e) < 4P(IM_N,2M_N <= (M + N)(#-2e)) 

where l is the line-to-line passage time of Sect. 2. If M>N(21~/e) and 0 < e < # / 5  
then 2 M - N < 3 (M - N) and (M + N) (/~ - 2 e) < (M - N) (# - e), giving that 

p(M, N, ~) <= 4P(IM_N,a(M_N)<=(M - N)(y -~)) 
--+0 as M-N--+oo 

by Eq. (2.2), suitably generalized as necessary for the proof of the general 
version of Theorem 2.1. 

We may now complete the proof of Theorem 3.1. Each path r from 0 to H,  
has an associated sequence I(0)=0 . . . . .  l(p). The number of possible choices for 

this sequence of rs is at most 8 +1 , since S(l(i+l)) contains a vertex 

which is adjacent to some boundary vertex of T(l(i)), and there are at most 

such vertices. Given the sequence of rs, there are (Pw)ways of 8 ( M + N )  

choosing a set of cardinality w (as the white points). Now, let ~/ be a constant 
(0 < q < 1) to be chosen shortly, and suppose that 0 <e < / (5 .  Choose M, N such 
that 

(3.15) 2#N<Me<(3#-ON,  p(M,N,e)<~l; 

this is possible by Lemma 3.7. The first condition of (3.15) implies that (ii) of 
Lemma 3.5 holds. Suppose also that n is large enough for (iii) of Lemma 3.5 to 
hold; by (i) and (iii), we have that n>__M+2N, giving by Eemma 3.5 that 
p > K n where 

N 
K = K (M, N) - 

(M+N)(M+2N)" 

By Lemmas 3.5, 3.6 and 3.7, 

(3.16) P(bo,<n(p-5e))<= y, 
p> Kn 

N 2 
where 6=~(M,N)= (8(M~+ N)) >0. 

By (3.15), 

( N ) < 2 4 #  8 +1 = 
S 

Choose ~1 small enough so that 

~2 
and 6 > - -  

- 576 #z" 

(3.17) 48 # ~7 z3/(1152 ~3) < ,~. 
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P ( b o , < n ( p - 5 g ) ) <  ~ (24/~] p 2 2Pr/w~2/{s76u2) 
p>Kn \ ~ / w>~:p/(2g) 

The final series in (3.18) is geometric with ratio smaller than one, and so 

p> Kn 

by (3.17), for some constants/(2, / (3,  ~, where 

4 8 ~  ~3/(1152# 3) K 

This completes the proof of the theorem. 

Proof of Theorem 3.2. This is much simpler than the previous proof, and 
proceeds by the subadditive inequality and standard estimates for the tails of 
sums of independent, identically distributed random variables. Let ~ > 0 and let 
N be chosen such that 

(3.19) gN = 1 E (to~) < # + e. 

If n = r N  for some integer r, then by the subadditive inequality 

P(to,> n(p + 2e)) < P (Y  1 + ... + Y~ > n(/i+ 2e)) 

where Yi=t,_~)u,iN. The Y's are independent and identically distributed; fur- 
thermore, Y1 is no greater than the sum of the time coordinates of the edges in 
the straight segment joining the origin to (N, 0), implying that 

(3.20) E(e~r~)< e~dF(x)  < oo 

for small positive values of ~. Writing Zi = Y~ -E(Y0, we deduce that 

P( to ,>n(p+ 2~))<P(Zl  +.. .  + Z~>n(p+ 2 e ) - n g  N) 

< P ( Z  1 + ... +Z, .>  rNe) by (3.19) 

< \ e ~  ] for ~>0. 

Recall that E(Z1)= 0, so that E(er = 1 + o(~). Hence 

(3.21) P(to, > n(p + 2 ~)) < fl(r 

where f i ({ )=(1-{Ne+o({) )  1IN. Choose {o>0 such that 0<f i ({o)< l  to deduce 
the appropriate estimate in the case when n is a multiple of N. 
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For  general  values of  n, write n = r N + s where 0 < s < N, and note  that  

to. ~ tO,rN -If- trN,n 

where the lat ter  two variables are independent .  Thus  

(3.22) P (t o. > n (# + 3 e)) < P (tO,rN > l't (# -~- 2 ~)) -}- P (trN, n > 17 e). 

Bound  t~s,, above  by the sum t ~ + . . . + t ~  of the t ime coordinates  of  the 
segment  of  the x-axis between (rN, 0) and (n, 0) to obtain,  by the general izat ion 
of M a r k o v ' s  inequality, that  

P(t~u,. > he) < E(e~t') ~ e . ~  

for ~ > O, and the p roo f  is complete.  

