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Dual Nonlinear Programming Problems 
in Partially Ordered Banach Spaces 

K. RITTER 

Summary. The concept of duality plays an important role in mathematical programming and has 
been studied extensively in a finite dimensional Eucledian space, (see e.g. [13, 4, 6, 8]). More recently 
various dual problems with functionals as objective functions have been studied in infinite dimensional 
vector spaces [5, 7, 1, 10, 12]. 

In this note we consider a nonlinear minimization problem in a partially ordered Banach space. 
It is assumed that the objective function of this problem is given by a (nonlinear) operator and that 
its feasible domain is defined by a system of (nonlinear) operator inequalities. In analogy to the finite 
dimensional case we associate with this minimization problem a dual maximization problem which is 
defined in the Cartesian product of certain Banach spaces. It is shown that under suitable assumptions 
the main results of the finite dimensional duality theory can be extended to this general case. This 
extension is based on optimality conditions obtained in [11]. 

1. Statement of  the Problem 

Let X, Yo, Y1 . . . . .  Y,, be real Banach spaces. Suppose I1o is reflexive. For  each 
i, j s {0 ,  1 . . . . .  m} let L~j denote  the space of bounded  linear operators  mapp ing  
Yi into Yj. 

A subset K of Yj is a convex cone (with vertex 0) if K + K c K and 2K c K 
for every positive number  2. 

Fo r  j e{0 ,  1 . . . . .  m} let K j c  Yj be a closed convex cone. It is assumed that, for 
j ~ 0, Kj has interior points and that  Ko has the following properties:  

1) I f f ( K o ) =  0 then f =  0 for every f E  Yo*, where Y0* denotes the space of  con- 
t inuous linear functionals over Yo. 

2) There is a 6 > 0  such that  ]lyi+y2II>=(~ whenever yi, y2~K o and ItYi}l = 

Hy21t = 1. 

The cone K~ can be used to define a partial ordering for Yj, We write y > 0 if 
and only if y e Kj.. Hence, Yl > Y2 if and only if Y l -  Y2 s Kj. If  Kj has interior points  
we write y > 0 if and only if y is an interior point  of Kj. 

It should be noted that  p roper ty  2) of  K o implies that y = 0  whenever y e K o  
and - y ~ K  o. However ,  this need not  be true for the other  cones Kj. 

An  element A~L~j is said to be positive, A > 0 ,  if A(K~)cKj. Let F :  X--+ Yo 
and gj: X ~ Yj for j = 1 . . . . .  m. If F(x) or gj(x) is Fr6chet-differentiable at x o we 
denote its Fr6chet  derivative at Xo by F'(xo), respectively g}(xo). 

A mapp ing  h (x) of  X into Yj is said to be convex if for every xl, x2 e X 

,~ h (X 1) "31- (1 -- 2) h (x2) > h (2 xl + (1 - 2) x2) 

for every 2 ~ E  1 such that  0 < 2 <  1. 
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If for every ye  Yj the set 
{xeXlh(x)>=y} 

is convex, then h(x) is called quasi-concave. 

Suppose h(x) is Fr6chet-differentiable. According to [9] h(x) is called pseudo- 
convex if for every xl, x2eX 

h'(xl)(x2-xl)>O implies h(x2)>h(xO. 

It is not difficult to show that h (x) is pseudo-convex if it is convex and Fr6chet- 
differentiable. But a pseudo convex mapping need not be convex. 

Let 
e = {xeXIgj(x)>__O, j= 1, ..., m}. 

We consider the following minimization problem which is referred to as the primal 
problem, PP. 

Determine an Xo e R such that 

F(x)>F(xo) 
for all x ~ R. 

Any x~R is said to be a feasible solution to the PP. I fxo~R and 

F(x)> F(xo) for all x~R 

then Xo is called an optimal solution of the PP. 

With this minimization problem we associate a maximization problem, which 
is referred to as the dual problem, DP, as follows. 

Let 

~ =  {(x, T~, ..., Tm)~XxLlox "'" xLmo]F'(x ) -  ~ rio g~(x)=0, Tj__>0,j= 1,..., m}. 
j=l 

Determine an (xi, T11 . . . .  , Tmi)ef2 such that 

F(x,)-  ~ T~iogj(xa)> F(x ) -  ~ Tjogj(x) (1) 
j = l  j = l  

for all (x, T1, ..., T,,)~?. 

Any (x, Ta,..., Tm)~(~ is said to be a feasible solution to the DP. If 
(xl, Tll . . . . .  T,,1)~2 and (1) holds for all (x, T1, ..., T,,)~f2, then (xi, Tll . . . .  , T~l) 
is called an optimal solution of the DP. 

