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Summary. A system of random variables (spins) Sx, x~2U, taking on values in IR 
is considered. Conditional probabilities for the joint distributions of a finite 
number  of spins are prescribed; a D L R  measure is then a process on the  random 
variables which is consistent with the assigned conditional probabilities [-1, 2]. 
A case of physical interest both in Statistical Mechanics and in the lattice 
approximation to Quantum Field Theory is considered for which the spins 
interact pairwise via a potential JxySx Sy, Jxy~lR and via a self-interaction 
F(Sx), which, as ISx[--,oo, diverges at least quadratically [3]. 

By use of a technique introduced in [-2] it is proven that the set 

= {v is DLRI3  c(v), sup ~ v(dSx)]S xl< c(v)} 
X ~  v 

is a compact  (in the local weak topology, Def. 1.1) non-void Choquet simplex 
[4]. Sufficient conditions are then given in order to obtain the measures in ~ as 
limits of Gibbs measures for finitely many spins in a wide class of boundary 
conditions, Theorem 1.2. Uniqueness in ~ is then discussed by means of a 
theorem by Dobrugin [2] and a sufficient condition for unicity is obtained 
which can be physically interpreted as a mean field condition [5]. Therefore the 
mean field temperature is rigorously proven to be an upper bound for the 
critical temperature. 

O. Introduction 

In 1970 Dobrugin [-2] published a paper where the problem of existence and 
uniqueness of a random field with a given system of conditional distributions was 
investigated. 

In our paper we consider a particular class of random fields, the continuous 
unbounded spin systems on a lattice 2g ~ and, exploiting Dobrugin's results, we study 
the existence and uniqueness conditions of the so called D L R  measures [1]. These 
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measures are those associated with a particular parametrization of the conditional 
probabilities, suggested by Statistical Mechanics (see Section 1). 

The study of these fields has been receiving increasing attention recently 
especially in connection with the Euclidean quantum field theory and the 
renormalization group approach to critical phenomena (automodels). 

In the sequel we will briefly outline the results of this paper in the language of 
Statistical Mechanics. The reader not familiar with this language is kindly asked to 
refer to the definitions given in Section 11 before reading following paragraphs. 

We assume superstable potentials [1, 3] and specify the interaction to be given 
by a pairwise potential JxyS~Sy and by a self-interaction F(S~) which diverges at 
least quadrically as ISxl-~oo, see Definition 1.2. Following a technique due to 
Dobrugin [2] we prove that the set 

e = {vDLRI3c(v), sup ~ v(dSx)ISxl ~ c(v)} 
X ~  v 

is a compact [in the local weak topology, see Def. 1.1] non void set which is also a 
Choquet simplex [4]. We also show how to obtain the measures in ~ as 
thermodynamic limits of finite volume Gibbs measures with external boundary 
conditions [3b]. This requires some limitation on the external boundary con- 
ditions which are given in Theorem 1.2. We then study uniqueness in the class ~. By 
a Dobrugin theorem [2] a sufficient condition can be obtained in terms of the 
Vasergtein distance between conditional probabilities of a single spin w.r.t, different 
boundary conditions. The Vasergtein distance between Borel probability measures 
on IR can be computed quite explicitely [6] so that a condition on uniqueness can 
be derived. This turns out to be the mean field theory estimate for the critical 
temperature which is therefore rigorously proven to be an upper bound for the 
critical temperature. 

In Section 1 we give the notation used throughout the paper and then we prove 
existence. The more technical lemmas are left to Appendix A. In Section 2 we 
discuss the uniqueness problem; Appendix B is related to this section. 

After the first draft of this paper was finished we were told that the problem 
considered here had also been studied by Royer [9]. He considered nearest 
neighbour ferromagnetic interactions. He proved existence with different tech- 
niques than those used in Section 1. A uniqueness theorem was obtained in [9] by 
use of an approach somewhat similar to that of Lanford [7] and of Israel [8]. 

Section 1. Existence of D L R  Measures 

Definition 1.1 (Phase space). We consider the phase space 3~ of unbounded spin 
configurations on the lattice 2[ v 

�9 ={S: ~v ~IR}. (1.1) 

S x denotes the value of S at the point xeTL ~ the spin value at x, S A for A c ~  v the 
restriction of the configuration S to the region A, i.e. the spins in A. 3~ is a 
topological space with product topology inherited from IR, it is a Polish space, i.e. it 
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is metrizable with a metric for which it is separable and complete. A possible metric 
is 

d(S,S') Z -  ' , = d(S~,S~)2  -I~1 
X ~  v 

Ix]= sup ]xiI, x=(x i ) i= 1 ...... ~ Z  ~, 
l ~ i ~ v  

d(S~, S'x) = min {[S x - S'~ ], 1 }. 