Proof of Corollary 3.3. The following inclusion is obvious:  

(3.23) {Oo,<n(p-e)}~{O, ,n+~<m(#-e)}~{Oo, ,+~<(n+m)(#-e)}  

for m, n > 0 and 0 = a, t. Thus 

(3.24) P(Oo,<n(p-e))P(Oom<m(#-e))<P(Oo.,+m <(n+m)( f -e ) ) ;  

to see this for O=a, use the FKG inequali ty (see Smythe  and W i e r m a n  (1978, 
p. 12)). By subaddit ivi ty,  

(3.25) B~ lim ( - !  l~176 <n(p-e))  

exists for O=a, t, and satisfies O<Bo(e)<oo for all ~. Equat ion  (3.23) does not  
hold for the cylinder point- to- l ine passage t imes %,,  but  a similar relat ion 
holds by considering which point  on the line x = n  is the endpoint  of  the 
shortest  cylinder pa th  f rom (0,0). Fo r  any route  r of  son, let (n, Y(r)) be the 
endpoint  of  r which lies on the line x=17. F r o m  the collection of all such 
vertices (n, Y(r)), let (17, Y) be the vertex for which IY(r)t is a m i n i m u m  (if there 
are two such vertices, let (n, Y) be the one in the upper half-plane). Now,  the 
events {Y= y} par t i t ion the sample  space as y ranges over  the integers, and  so 

U ({So. < t~(ff - ~), r =  y} ~ {s~,.+ m < m ( ~  - -  8)"}) 
Y 

--= {So,. +,. < (t7 + m) (#  - s)} 

where s y is the inf imum of the passage times of paths jo ining (n, y) to H ,  m n,n+m w- 
which lie in the cylinder C,,n+ m except for their endpoints.  Thus 

P (So,, + m < (n + m)(# - e)) => ~ P (Son < n (# - e), Y= y) 
y 

�9 P(so, ,<m(p-e))  by independence 

= P (s on < n (p - e)) P (s o,, < m (ff - e)), 
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and the existence of 

Bs(e)= lim ( - ~  l~ < n ( # - e ) )  

follows from (3.24) for all 5 as before. Also, 0<Bs(0<oo.  It remains to show 
that 

(3.26) B~(~)=B~(O=Bt( 0 for all e 

and that this common value, B(e) say, satisfies conclusions (a), (b) and (c) of the 
corollary. Note first that Eq. (1.2) and Theorem 3.1 imply that 

(3.27) B,(5) =0  if e<0,  

(3.28) B0(0>0 if e>0,  where O=a, s or t. 

Note also that 

(3.29) Bo(e)=oo if e->_fi, where O=a, s or t, 

since any path joining 0 to H,  with passage time strictly smaller than n(#-e)  
contains some edge with time coordinate strictly smaller than # - e ;  this is 
impossible if e > fl, by the definition of ft. Similarly 

(3.30) 

since we have that 

(3.31) 

B0(0<oo if e<fi, where O=a, s or t, 

P(Oo, < n(# - 5)) > F((# - e) -)",  

by considering the segment of the x-axis which joins 0 to (n,0). 
Next we show that (3.26) holds; it suffices, by (3.29), to restrict our atten- 

tion to values of ~ satisfying e<fl. To show that Ba(e)=B,(e ) for e<fl, note first 
that ao ,< to ,  , and so Ba(O<Bt( O. To show that equality holds here, suppose 
that e<fl  and let ~5>0; now choose k such that 

P (a 0k < k (# -- 0) > exp( - k (B a (0 + 6)). 

Let aok(m ) be the infimum of the passage times of paths joining 0 to (k,0) 
which lie entirely within the cylinder {(x,y): - m < x < k + m } .  Then aok(m)J, aok 
as m~oo,  and so we may find a value of m such that 

(3.32) P (a0k (rn) < k(/~ - 0 )  > exp( -k(Ba( 0 + 2 6)). 

With this value of m, let n be a positive integer and let t 1 (respectively t2) be 
the sum of the time coordinates in the straight segment joining ( -m,0 )  to 0 
(respectively (n k, 0) to (n k + m, 0)). Then 

{r . . . .  k+m < (n k + 2m)(#-  5)} ___ {t 1 < m ( # -  e)} c~ {t 2 < m(p - 5)} 

{ao.nk(m ) < nk(#-e )} ,  
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giving, by the FKG inequality, that 

P(to,~k + 2,, < (n k + 2 rn) (# -~)) > F((# -~)  - )2~  P (aok(m) < k(# -e)) ~. 

Take logarithms, divide by nk and let n--.oo to obtain from (3.32) that 

Bt(~ ) ~ B a(~; ) + 2 c~ 

whenever e is such that F ( ( # - c ) - ) > 0 .  Now let c~,~0 to obtain 

Bo(e)=Bt(e ) if ~<fl. 

Next we show that Bs(e)=Bt(e) for e<fl. As before, So,<to, and so Bs(c)<B,(e) 
for all c. Suppose that e < fi and 3 > 0, and choose/c such that 

P (s ok < k (# -c))  == exp( - k (B~(e) + ,~)). 