As in the finite dimensional case we have to assume that the PP satisfies a 
certain constraint qualification which can be formulated in various ways. For 
our purposes it is convenient to use the following 

Constraint Qualification for the PP. Suppose Xo is a feasible solution to the PP. 
Then x0 is said to satisfy the constraint qualification if for all Tj~Ljo, j = 1 ..... m, 
with the property 

T j y > 0  whenever y~{Kj-gj(Xo)} (*) 
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the equation 

implies 

g (xo)=O 
j = l  

Tj o gj(xo) = 0 for j = 1 . . . . .  m. 

It should be observed that, if gj(xo)>O for some j, it follows from (,) that 
Tjog}(xo)=O. Hence, it depends only on the constraints which are active at xo 
whether x o satisfies the constraint qualification. 

In particular, if Y~ . . . . .  Ym = El, the constraint qualification reduces to the 
assumption that the zero element of X* is not in the convex hull of the gradients 
of the constraints which are active at Xo. 

Furthermore, we need a constraint qualification for the DP which we state 
in the following way: 

Constraint Qualification for the DP. A feasible solution (xl, Tll, . . . ,  Tml) of the 
dual problem is said to satisfy the constraint qualification if there exists a con- 
tinuously differentiable mapping x =h(T~ . . . . .  Tin) of some open neighborhood N 
of (T11, ..., 7",,0 into X such that x l = h ( T l l  . . . . .  T,~I) and (h(Ti . . . . .  Tm), 7"1 . . . .  , T,,) is 
dual feasible for (T~ . . . . .  Tm)eN c~ {(T~ . . . . .  Tm)[ T~ > O, j = 1 . . . . .  m}. 

The following theorem will be needed in deriving the duality theorems in the 
next section. It can be obtained as a special case of Theorem (3.2) and (3.3) in [11]. 
We state it here for the sake of completeness. 

Theorem (1.1). Suppose F(x) and gj(x), j =  1 . . . .  , m, are continuously FrOehet- 
differentiable. 

1. Let  x o be an optimal solution of the PP which satisfies the constraint quali- 
fication and for which either 

gj(xo)>O or -~(g)(xo))--Yj, j = l  . . . . .  m, 

holds t. Then there are Tj~Ljo such that 

F'(Xo)= Tjog)(xo), 
j = l  

~) ye (K~-g j (xo) )  implies Tj y>O for j =  1 . . . . .  m. 

2. Suppose F(x) is pseudo-convex and gj(x), j =  1, . . . ,  m is quasi-concave. I f  
xl  is a feasible solution of the PP and if there are Tje Ljo such that oO and fl) hold, then 
xl  is an optimal solution of the PP. 

2. The Duality Theorems 

First we give a generalization of a theorem which, in the finite dimensional 
case, is often called the Weak Duality Theorem. 

Theorem (2.1). Suppose F(x) is convex and Fr~chet-differentiable and gl(x) . . . .  , 
gin(X) are concave and Frdchet-differentiable. 

1 If A is a bounded linear operator mapping X into Yj the range of A is denoted by ~(A). 

18" 
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1. I f  xo is a feasible solution of the PP and (xx, Tu . . . . .  TmO is a feasible solution 
of the DP then 

F(xo)>__F(xl)- Tjl o gi(xd. (,) 
j = l  

2. I f  equality holds in (*) then Xo is an optimal solution of the PP and (xl, 7"11, ..., 
T,,O is an optimal solution of the DP. 

Proof 1. Since F(x) is convex 

F(x 0 + 2 F(xo) - 2 F(xO > F Ix1 + 2 (x o - x 1)] 

for any real number 2 such that 0_< 2 < 1. Hence, for 0 < 2_< 1 

F(xo) -  F(xl) => 1 {F I-x1 + 2 (Xo - Xx)] - F(x0}. 

Since F(x) is differentiable and Ko is closed this implies 

F(xo) -  F(x,)> F' (xO (Xo-  xl). 

Moreover, since (xl,  T~ ~ . . . . .  Tin1) is a feasible solution of the DP we have 

F ' ( x 0 =  ~ Tjl og~(xl) 
j = l  

and therefore 

F(xo) -  F(xl) > ~ Tj1 o g~(xl) (Xo - xl). (1) 
j = l  

Since ga(X) is concave, we have 

g} (Xa) (Xo - x,) > g1 (Xo)- gl(xl). (2) 

Thus, (1), (2), gi(Xo)>0 and T21 >0  imply 

F(xo) -  F(xl) >= - ~, Tj1 o gj (xl). 
j = l  

2. The second part of the theorem follows from the observation that for any 
feasible solution x of the PP, we have 

F(x) > F ( x I ) -  ~ T21 o gj(xl) = F(xo), 
j = l  

while for any feasible solution (x, T~ . . . . .  T,,) of the DP, we have 

F ( x l ) -  ~ Tjlo gj(xO = F(xo)>->_ F ( x ) -  ~ T~o gj(x). 
j = l  j = l  

The next theorem is an extension of the Duality Theorem. 