We denote by M(3;) the set of Borel probability measures on/t;. We introduce on 
M(3;) a topology determined by the continuous bounded and cylindrical functions 
on �9 [ f i s  cylindrical with basis A (bounded) if f ( S ) = f ( S ' )  whenever S A = S'A]. A 
neighbourhood of #, W~,i(#) is therefore 

W~,I(#) = {v~M(~)] ] v ( f )  - #(f)] < e, f is a continuous 

bounded cylindrical function on ~}. 

Hereafter we will call the above topology the local weak topology on M(t;). M(~) is 
also a Polish space. To prove this we use the following argument. Let A, be an 
increasing sequence invading ~7 ~. By the Kolmogorov theorem [10] any measure # 
is uniquely determined by the sequence of m e a s u r e s  #n(dSA~). (#n(dSa,,) is the 
relativization of # to {SA, } -lRl~"l). It is known [10] that the weak topology of 
measures on IR IA"I is a Polish space; let p,(#,, v~) be a metric which makes it 
complete and separable. From this a metric p can be introduced on M(~) as 

p(#, v)= ~ 2-"t7,(#,, v,), •, =min(p, ,  1). 
n~O 

It is easy to check that p makes M(~) a Polish space and that the induced topology 
is the same as the local weak topology on M(~). 

Definit ion 1.2 (Assumptions). In the case we are considering here, for each spin S x is 
given a free measure #(dSx), the same goes for each site x; the spins further interact 
via a pair potential. We assume that 

#(dSx) = dS x exp { - F(Sx) }. (1.2) 

Where F(Sx): IR ~ IR is defined as follows: there exists a positive number So such 
that 

S x  

F(Sx) = ~ (b~(S'x)dS' x, S x > S  o, (1.3a) 
0 

0 

F(Sx)= y ~(S'~)dS'~, S ~ < - S  o. (1.3b) 
S~ 

Where @~: [0, + o o ) ~ l R  + is a C 1 convex positive increasing function and ~bl: 
( -- 0% 0] ~ 1R + is a C 1 positive decreasing convex function. The interaction is so 
defined: for A bounded _~g~ 

U ( S A ) = -  ~ JxySxS ,  (1.4) 
{ x , y } c  A 
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where the sum is over all the non ordered pairs {x, y} of distinct points in A and 

IJ~yl<J(Ix-yl),  Y', J ( l x - y l ) <  +0o. (1.5) 
X E ~  v 

We remark that the one body interaction can be included in the free measure so that 
in general the free measure is temperature dependent. 

Definition 1.3 (Superstability). There are A > 0 and celR such that, for every S a 

Z F(S~)+~U(SA)> Z [ A S ~ - c ] .  (1.6) 
x e A  x ~ A  

Consider the function (b which appears in Equation (1.3). We distinguish two cases: 

a) q5 is linear, 

b) q~ is strictly convex. 

We note that superstability condition is guaranteed in the case b). It holds even 
in the case a): ~b(x)= c~(x- Xo) (which corresponds to an asymptotically gaussian 
behaviour of the free spin distribution) if ~ is sufficiently large: 

a>f l  ~ g(]zl). (1.7) 
z=I=0 

Definition 1.4 (DLR equation and Gibbs states). For each bounded region A c2U 
we consider the sets 

�9 (A c, T )=  {S~3E I sup ~ J(lx -y])[Syl =< T, T >0} (1.8a) 
x e A  yd:A 

where A c denotes the set 2g~\A. 
Let 

�9 G(A)= II ~(A c, T) 
T > O  

it;G(A) is a Borel set. For SeXG(A) the (conditional) Gibbs probability at finite 
volume A with boundary conditions (b.c.) SAC is defined as the measure on ~(A) 
= {SA} given by 

q(dSA I SAo) = ZA(SAc )-1 #(dSa) exp [ - /~  U (SA)- ~ W (SA I Sac)], 

W(SAISA~)= Z Z JxySxSy, 
x~A y~A (1.8b) 

u(dSa) = R #(dS~), 
X E A  

ZA( SAc) = ~ #(dSa) exp [ - fl U ( SA) -- fl W ( S A ] SAO) ] . 

Let 2 be a probability measure on it; such that 

2 [~ (A) ]  = 1. (1.9 a) 

We define the Gibbs measure at finite volume A with external b.c. given by 2 the 
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following probability measure 

vA(dS; 4) = 2(dSAc ) q(dS A l SAC ). (1.9b) 

Notice that the conditional probability of va(dS; )o) with respect to SAc is 2-modulo 
zero q(dSAISAc ) while on 3C(A c) vA(dS; 4) is equal to 4. 

We define a DLR measure as a probability measure which is for every bounded 
A a Gibbs measure for that region, that is, its conditional probabilities are given by 
q(dSAISAc). 