Next choose m such that the event E(k,m), that 0 is joined to H k by a path 
which is contained within {(x,y): 0 < x < k ,  - m < y < m } ,  except for its end- 
points, and which has passage time strictly less than k (#-e ) ,  satisfies 

(3.33) P(E(k, m))>= exp(-k(B~(e) + 2~)); 

there exists such a value for m by virtue of the fact that 

{So,, < k ( # - a ) }  = 0 E(k, m). 
m 

For each v=(vl, v2)~Z a, we define F(v) to be the event that v is joined to 
H~+k by a path which is contained within 

C(v)= {(x, y): v t < x  < v~ + k,  - m  < y - v 2  <=rn}, 

except for its endpoints, and which has passage time strictly less than k (# - e ) ;  
thus E(k,m)=F(O), and P(F(v))=P(F(O)) for all veZ 2. For each w Z  2 we define 
the path r(v) as follows. If F(v) does not occur then r(v) is empty. If F(v) occurs 
then let V be the set of vertices w in {(v 1 + k, y): - m  < y - v  2 < m} such that v is 
joined to w by a path, lying entirely in C(v) except for its endpoints, which has 
passage time strictly less than k (#-e ) ,  and let w' be the vertex in V whose 
vertical displacement from (vl +k ,v  2) has a minimum absolute value (if there 
are two such vertices, we flip a fair coin to choose between them with equal 
probability). Let r(v) be a path in C(v) which joins v to w' and which has 
passage time strictly smaller than k(#-e ) .  Now we define the path r as follows. 
Let wo=O. If F(wo) does not occur, then r is empty. If F(wo) occurs, we let r(0) 
be the first section of r, and write w~ for the right hand endpoint of r(0). If 
F(w~) does not occur, then we stop the construction of r; otherwise we take the 
union of r(O) and r(w 0 to be the first section of r. Once r(Wo) , r(w 0 . . . . .  r(w~_ 1) 
have been chosen, we stop the construction of r if F(wj) does not occur (where 
wj is the right hand endpoint of r(wj_ i)); we append r(wj) otherwise. Now for 
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any positive integer n, 
f in-  I 

(3.34) P(t~ t~j~=oF(Wj)j~{wn=(nk'O)}) 

=P(F(O))~P(Z1 + ... + Zn =0IF) 

n--1 
where F = ~ F(wj) and, conditional on F, Zj is the vertical displacement of wj 

j=0  
from w j_ l+(k,0), including the sign of this displacement. Thus, conditional on 
F, the Z's are independent identically distributed symmetric random variables, 
satisfying IZj] <m, and it is a consequence of the local central limit theorem 
(see Gnedenko and Kolmogorov (1954, Sect. 49)) that 

(3.35) P(ZI+...+Z~=OIF)>~n-~ for all n 

and for some constant c~=cffk, m)>0. We combine (3.33), (3.34) and (3.35) to 
find that 

P(to, ,k < nk(l~-/3))=exp(-nk(B,(8)+ ~. 

Take logarithms, divide by nk and let n ~  oo to obtain 

B, (/3) < S s (e) + 2 c5. 

But 3 > 0  was arbitrary and so Bt(8)=B~(/3 ) if /3<fi, as required; the proof of 
(3.26) is complete and we write B(5)=Bo( 0 for O=a, s or t. Conclusions (a) and 
(b) follow immediately from (3.27), (3.28), (3.29) and (3.30), and it remains only 
to show that (c) holds also. 

The remaining part of the corollary relies upon the convexity of B on 
( -  o0, fl). Let /31 </32 < 83 < fi and let k = k(n) be a sequence of positive integers 
with the property that 

_ _  k(n) /33-/32 (3.36) k(n) ~/33-e2 for all n, - - - ~  as n-* oe. 
n /33 --/31 n /33 --/31 

Divide the interval [0, n] into the two subintervals [0, k] and [k, n] in the usual 
way to obtain 

(3.37) P(to~<n(#--/32))>=P(tok<k(#--el))P(ro,n_k<(n -k)(#-83)) ;  

this holds since, by (3.36), 

k ( ~ -  51) + (n - k ) (~  - ~3)-<- n (~  - 52). 

Take logarithms of (3.37), divide by n and let n--*oo to obtain, by (3.36), 

/33 --/32 52 --51 
( 3 . 3 8 )  B(/3a)<--B(5~)+ B(/3a), 

/33 --51 53 --81 

giving that B is convex on (-oo,fl).  Hence B is continuous on ( - ~ , f i ) ,  and 
(3.27) implies that B(0)=0 if fi>0. From its definition, B is a nondecreasing 
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function, and (3.28) and (3.38) imply that B is strictly increasing on [0,fi) if 
fi > 0, This completes the proof of part (c). 

Proof of Theorem 3.4. This follows exactly the scheme of the previous proofs. 
The corresponding version of Lemma 3.7 is proved by using Eq. (2.13) in place 
of Eq. (2.2). 