Theorem (2.2). Suppose F(x) is convex and continuously differentiable and 
gl(x), ..., gm(X) are concave and continuously differentiable. I f  Xo is an optimal 
solution of the PP, which satisfies the constraint qualification and has the property 
that for j = 1, ..., m either 

gi(Xo)>O or 
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then there are TjEL~o such that 

(Xo, T1,..., 7",,) 

is an optimal solution of the DP, and 

F(xo) = f ( x o ) -  ~ Tj o gj(xo). 
j=l 

Proof. By Theorem (1.1), there are TjeLjo such that 

F'(xo)= ~ T~o g)(xo) 
j=l 

and 
T~y>0 whenever y~(Kj-gj(xo)), j = l , . . . , m .  

Since gj(Xo)>0, K~c(Kj-gj(xo)). Hence, Tj>0 and (Xo, T~, ..., Tin) is a feasible 
solution of the DP. 

Furthermore, since + g~ (Xo) ~ ( K j -  gj (Xo)), we have 

Tjogj(xo)~K o and -T~ogj (xo)sK o, j = l , . . . , m .  

By the assumption on Ko this implies 

Tjo g~(xo) = 0  for j = l  . . . .  ,m. 

Hence the assertion of the theorem follows from Theorem (2.1). 

By means of simple counter-examples [-9] it can be shown that the above 
theorem is not true if we only assume that F(x) is pseudo-convex and/or gl(x) . . . . .  
gin(x) are quasi concave. However, for the next theorem, the so called Converse 
Duality Theorem, these weaker assumptions are sufficient. 

Theorem (2.3). Suppose F(x) is twice continuously differentiable and pseudo- 
convex and gl(x) . . . .  , gin(X) are twice continuously differentiable and quasi concave. 
Let (xl, Tll . . . .  , T~I) be an optimal solution of the DP which satisfies the constraint 
qualification. Then xl is an optimal solution of the PP, and 

F(Xl) = F(x l ) -  ~, T1j ~ g~(xl). 
j = l  

Proof. Let i~ {1 . . . . .  m} be arbitrary but fixed and define 

q~(T/)= h(Ttl . . . . .  T/-1,1, T/, T/+I,1, ..., Tin1) 

O(T/)=F(qS(T/))- ~ Tj1 o gj(~b(T/) ) -  T/o g,(qS(T/)). 
j=l 
j * i  

Since we have 

T~ o g , (~ , (T , ) ) -  T/~ o gi(~(T/~))- T/1 o g',(,~(T/x))o ~'(T/~)(T/- T/1)-(T,-  T/l)o g,(~(T/~)) 

= T/1 o (gi (~b (T/)) -- gi (q~ (T/,)) -- g'i(q ~ (T/1)) o ~ ' ( T / 1 )  ( T  / - T/ l ) )  

+ ( T / -  T/~) o (g,(q5 (T/))- g, (q5 (T/l))) 

= o(11 T/- T/ill), 
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it follows from the chain rule [2] that 

O (T/)- O (Til) = ~0'(Til) (Ti - T/l)+ o(l[ Ti-  Ti113 

= e,(r (r.)) o r  ( r , -  r . )  - ~ rjl o gAr ( ~ 1 ) ) '  
j= l  

o r ( r . ) ( r ~  - r . ) -  (r~ - r . ) o  gi (4~ ( r . ) ) +  o (rl r~-- r .  tl) 

0 ! 0 ! = F'(x0 ~ gj(x, r (T,0(~-T.)  

- ( ~ -  ~)o  g,(xO+ o (ll ~ - ~ If). 

Since (x~, T~I, ..., Tin1) is an optimal solution of the DP this implies 

r (T3-r  -(T~- T.)o g,(Xl) + o (11Ti- T. 13 
and 

(T~- T.) o g,(xO >= o (1) 

for T~>0 and NTi-TiiH sufficiently small. 

Suppose T/, ogi(xl):#0. If we choose Ti=2 Til, 2>0,  then 

( T i -  Ti O o gi(xl)= (2 - 1) T~ o gi(x,). 

Since T~>0 and, for any e>0,  there is 2oe{1-e ,  1 +e} such that 

(20 - 1) T~ ~ o gi (xa) (~ K o 

we have a contradiction to (1). Hence, 

T a o gi(xl) = O. (2) 

Next suppose g~(xOCKi. Since Ki is convex and closed there is a continuous 
linear functional f on Y~ such that 

f(g,(xO)<O and f(K3>=O 

[3, Theorem 10, p. 417]. 

Let yeKo and y:#0. Choose T ~ = 2 y f +  T~, 2>0.  Then T~>0 and 

(T i -  Til)ogi(xl)=2yf(gi(xi))r for 2 > 0 .  

This is a contradiction to (1) and it follows that 

gi(Xl) ~ O. (3) 

Since (3) holds for every ie {1 . . . .  , m}, xi is a feasible solution of the PP. Further- 
more, T~I > 0  and (2) imply for ie{1, . . . ,  m} that 

T/1 y=>O for ye(Ki-gi (x l ) ) .  

Therefore, it follows from Theorem (1.1) that x~ is an optimal solution of the PP. 
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