In this section we study the relationship between the D LR measures and the 
thermodynamic limits of Gibbs measures at finite volume A as A invades 2g v. More 
precisely we will select a class ~, see Theorem 1.2, of D LR measures via a regularity 
condition (any ISx[ is L 1 uniformly in x~2g v w.r.t, each measure in ~). We will then 
show that there is a wide class of b.c. measures which, in the thermodynamic limit, 
leads to all measures in ~. Results along this direction have already been obtained 
for a subclass ~o of ~ (the "superstable" measures) 

Theorem 1.1 [3 b]. Let the superstability condition, see Definition 1.3, hold. Let ~o be 
the set of DLR  measures carried by the union over N of the sets 

RN={SeXIVj~2~+: ~ S~ z=<N2(2j-t -1) v} (1.10) 
Ixl-<j 

then ~0 is a (locally) weakly compact simplex. Further there are 7 >0  and 6 such 
that for every w f f  ~ and every bounded A c2g ~ 

v(dSa) < dS A exp { - ~ (2S~ - 6)}. (1.11) 
x~A 

Let 2 be any external b.c. in the sense of Definition 1.4 with the additional hypothesis 
that for every bounded A c2g ~ 

2(dSA) < dS a exp { - ~ (2S2x - c3)}. (1.12) 
x e A  

Then for any A,T2g ~ the sequence of measures vA~(dSA~; 4) has limiting points (in the 
local weak topology) and they are all in ~o. 

I f  a power behavior is assumed for J(r) at infinity 

J ( r ) < c o n s t r  -~', 2 ' = v + g ,  ~>0 

then the above results extend to b.c. given by cS~(dS) = 2(dS), i.e. measures carried by a 
single configuration S, when 

I~xl 
sup < + o o ,  log+lxl=max{1,1oglxl}.  
~e~ log+ Ixl 

In this paper we consider the following b.c. 

Definition 1.5 (Allowed b.c.). We introduce 

%(h) = {)~eM(3~): ~ 2(dS) lS~l < ah~, xe2g~}, (1.13 a) 

~aa(h) = {)~eM(~) : ~ 2(as)IS~l _-< ah~, x~A} (1.13b) 
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where h: 2gv~ [1, oo) is such that 

~, d(Ix-yl)h,<dh x and d < + o o .  (1.14) 
y ~ x  

Then we define the Gibbs measure at finite volume A with b.c. in cgA(h) as 

N0(h ) = {veM(3;): v(dS) = 2(dSAc ) q(dS a I SAc ), ,~ ec#,a(h)}. (1.15) 

The above is well defined because of 

Lemma 1.1. Let kecgA(h), then for any bounded A' c2g v, A' D A 

2 [3;G(A)] = 1. 

Proof The function •: 3E --* IR + u 

r162 F, ~ J(Ix-yl) lS,I 
x e A  yr  

Is a non-negative measurable function and by Equation (1.14) 

~2(dS)0(S) --< ~, 2 J ( I x - y l ) a h , < = a  Y',dhx<+oo. 
x E A  ygiA x ~ A  

Therefore 

,~[{sea; I r  oo}] =0. 

We also introduce 

J d = { h :  Equation (1.14) holds with d<c!} (1.16a) 

and 

A,d __ N a - [I N0(h). (1.16b) 
h e J  a 

Remark 1.1. We give explicit examples in which Equation (1.14) holds and which 
will be used later on. 

(i) h=(hx, h x = l  for xEZ ~) and d =  ~ d(Ix-yl), 
y4z x y 

(ii) let J(lx-yt)=O whenever l x -y l>R.  Then h=(hx=eXp(ylx[ ), 7 > 0  and 
xe2g ~) satisfies Equation (1.14) with 

d>exp(yR) ~, J([y-xl), 
yr 

(iii) let d([x-y[) be such that 

J(lz]) In [zl < + oo 
z=aO 

then it can easily be proven that h=(hx=ln+lTxl, xe2~ ~, ln+a=max( lna ,  1)) 
satisfies Equation (1.16) with a bound for d given by 

J(Izl)(1 +ln(1 + ]zl)). 
z~-O 
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In particular it can be shown that as 7 ~ 0 in fact d can be chosen to approach the 
value ~ J(lzl). 

z l - 0  

The link between thermodynamic limits of Gibbs measure in NA(h) as A invades 
Z~ and the DLR measures in ~ will be obtained as a consequence of the following 
Lemma 1.2 which will be proven in Appendix A. 

Lemma 1.2. Let the assumptions in Definition 2 and 1.3 hold and let (b~, @z in 
Definition 1.2 be strictly convex functions. Then the following is true." 

(i) for any a>0 ,  A bounded, h which satisfies Equation (1.14) NA(h) is locally 
weakly compact, 

(ii) let a, h, A, be as in (i), let A ~ A then there is a' > a independent of A and A such 
that NJ(h) c N~,(h), 

(iii) let a and h be as in (i) let A n be a sequence of increasing bounded regions 
invading Z ~, then 

u ~yo(h) 
n 

is locally weakly compact (the closure is taken in the local weak topology). 