4. Crossings of Rectangles 

Let B,m= {(x,y): 0<x_<n, 0 < y < m } ,  and let I,m be the minimum passage time 
of the set of paths within B,m which join some vertex on the left hand side of 
B,m to some vertex on the right hand side of Bn, ., as before. We saw in Sect. 2 
that n-lln,--*# a.s.; it is the purpose of this section to find out how big m 
=re(n) need be in order that n -11.,~(.) converges as n~ov to some limit which 
is strictly smaller than #; since this is impossible if #=0 ,  we suppose henceforth 
that #>0.  It is not surprising that re(n) needs to grow exponentially in n. Note 
first that, by Corollary 3.3, 

( 4 . 1 )  C(cf )=B(#-5)=  lim -~logP(son<nc5 ) 
n ~ o o  

exists for 0_< 5 < # and has the following properties, Let 

(4.2) v = inf{v: F(v) > 0}. 
Then 

(a) C: [0 ,#]~[0 ,  oo] and is a nonincreasing function, 

(b) C(6) = oo if c~ < v, and C(6) < ~ if 5 > v, 

(c) C(#)=0 if v<#,  

(d) C is continuous and strictly decreasing on (v, #]. 

The next theorem explores the asymptotic behaviour of  It-tin,re(n) when 
m(n)=e c" for some c>0.  Similar techniques may be used to provide corre- 
sponding results for other functions re(n) which grow beyond bounds as n--+ oo. 

Theorem 4.1. Let re(n)= e c" and suppose that v <#. 

(a) I f  0 < c <  C(v+ ) then c= C(6) for a unique value of 6, and 

1 
- - l n , m ( n ) - + O  a . s ,  a s  t7--~00. 
n 

(b) I f  c> C(v+) then 

1 
--  ln,m(n)----~ l~ a . s .  a s  1 l - + o o .  
tl 

1 
Corollary 4.2. Suppose that rn(n)~oo but -logm(n)-+0 as n--+oo. I f  v < #  then 

1'1 

1 
lim inf -  I~ m{.) > # a.s. 

n ~  oo  t l  ' = 
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If, further, j'(1 -F(x) )4  dx < oo then 

1 
~ l,,m(.)--+ # a.s. a s  gl---~ 00 .  

This extends the results of  Theo rem 2.1. 

Proof of Theorem 4.1. (a) Suppose  c=C(6) where v < 6 < #  and let e be such 
that  v < 6 - e < 5 < 6 + e < # .  Any  route  for 1,m must  start  at some vertex in 
{(0,y): O<__y<m}, and so 

P (l,m < n (3 - e)) < ~ (m (n) + 1) P(so.  < n (6 - e)) 
n n 

= ~ exp( -n (C(c~  -e)  - c + o(1))) 
n 

<oO,  

sance C(6 -e)  - c  = C(8 - 0  - C(6) > 0. Thus  

(4.3) liminfl-l,,m(,)>6a.s, as n ~ o o .  

For  the reverse inequality, divide B,m into k(n)=m(n)/(2n 3) rectangles with 
dimensions  n by 2na; for ease of  no ta t ion  we shall neglect the possibili ty that  
these, and  forthcoming,  quanti t ies may  not  be integer-valued. Each such rect- 
angle is a copy of the rectangle T, = {(x, y): 0 < x_< n, l Yl _-< n3} �9 Let  s0,(~ ) be the 
m i n i m u m  point- to- l ine passage t ime within T, of paths  joining 0 to the line x 
= n. Then  

P(so,(e ) < n(5 + O) > P(so, < n(6 + e) but  0 is jo ined to neither 
of the lines y =  _+n 3 by a pa th  with 
passage t ime less than  n(6 + e)) 

> P(so, < n(~ + O) - 2P(bo.,~ < n((5 + O) 

= e x p ( - n ( C ( 8  + e) + o(1))) - o ( e x p ( -  n2)) 

by T h e o r e m  3.1. Therefore  

P(l,.m(,) > n((5 + ~)) <= ~ {P(so,(a ) > n(8 + e)} k(") 
n n 

< ~ e x p ( - k ( n )  exp( - n(C(6 + e) + o (1)))) 
n 

= ~ e x p (  - exp(n(c - C(6 + e)) + o (n))) 
n 

<oO,  

since c - C ( 6 + e ) =  C(6) - C ( 6 + e ) > 0 .  Thus 

l imsup- l / , ,m( , )<Sa . s ,  as n--,oo 

as required. 
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(b) If c> C(v+) then, by monotonicity and part (a), 

1 
limsUPnln,m(,o<ba.s, as n--*oo 

n ~ o o  

for all 6 > v. By the definition of v, 

1 
n l,,m(n) > V a.s., for all n, 

and the conclusion follows. 

Proof of Corollary 4.2. From Theorem 4.1, 

lim inf -1 ln,m(n) ~ (~ a.s. 
n~ oo n 

for all ~ < #, and the first conclusion follows. The final part follows from part 
(b) of Theorem 2.1. 

5. Network Flows 

The foregoing results have applications to the problem of ascertaining the 
value of the maximum network flow through rectangles of Z 2 whose edges 
have random capacities. See Bollobfis (1979) for an account of the general 
problem and the max-flow min-cut theorem. 

To each edge e of L we assign a random capacity c(e), where {c(e): eeL} is 
a family of non-negative independent identically distributed random variables 
with distribution function F. Let B,,, be the n by m rectangle {(x,y): O<_x<n, 
O<y<m} as usual. We introduce two new vertices, labelled 0 and 0% called 
the source and the sink respectively, so that 0 (respectively ~ )  is joined to each 
vertex on the left (respectively right) hand side of B,m by edges with infinite 
capacity; we call this augmented graph B,+,,. See Fig. 1. Do not confuse the 
source 0 with the origin 0. Let ~b,,, be the maximum flow through B,+m from 0 
to oo, subject to the random edge capacities. We are interested also in the 
related problem of first-passage percolation through Z 2 when the time coor- 
dinates have distribution function F, and denote by # the time constant of this 
process. 

1 
Theorem 5.1. We have that liminf--qSmm> # a.s. I f  ~(1-F(x))4dx<oo then 
1 , ~ o o  m 
~ Oram'-'+ # a.s. and in I2 as m ~ oo. 

Fig. 1. The graph B. + 
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As noted after Theorem 2.1, the almost sure convergence of m-lO,,m is 
actually valid without any assumption on the distribution function F. 

Let v and C(6) be given by (4.2) and (4.1) respectively. 

Theorem 5.2. Suppose that V < l~ and n(m)=e cm where c>0.  

(a) I f  0 < c <  C(v+ ) then c= C((5) for a unique (5~(v,#) and 

1 
- -O , (m) ,~b  a.s. 
m 

as rn~ ~ .  

(b) I f  c> C(v+) then 

1 
~ 4,,~m~,~-+ v a.s. a s  m--+ oo. 

As noted before Theorem 4.1, similar asymptotic results may be obtained 
for m-~b,~m),m for other functions n(m) tending to infinity as n ~  oo. 

A case of special interest is when the capacities have the Bernoulli distribu- 
tion, 

(5.1) P(c(e) = 0 ) =  1 - p ,  P(c(e) = 1)=p, 

where 0 < p < l .  For this case, the following is an immediate corollary of 
Kesten (1980a, b). 

Corollary 5.3. I f  the edge capacities have distribution (5.1) then, as m ~  ~ ,  

1 
~Omm--'~(P) >0 /f p>�89 a.s. 

Related problems of flows through randomly-capacitated networks are con- 
sidered by Grimmett and Welsh (1982); they were concerned with the asymp- 
totic properties of the maximum flows through large complete graphs and 
infinite branching trees. 

Proofs of Theorems 5.1 and 5.2. We shall use the max-flow rain-cut theorem 
(see Bollobfis (1979, p. 47)). The dual lattice L D of L is the graph constructed as 
follows: place a vertex in the centre of each face of L and join two vertices in 
L v if and only if the corresponding faces of L have an edge in common. Note 
that L D is isomorphic to L. Consider the rectangle 

D 1 1 
+~,Y+7): B,m= {(x O<_x<_n-1, - l  < y < m }  

in L D, together with all its interior edges, except for those in the top and 
bottom sides. To each edge e of L D we assign a time coordinate equal in value 
to the random capacity of the unique edge of L which e crosses. Each non-self- 
intersecting path from the top side to the bottom side of B,~ corresponds to a 
unique cutset of B, +,  and the passage time of such a path equals the size of the 
corresponding cutset. By the max-flow min-cut theorem, ~b,m equals the mini- 
mum passage time of the paths joining the top and bottom edges of B,~. Thus 
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q6n,, has the same distribution as lm+1,,_1, where I is the line-to-line passage 
time of Sect. 2. Theorems 5.1 and 5.2 follow from Theorems 2.1 and 4.1, 
respectively. 

6. Electrical Resistances of Random Networks 

The electrical resistances of random subgraphs of 7l/ have been studied by 
various authors in the physics literature (see, for example, Kirkpatrick (1978) 
and Stauffer (1979)). The basic problem is as follows. Consider the graph 2g d 
and suppose that each edge e of 7/e is a wire with some electrical resistance 
r(e), where {r(e): e~TZ d} is a collection of non-negative independent identically 
distributed (possibly infinite-valued) random variables with distribution func- 
tion G. Let B,(d) be the cube {xeZd: O<__xl, x2, ..., xd<n }. What is the 
effective resistance of B,(d) across opposite hyperplanes? More precisely, in- 
troduce two new vertices, labelled 0 and o% such that 0 (respectively oo) is 
joined to every vertex which is in both B,(d) and the hyperplane x l = 0  
(respectively x 1 =n) by edges made from a substance with zero resistance (see 
Figure 1 for the case d=2).  We connect a battery across the two terminals 0 
and oo so that 0 is at potential 0 volts and oo is at potential 1 volt. This 
potential difference induces a random potential function ~b,, mapping the vertex 
set of B,(d) into [0, 11 such that ~n(0)=0 and 45,(oo)= 1. It is clear that 