Notice that (iii) is a direct consequence of (i) and (ii). In the non-strictly convex 
case the above holds for any h s J  d with d<fl-z2c~ such that 

�9 (s~)=~(s~ - s  ~ 

where ~ is actually the minimum between the linear coefficients of ~ and ~ .  

Theorem 1.2. Let the assumptions in Definition 1.2 and 1.3 hold. Let ~ = {v~M(X)[ v is 
DLR  and there is c(v) < + oo such that 

sup j" v(dS)ISxt < c(v)} 
X E ~  v 

then ~ is locally weakly compact, it is a Choquet simplex and there is c < + ov such 
that 

sup c(v) < c. (1.17) 

Let q~ be a strictly convex function. Let A n be an increasing sequence of bounded 
regions invading ;g~, correspondingly let vn(dS; 2n) with 2ne~2"(h) (see Eq. (1.13)), then 
a subsequence exists which converges to a measure in ~. Naturally any measure in 
can be obtained with such a limit. 

For q) linear the above holds for those h which correspond to a d such that 
d < f i - 1 2 ~  (cr is defined as in Lemma 1.2). 

Proof We first prove the existence of the thermodynamic limits. These are 

IN { II ~m(h)). (1.18) 
n m_>n  

The above set is non empty because 
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are compact  by Lemma 1.2 (iii) and because they are decreasing as n increases. The 
set in Equation (1.18) is made up of D L R  measures because of Lemma 1.2 (i) and 
(ii): 

I ] A m  A % (h) %,(h), VA A. 

therefore 

{ U ~am(h)} -- N ~am(h) 
n r r l ~  ra  

and so they are DLR.  In fact it can also be proven that they are in ~ and that 
Equation (1.17) holds (see Appendix A). We now prove that ~ is locally weakly 
compact. We denote by 1 the configuration such that i x = 1 and we consider Na(1) 
with c given by Equation (1.18) we have 

for any bounded A because of Lemma 1.2 (i). Then 

n 

and so ~ is closed and compact  because ~A(1) is compact  by Lemma 1.2 (i). The 
proof  that ~ is a simplex follows the arguments used by Ruelle in 1-1f]. 

Remark 1.2. Theorem 1.2 gives a sufficient condition for the b.c. probabilities to 
lead, in the thermodynamic limit, to a measure in ~. In the one dimensional 
Gaussian ease (F(Sx)--otS~,~>O) with nearest neighbour interactions (with 
coefficients flJ) it is known [11] that if the external spins S x grow as 

tSxt = 71 exp(72 [x[) 

then the limiting state is in ~ iff 

72 < log c~ + ]/~z 2 -- f12 j 2 .  
PJ 

This condition is just the same as d < fi- 12 e when d is chosen as in Equation (1.14) 
which now becomes 

hyJ <= dh x, h x = 1 exp(y 2 Ixl) x ~  ~. 
}y - x I = 1 

Section 2. Uniqueness 

In this section we give a sufficient condition for the set ~, see Theorem 1.2, to consist 
of only one measure. The condition is obtained from a theorem by Dobrugin I-2] 
and to introduce it we first give the definition of the Vasergtein distance between 
two probabili ty measures on IR. 
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Definition 2.1 (Vasergtein distance). Let #, v be two Borel probability measures on 
IR. We say that P is a joint representation of # and v if P is a regular probability 
measure on IR 2 and its relativizations to the two real axes give respectively # and v, 
that is 

~P(dxdy ) f ( x )=S#(dx ) f ( x  ) fcLl(lR, #), (2.1 a) 

SP(dxdy) g(y) =5 v(dy) g(y) g~LI(IR, v). (2.1 b) 

We define the V. distance R(#, v) as 

R (#, v) = inf~ ff(dx dy) Ix - Y[ (2.2) 
v 

where the inf is taken among all the joint representations of # and v. For the 
properties of the above defined distance we refer to [2]. In this paper we just use the 
following 

Theorem 2.1 [2]. Let there exist a non-negative function rxy such that 
(i) rxx=0, rxy depends on Ix-y[,  

(ii) y' ,rxy<l, V x ~  ~, (2.3) 
Y 

(iii) R [q(dSx [ S~x~o ), q(dS~ [ SI~o)] < ~, r~, [Sy- S;], VS~o, Six~o then Card e = 1. 
Y 

Theorem 2.1 reduces the study of uniqueness for ~ to the estimate (iii) that is the 
V. distance between conditional probabilities at a single site. 

In reference [6] the problem of evaluating the V. distance between probabili- 
ty measures on 1R is studied and the main result is given by the following: 

Theorem 2.2 [6]. I f  # and v are Borel probability measures on IR with finite first 
moments, then their V. distance is 

+o0 X 

R(#,v)= ~ dx ~ ( # ( d y ) - v ( d y ) ) .  (2.4) 
- - cO 

Using the above theorem we obtain an explicit condition of uniqueness 

Theorem 2.3. The best possible choice for rxy in Theorem 2.1 (iii) is given by 

r~, = flJ ([x - y[) {sup ~ q (dS~ [ S(~)(S x - S~(t))2}, (2.5 a) 
tEIR 

t=fi  y' JxyS,, S~(t)=Sq(dSx[S~o)S~. (2.5b) 
y + x  

Therefore condition (ii) of Theorem 2.1 becomes 

~, fiJ (Ix - y[) {sup ~ q (dS~ [S~x~ ) (S~ - Sx(t)) 2 } < 1 (2.5 c) 
y 4- x t ~ N  

which is then a sufficient condition for uniqueness in ~. 
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Proof We introduce the function D: I R 2 ~  IR + given by 

+ o o  1 

D(y , t )=[  _ ~ d y e x p [ - F ( y ) + y t ] ]  e x p [ - F ( y ) + y t ]  (2.6) 

where F(y) has been defined in Equa t ion  (1.2). For  the Gibbs  condi t ional  
probabi l i ty  at a single site x we have 

q(dS x IS{x}o ) - q(dSx It) = dS~D(S~, t) (2.7) 

with t as in Equa t ion  (2.5b). Equa t ion  (2.4) becomes  

+ c o  

R [q(dSx[to), q(dS~ltl)] = ~dt 5 --D(S'~, t)dS'x (2.8) 
rdS~ t l  S x  

-Jco to _ ~ Ot 

with t o < t~. We have 

t l  + o o  [ x 

R[q(dS~lto),q(dSxltl)]<(dt [. dx ~ 8 to -co _ 8ttD(y't) dy" (2.9) 

As it is shown in the following L e m m a  the error  made  in the evaluat ion of 
R[q(dSx]to),q(dS~ltl)] by using the bound  of  Equa t ion  (2.9) can be made  
arbi t rar i ly  small  as t o and  t 1 are close enough. 

L e m m a  2.1. For any toMR, e > 0 ,  3 T ( ~ ) > 0  such that  Vtl :  0 < q - t o < T ( ~  ) 

j dx t)dy 

tl +oo x 8 D(y , t )  d y .  
+Idt  I dx J~St  

t O - -  0(3 

Proof see Appendix  B. 
By calculat ion we see that  

+ ~ 8 t) dy +(o j dx -o~i ~D(y ,  = -~oo q(dSxlt)[S~-S~(t)]2" 

Since we look for a bound  of the kind 

R [q(dS~[to), q(dS~ltl) ] < const It~ - tol (2.10) 

which is uniform on the choice of  t~ and t o we see that  we have to choose the 

const, in Equa t ion  (2.10) = sup ~ q (dSx It) [S~ - S~(t)] 2. 
tEN IR 

Let t be the value for which the sup is obta ined  (t is finite as a consequence of 
L e m m a  A.1). By taking t o = t ,  t 1 = t+c~  and by considering the limit 8--+0 f rom 
L e m m a  2.1 it is evident that  the choice in Equa t ion  (2.5 a) is the best for the constant  
in Equa t ion  (2.10). This proves  T h e o r e m  2.3. 
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Some Applications of Theorem 2.3 

Gaussian Case. Let 

F(Sx)=~(Sx- S~ 2. 

Equation (2.5c) gives Card ~--1  if 

(2c0-1/~ ~ J(lx-y]) < 1 
y~-x 

which is just the superstability condition; this proves the absence of phase 
transitions for Gaussian models [9, 12]. 

Large Temperatures. Consider �9 to be strictly convex, then it is easy to convience 
oneself that Equation (2.3) (ii) is satisfied at large temperatures. Notice, as an 
example, that the integral 

I(f l)=[~dSxexp(-fiAS2+~)]-~dS~S2exp(-flAS2+~) A , e > 0  
IR 

behaves like 

2 

I(fl)=const fl-2+~ 

therefore 

rxy = const J(lx - Y l ) / 3 ~ .  

To clarify the physical meaning of the result in Theorem 2.3 we conclude this 
section with the following remarks 

Remark 2.1. We think it worth mentioning that the bound given by Equation (2.5c) 
is in the ferromagnetic case the well-known mean field result that guarantees the 
absence of phase transitions and spontaneous magnetization: Theorem 2.3 
therefore proves that the mean field critical temperature is a rigorous upper bound 
for the true critical temperature. 