�9 , ( (0,x2, . . . ,xe))=0 and ~n((n, x2 , . . . ,xe) )=l  

for all 0 < x 2 , . . . , x d < n .  Also, currents flow along the edges of B(d), and the 
potentials and currents satisfy well-known laws, called Kirchhoffs Laws and 
Ohm's Law. For  any realization of the set of resistance there is a correspond- 
ing set of potentials and currents which satisfies these laws. Immediate con- 
sequences of these laws are the rules for combining resistances in series and in 
parallel (see Fig. 2). 

q r2 

Fig. 2. Resistances r 1 and r 2 in series and parallel 

Two resistances r 1 and r 2 in series have combined resistance r = r 1 + r2; two 
resistances r I and r 2 in parallel have combined resistance r such that r - l = r f f l  
+r2 -1. See Bollobhs (1979, Chap. 2), Doyle and Snell (1982) and Kesten (1982, 
Sect. 11.3) for general discussions of electrical network theory. 

Let Rn(d ) denote the effective resistance of B,(d) between the vertices 0 and 
oo; it is our purpose to study the asymptotic behaviour of R,(d) for large n. Of 
great importance is the probability 

P(r(e) = oo )= 1 - G (  oc - )  
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that an edge-resistance is infinite. We suppose that 

p=P(r(e) < oo), 1 -p=P(r(e)= oo) (6.1) 

and, for x < o% 

(6.2) P (r (e) < x) = p J(x) 

where J corresponds to a probability measure concentrated on [0, oo). We call 
an edge insulating if it has infinite resistance, and conducting otherwise; we call 
a path insulating (respectively conducting) if all its edges are insulating (respec- 
tively conducting). 

First, we state our result for the case d = 2. 

Theorem 6.1. I f  each edge-resistance has distribution given by (6.1) and (6.2), and 
d =2,  then 

(a) if P<5 then P(R,(2)= oo)--*1 as n~oo, 
(b) if P>5 then there exists v(p)< oo such that 

{pSx- 1 dJ(x)}- ~ <lira infR,(2) 
n ~ c o  

< lira supR,(2) < v(p)SxdJ(x) a.s. 
n ~ o o  

The dependence on whether p < 5  or p > 5  is not surprising in the light of 
the fact (Kesten (1980b)) that the critical probability for bond percolation on 
Z 2 equals 5, since, if P < 5  and n is large, it is unlikely that there exists a 
conducting path between 0 and oo. 

The above theorem contains no information about the case P=5.  It may be 
shown that the event {R,(2)--,oo} is a tail event of the collection of inde- 
pendent edge-resistances, and so P(R, (2)~  oo) equals either 0 or 1. A result of 
Kesten (1982, Theorem 11.2) implies that P (R , (2 )~oo)=  1 for p=�89 so long as 
J(0) < 1. 

If p~x-ldJ(x) = o% then the left hand side of the conclusion of part (b) of 
the theorem is interpreted as zero. In the interesting case when p>�89 and J has 
finite mean and finite harmonic mean, we see that the sequence {R,(2)} is a.s. 
bounded away from zero and infinity; it is tempting to conjecture that the 
sequence converges as n ~  oo. 

Results similar to Theorem 6.1 hold for other two-dimensional lattices too, 
so long as they are one of a matching pair. We have a partial result for higher 
dimensions. Consider Bernoulli percolation on Z d, in which each edge is 
declared open (respectively closed) with probability p (respectively 1 -p) ,  and let 
W(v) be the number of edges in the open cluster which contains the vertex v. 
Define the critical probability 

PT(d) = sup {p: E(W(O)) < oD}. 

Theorem 6.2. I f  d > 2  and the edge-resistance distribution is given by (6.1) and 
(6.2) then 

(a) if p<pr(d) then P(R,(d)= oo)~1 as n--+o% 
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(b) if p>�89 then there exists v(p)< oo such that 

{p ~ x -  * dd (x)} - 1 < lira inf(n ~- 2 R,(d)) 
~ o o  

N lim sup (n d- 2 R~ (d)) < v (p) ~ x dJ(x) a.s. 
n ~ o o  

Again, we are tempted to conjecture that the sequence {n -R,(d)} converges 
as n-+oo, for large enough values of p. 

The constant v(p) in Theorems 6.1 and 6.2 is related to the time constant 
#(p) of the first-passage percolation process on Z 2 with time coordinate distri- 
bution given by 

(6.3) P(t(e) = 0 ) =  1 - p ,  P(t(e) = 1)=p; 

more specifically 

(6.4) v (p) = 2 p/#(p) 2. 