Remark 2.2. Also for non ferromagnetic systems Condition (2.5c) has a natural 
physical interpretation. Let us consider a site x~2~ v and let us fix the spins Sy outside 
ofx. As a consequence we get a mean value for Sx conditioned on the external spins 
to be Sy: 

Sx(S{x} ~ = S q(dSx I S{~}c) Sx. (2.12) 

Let us now change the outside configuration by changing by the same amount 
(except for the sign) each external spin: that is we fix a function q: 2gV\x ---, { - 1, + 1 } 
and a number ~5 so that the new configuration is 

Sy(q, 6) = Sy + c~y. (2.13) 
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Therefore 

Sx(S~xlC(~l, 6)) = ~ q (dSx [ S~x/c(~/, 6)) S~. (2.14) 

We define the mean field theory estimate for the critical temperature as the 
following: 

{s,x~o}sup sup ~-~ S~[-S~c(q, 6)] <1.  (2.15) 

Equation (2.15) means that starting from any configuration S~;~ if we want to 
change the mean value of S x of the amount 3 we need to change each of the spins 
outside of a strictly larger amount than 3. The validity of Equation (2.15) ensures 
therefore some kind of stability for the distribution given by a measure vEe. This is 
sufficient to give uniqueness because it is quite easy to see that Equation (2.15) is just 
the same condition as the one in Theorem 2.3. 

It would seem likely by the above considerations that Equation (2.15) is 
stronger than what is really needed to prove uniqueness. One would think that 
rather than the uniformity required by taking the sup in the 1.h.s. of Equation (2.15) 
it ought to be sufficient to have that 

0 -  
s~[s~o(q, 3)] < 1 

for sufficiently many S/~o. This would amount to prove Dobrugin's theorem by 
assuming a weaker hypothesis of type 

R [q (dS~ ] S(x}~ ), q (dS~ 1S}x~o)] < Z r~, [Sy - S',[, (2.16) 
Y 

~ r ~ y < d < l  VxEZ ~ (2.17) 
Y 

and where Equation (2.16) is required to hold only for some configurations S~o, 
S}~o which are a-priori known to have large probability to occur. 
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Appendix A 

In this appendix we prove Lemma 1.2, Equation (1.17) and that 

{ u ~jm(h)} = e .  
n P c ~ n  

All this will be proven according to the ideas contained in Dobru~in's paper [2]. 
The main tool will be Prohorov's theorem which will be used in the following 

form 
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Theorem A.1. Let ~ c M (~) be such that 

sup~v(dS)lS~]<cx V x ~  ~, e={Cx~lR+,xE~/}.  (A.1) 
v ~ J  

Then X ,  the local weak closure of ~ ,  is compact and Equation (A.1) holds in all of 

Proof. Let A~ be an increasing sequence of bounded regions which invades 2g ~. For 
any v~M(~) let vh(dSA~ ) be its relativization to {SA~ }. TO prove that JV is compact it 
is enough to prove that given any sequence v(~)~JV there is a cluster point v (since 
M(3;) is a Polish space, see Definition 1.1, this amounts to proving that there is a 
subsequence of v (~ which is locally weakly convergent to v). We fix A, and we 
consider the sequence CA~)(dS<). In the space {S<} the set ArA~ = {v(dS<), with 
v~.A/'} are relatively compact by 

sup~v(dSA) ~ I&l~ ~ cx< + ~  
v~dg" x E A  x e A  

and the Prohorov theorem [2] (because ~ [Sx[ is a compact function in IR/AI). 
x ~ A  

Therefore there is a subsequence v(A"~ ~) converging weakly to VA~(dSA~).We can then 
m iterate the argument for A 2 by choosing a subsequence of m (1~ s.t. VA~ VA~(dSA~ ). 

Note that the relativization ofva~(dSA~ ) to {SA, } is VA~(dSA~ ). In this way we define a 
sequence YA,~(dSAn ) of compatible measures which by Kolmogorov theorem define 
uniquely a measure vsM(~) .  This measure is by construction a locally weak cluster 
point of r 

We will apply Prohorov's theorem by means of the following technical lemma: 

Lemma A.1. Consider the function q) defined in Section 1. I f  ~(x) = ~(x - Xo) there is 
c 2 < + oo such that 

~.q(dSxlS~x~)lSxl~ ~ rx, IS, l+c2 
y # x  

where 

rxy = flJ (lx - y[)(2 c0 - 1  

I f  q) is strictly convex the same estimate holds with an arbitrarily small number c 1 in 
place of (2~) -1 i.e. V c l > 0  3c 2 such that Equation (A.1) holds with rxy=3J(Ix 

- yD cl. 

Proof. We have to study the following quantity 

( [Sx l ) ,=[~dSxexp[ -F(Sx )+Sx t ] ]S l~dSx lSx lexp[ -F(Sx )+Sx t ] ,  (A.2) 

t=~ ~ L,,s,. 
y:#  x 

Since the behavior for positive and negative t is symmetric we will consider only 
t > O. First we note that, for t > 0 

0 0 

j dx Ixl exp[-F(x)+xt]  j dx Ixl exp[-F(x)] 
-~+o~ =< -o~ - K  . (a.3) 

oo 

d x e x p [ - F ( x ) + x t ]  ~ d x e x p [ - F ( x ) ]  
oe 0 
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Then we have 

o3 

jdx Ixl e x p [ - F ( x )  + xt] 
(]xl)t< K + So § S~ 

dx exp [ - F(x) + x t] 
So 

(A.4) 

Let  us consider now if(t) as the value of x for which - F ( x ) + x t  achieves its 
m a x i m u m  value:  

# ' ( e ( t ) )  = t .  

Recall ing that  ~b is a convex cont inuous  increasing function of x it is evident that  
if(t) exists when t is sufficiently large and 2(t) --+ oo when t + oo. 

We can write: 

oO 

dx Ix - Y(t)l exp [ - F(x) § x t-] 
<IxG=<K+S O + [~(t)[ §176  

oO 

dx exp [ - F(x) + x t] 
So 

(a.5) 

In case a) by explicit calculat ions we get 

co 

j dx exp [ - F(x)  + x t] Ix - 2~(t) l 

~=(2cO-~t+Xo; lira s~ = 0  (A.6) 
09 

~ S d x e x p [ _ f ( x ) + x t ]  
So 

which completes  the p roof  of the first par t  of  the lemma.  
For  case b) it is sufficient to prove  that  

lim ) i -1  ( ix[) t  = 0. (A.7) 
t ~ o O  

In fact Equa t ion  (A.7) implies that  Vc 1 >0 ,  there is Itll such that  for 

Itl>ltll, Itl-l(IxG<q. 

Therefore  if e 2 = sup (lxl)t  we have 
Itt_-<l~Jl 

(IxG<ciltl§ 

N o w  from the strict convexity of  the function q~(x) it follows that  F"(x) = qY(x) Is an 
increasing function of x. 

Equa t ion  (A.5) then becomes  

dxlx-2~[ e x p [ - F ( Y ~ ) + t f f - � 8 9  __~)2J 

( ] x ] ) t < = K  § So  § ~ ( t )  q - F.(t) x(t) 
j dx exp [  - F ( f f )  + t f- �89 -)2) 2] 
So 
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NOW noting that the last term in the r.h.s, of the above equation tends to zero as 
t--+ oo and that 

lira rtl- 1 if(t) = 0 
t--+ oO 

we obtain Equation (A.7) so that the proof of the lemma is concluded. 

Lemma A. 1 allows us to apply Theorem A.1 to our case. In fact we can prove the 
following theorem and corollary which will be stated after the following: 

Definition A.1. We denote by 

B(2, A)E3s (A.8 a) 

the configuration 

Bx(2, A)=fVA(dS; ~)]Sxl vA ~A(h) .  (A.8b) 

We consider, for h ~ j  d the subset of 3s 

= {Se3s h2 l lS~l =-IllSl[I > + 0o } (A.9) 
x 

and ~ is a Banach space with the norm [[1"[]1. We will also consider the projection of 
the configurations to finite regions A so we will have 

~ ,  Ba(2, A)E~ a 

simply as restrictions (with x~A) of the definitions Equation (A.8), (A.9). 

Theorem A.2. Let cga(h ) be fixed and let d be its corresponding value according to 
Equation (1.14). Fix c a in Lemma A.1 so that 

cl f ld<l.  

This is always possible if ~br, ~ are strictly convex functions, see Definition 1.2, if ~b is 
linear then d must be such that d <fl-a 2e. Define 

r / = l - c z f i d > O  

then 

/lIB(2, A)III < t/- 1(c 2 + a(l - t/)) 

for every bounded A [c 2 is the value corresponding to the above fixed c l in Lemma 
A.1]. 

Proof By use of Lemma A.1 we have for zr 

Bx(2, A)<c2 + Z rxyBy()~ ~ r,,yahy 
y~A,  y *  x y6A  

--<(c2+a ~, r~yhy)+ ~ r~yBy(2, A) 
y#:x  y ~ A , y g : x  

<hx[c2+(1-q)a]+ ~ rxyBy(2, A ). (A.10a) 
y~ A,  y q= x 
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We rewrite Equation (A.10a) 

B A(2, A) <_ A A + R A BA()~ , A), (A. 10 b) 

[liAalll=ca +(1 -q )  a. 

It is easy to see that the norm of the operator R a is less than 1 - 0  in fact 

rxyDy< ~ rxy[l[Olllahy<ctfldhxltlOll]A 
ysA, y t x  yEA,y:t:x 

=h~(1-tl) lllDlllA. 

Therefore if we prove that IIIBAILla is bounded we have also proven that: 

IllB/IllA_- < Ill(1 --RA)-1AAllla<tl- 1(C 2 +(1 - t / )a) .  (A.11) 

Since Bx(2, A)<ah x for x6A if Equation (A.11) holds then 

IllBl[[ <=tl- t(Ca + (1-rl) a) 

and the thesis would be proven. We are therefore only left with the proof that 
]IIBAII[ A is finite. 