In the case when p > l ,  Kesten (1982) gives more useful estimates for R,(2); 
he explores upper and lower bounds involving powers (p-�89 

The methods of Sects. 4 and 5 may be applied to yield partial results about 
the resistance across the opposite hyperplanes of rectangular parallelepipeds in 
/ga. The following is an example of such a result in two dimensions. Let B,+~ be 
the rectangle {(x,y): O<_x<_n, O < y < m }  together with the two vertices 0 and 
o% as usual, and suppose for simplicity that each edge-resistance has the 
Bernoulli distribution 

P(r(e) = 1)=p, P(r(e) = :~)= 1 - p  

where 0 < p < l .  Let Rnm be the resistance of the ensuing electrical network 
between the terminals 0 and oo. The corresponding first-passage percolation 
process has time coordinates t(e)=r(e) -1, with distribution given by (6.3). In 
the latter process, note that the constant v, defined in (4.2), satisfies v=0  if 
p < l .  Let #(p) be the time constant and let C(~) be given by (4.1), for 
0<~<#(p) .  

Theorem 6.3. (a) I f  p<!z, there exists a constant ripe(O, oo) such that, if n=n(m) 
= r log rn  then, as m--+oo, 

{01 if fi<fiP 
P(R, , ,=  c~)--, if r > r p  . 

(b) Suppose � 8 9  and let c be such that O<c<C(O+) .  Then c=  C(8) for 
a unique 8~(0,#(p)). I f  n=n(m)-+c~ as m-+oo, but n(m)<=e cm for all large m, 
then 

- _< lim inf - -  R, , , ,  < lim sup p - , , ~ o ~  \ n  / = , , - ~  ~ R , m  =(~2 a.s. 

Thus, if � 8 9  then R,(m;,m grows at about the rate n(m)/m so long as 
n(rn)<e ~m and c is not too large. Of course, there exists Co=Co(p) such that, as 
m - +  OO, 

P ( R , ~ = o o ) ~ I  if n = e  ~m and C>Co(p); 
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this holds because, for large enough c, B, D is crossed vertically by an insulating 
path with probability tending to one (see Grimmett  (1981)). 

A continuous-space version of this problem has been studied by Papani- 
colaou and Varadhan (1979) and Golden and Papanicolaou (1983); they stud- 
ied a continuous sheet N2 whose conductivity varies about the sheet in the 
manner of a stationary random process. Under the assumption that each 
resistance satisfies 

O<a<r(e)<b< oo a.s. 

for constants a and b, they showed that the effective resistance R', between 
opposite sides of the square {(x,y)eN2: O<__x, y<n} converges in mean square 
as n ~ .  Their proof deals with the case of N 2, but appears to apply in the 
case of 2g 2 also; see Kiinnemann (1983) for an explicit discussion of the lattice 
case. In conjunction with a result of Straley (1977), this implies that if 

P (r (e) = a) = P (r (e) = b) = �89 

for some constants a, b satisfying 0 < a < b <  o% then 

R,(2)~(ab) ~ in mean square. 

As remarked earlier, the question of the convergence of {R,(2)} remains unre- 
solved if the edge-resistances may take the values 0 and ~ .  

Proof of Theorem 6.1. We write B, and R, for B,(2) and R,(2). 

(a) Let E, be the event that there exists a conducting path in B, from 0 to 
oo. Then, if p < �89 

P(En)~O as n ~o o  

by the result of Kesten (1980b). 

(b) The lower bound is easy to obtain. Define Hk= {(k,y): - o o  < y <  oo} 
and for each k=0 ,1 ,2  .... in turn, join together all the vertices in H k by 
connections with zero resistance. The effect of this on B, is to replace it by a 
network of the form of Fig. 3, with n + 1 vertices, and such that vertices k and 

0 I 2 3 n-I n 

Fig. 3. The electrical network obtained by connecting together the vertices in each vertical line 

k +  1 ( 0 < k < n )  are joined by n + l  edges, each of which has a random re- 
sistance; the resistance R', of this network is such that 

(6.5) R'~NR,. 

By the series and parallel rules, 

R" = ,--~o 
"= d 
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where lij is the resistance of the edge of L joining (i , j)  to ( i+ l , j ) .  But "har- 
monic means to not exceed arithmetic means", and so 

by the law of large numbers and (6.2). 
Combined with (6.5) this yields the lower bound. See Kesten (1982) for a 

better lower bound which expresses R' n in terms of powers of the difference (p 
-�89 

Next we show an upper bound for R n. For each edge e of L define 

1 if e is conducting 
c(e) = 

0 if e is insulating. 

Let 0n be the maximum number of edge-disjoint paths from 0 to ~ in B, 
which contain only conducting edges, and let q5 n be the size of a maximal flow 
in B, between 0 and oe when each edge e has capacity c(e). By a standard 
result of integer programming (see, for example, Bollob/ts (1979, p. 48)) there is 
a maximal flow which sends either 0 or l units along each edge, and thus ~9, 
= ~b,. It follows from Corollary 5.3 that 

1 
(6.6) - O , ~ # ( p )  a.s. as n ~ o e  

tit 

where /2(p) is the time constant of Bernoulli first-passage percolation on 7Z 2. 
From B, we obtain a new electrical network by removing all connections 
which are not in one of these paths, and by separating the paths at any vertex 
where they cross; this network is a set of 0 = 0,, paths in parallel (see Fig. 4). It 
is easy to see that the resistance R~,' of the new network is such that 

(6.7) R n < R ~ '  , 

since we have deleted connections in its construction (think of the separation 
of two paths which cross at some vertex v as the cutting of an imaginary link 
with zero resistance between them at v). Denote the resulting paths by 

~2 , .  

Fig. 4. The electrical network obtained by separating- the ~ edge-disjoint conducting paths joining 
0 to ~, and neglecting all other conducting edges 
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rt 1 .. . .  ,rco, and let r(rtl) be the sum of the resistances of the edges of rc i. By the 
series and parallel rules, we have that 

1 > 1 > ~  ~ 1 
5- -=-~7= )_2 r(~i) 

by the harmonic-arithmetic mean inequality 

>tP2/~r(e) c(e) 

where the last sum is over all edges in B,, with the convention that 0. oo =0;  
thus, this summation is the sum of the resistances of the conducting edges of 
B,. Now apply (6.6) and the law of large numbers to find that 

L > O  2 n 2 

R, = n 2 Zr(e)c(e) ~l~(P)z{2p~xdJ(x)}-t a.s. 

as required. If p~xdJ(x) = 0% then we interpret the last term as zero. 

Proof of Theorem 6.2. (a) Let H =  {x~B,(d): x 1 =0}. If p <pT(d), then 

P(R,(d)< ~ ) <  ~, P(r  is in a conducting path of length n) 
v~H 

<__ ~ P(W(v)>=n) 
v~H 

~_ (n -~- 1) d-1 P ( W ( O )  >= n) 

< (n + 1)a - 1 c 1 exp ( - c 2 n) 

for positive constants q(p), c2(P), by the results of Chap. 5 of Kesten (1982). 
Thus 

P(R,(d)=oo)--+l as n~oo if p<pr(d ). 

(b) The lower bound is obtained, just as in the previous proof, by shorting 
out all the vertices of B,(d) in hyperplanes of the form {xeZa: x l=k}  for k 
=0 , . . . ,  n. Note that the lower bound is valid for all values of p. To obtain the 
upper bound, decompose B,(d) into the disjoint union P(1)w ... to P((n+ 1) a-2) 
of two-dimensional subsets of B,(d): each P is a set of the form {xeB,(d): x 3 
=J3, x4=J~, ....  ,xa=je}, as 03, ...,Ja) ranges over {0, 1, . . . ,n} a-2. Let R,, k be the 
resistance of P(k) between 0 and c~, neglecting all other edges in B,(d). Then 

1 (n+l)d-2 1 
- - >  2 R,(d) = R,  k k=l 

Fix e > 0 and let 

N(n, e) = I{k:R,. k < (1 + e) v(p)~x dJ(x)} 1, 
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where v(p) is the constant of Theorem 6.1. Then 

(6.8) 1 > N(n, e) 1 [].xdJ(x)}_ l 
t,td-- 2 R,(d) = ( n ~ i )  ~ 2  v(p)(1 + e) 

But N(n,e) has the Bernoulli distribution with parameters ( n + l )  d-2 and p,, 
where 

p, = P(R,(2) < (1 + e) v(p)~xdJ(x)). 
We claim that 

N(n,~) +1 a.s. as n~oo.  (6.9) (n -]- 1)  d -  2 

To see this, note from Theorem 6.1(b) that p,---,1 as n~oo ,  and, for 0 < 6 < 1 ,  
pick N such that p, > 1 - 6  for all n => N. Then, for n > N, 

(6.10) P(N(n ,e)<(n+l)d-2(1-26))<P(S ,<(n+l)d-z (1-2g)) )  

where S, is Bernoulli with parameters ( n + l )  e-2 and 1 - 6 .  In the usual way, 
there exists c(6)>0 such that 

P(S ,<(n+l)d-a(1-26) )<exp( - (n+1)e-2c(6) )  for all n, 

giving from (6.10) and the Borel-Cantelli lemma that 

N(n, e) 
l iminf  1)a_ z _> 1 - 2 6  a.s. for all 6>0,  

,400 (n+ 

and (6.9) is proved. Let n ~  oo in (6.8) to obtain 

lim inf(n d- 2 R,  (d)) < (1 + ~) v (p) ~ x dJ ( x) a.s. 
n~oo 

This holds for all positive e, and so the proof is complete. 

Proof of Theorem 6.3. We sketch this. 

(a) P(R,m<oo)=P(B,~ is crossed from left to right by a conducting path), 
and the result follows immediately from Theorem 2 of Grimmett  (1981) with, 
in the notation of that paper,/~v set equal to ep 1. 

(b) The proof of the lower bound in Theorem 6.1 is easily adapted to deal 
with this more general case. To show the upper bound, the proof of Theorem 
6.1 may be followed to the point when 

nm ~r(e)c(e) 
R"m<--r nm 

But r > ~be~ for all large m, and so 

lira inf I ~b,m > lira 1 ~be~ = 6 a.s. 
m~oo /T/ m ~ / ~  

by Theorem 5.2. 
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