Let T > 0  and ~(A C, T) as in Equation (1.8); define 

Br~(,~,A)= ~ vA(dS;~t) lSxl x~a .  
3~ (A c, T) 

It is easy to see that B~r(2, A) is finite for any x~A (by using the superstability 
conditions on the interaction), then we can apply the same inequalities as above and 
we get the analogous of Equation (A.11) which now reads: 

I]lBTlllA <<_tl- l(c2 +(1 -rl) a ). 

Since VA[ U Y,(A c, T)] = 1 the assertion is proven. 
T > 0  

Lemma A.3. Let SAOeYfi(A), let rl= 1 - f i c l d  be as in Theorem A.2 then 

q(dSAISAc) ISxl < 77-1sup (c2 + ~ r~y IS, l). 
x~A y6A 

Proof. It is the same proof as in Theorem A.2, the only difference being that we do 
not integrate over the external spins Sy~A. 

Lemma A.4. In the hypothesis of Lemma 1.2, we have 

ffaa(h)_c~f2,(h) for any A; A; A = A  

with 

a' = t/- ~ (c2 + (1 - t/) a). 

Proof. Let VA(dS)=2(dSAo)q(dSA[SA~) 2ecg~(h), then we can write for 

A = A ~7A(dS) ~--- ]?A(dSA c) q(dSA I Sztc) 
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therefore we have to prove that VA(dSAc)~2,(h ). We have 

S VA(dS)]Sxl = Bx(2, A)__< IllB(2, A)l/I hx<rl-1(c2 +(1 - t O g  ) h x. 

Lemma A.5. Let the assumptions in Lemma 1.2 hold. Let {A,} increase to 2g ~ then 

s e  - FI { u ~ ( h ) }  c e .  
n m~n 

Proof By Theorem A.2 and Theorem A.1 any v a d  is such that 

Bx(v) =- ~ v(dS) lS xl <= tl- 1(c 2 + a(1 - t/)) h~. (A. 12) 

As in Theorem A.2 we obtain 

Bx(V) ~ C2 q- Z y  rxyBy(V)" (A.13) 
y:l-x 

By use of Equation (A.12) in Equation (A.13) we have 

B~(v)<c2 +rc2 + ~ rxyhrtl- l(ce +(1-t l )a) ,  

v*x (A.14) 
r =  ~, r~y=<l - t /< l .  

y t x  

By iterating the same procedure we have 

B~(v) < tl- 1 c2 + lim (Rmh)~ r/- 1 (c 2 + (1 - q) a) < t/- 1 c2 ' 

(Rh)x= ~ rxyhy. 
yCx 

Lemma A.6. In the assumptions of Definition 1.2 we have that (see Eq. (1.19)) 

supc(v)<c < + oo. 
v~f~ 

Proof We use a slight modification of the previous argument. Vvs~ define the 
configuration B(v): 

B~(u) = S ~(dS)I&l 

consider the set No c Y :  

No = {S~3~ [ sup ISx[ = IlSll < + oo. 
x 

d0  is a Banach space with I[" II norm. By hypothesis we know that IIB(v)l[ <c(v),  
From Theorem A.1, all we need in order to obtain the assertion above is to show 
that 

sup rlB(v)ll < ~ .  
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By Lemma A.1 we have 

Bx(v) < c2 + ~r  r~yB,(v). 
y:#x 

We rewrite the last equation in the form 

B(v) < c + RB(v), 

Ilell =c2. 

It is easy to see that the norm of the operator R is less than ~- 1, Since the norm 
nB(v)[ I is finite we can use the estimate 

IIn(v)ll =< I/(1 - R ) -  t cll 

to conclude that 

IIU(v)ll <~/-~ c2. 

Now we must prove the following 

Lemma A.8. In the assumptions of Definition 1.2 we have that NA(h) is closed in the 
local weak topology. 

To prove this lemma some intermediate steps are needed. 

Lemma A.9. Let A be a bounded region, for any 2~(~(h) we have the following: 
V ~ > 0 ~ A ~ A, A bounded, such that 

2(M)<~ 

where 

M = {Se~ I su p ~ tiJ([x-yl)[Sy[ >~}. 
xEA y$A 

Proof. We have 

2(dS) { ~ tiff(Ix - y])IS, I} < tia ~, ff(lx - y[) hr. 
yq~A ySA 

By Equation (1.14) we can choose A 2 A  such that 

sup ~ t i f f( ix-yl)  ahy <~ 2 
x~A y6A 

then 

e2 >~2(dS)(~  tif(Ix-yl)[Syl) > ~ R(dS) ( ~  tiff(Ix-yl)[S,I)>~2(M). 
y~A M y~A 

Lemma A.IO. Let (9 be a cylindrical (in F ~ A) continuous function with Iq~(S)[ < 1. Let 
tp: 3~G(A) ~ N be 

~/(S)  = ~I(SAc ) ~- ~ q(dS A I SAC) (~(SF)" 
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Now we fix A ~ F and define for 0 <_ u <_ 1 

Sy if yea  
S~-= uSy if yq~A 

we call 0"(S)= 0(S") and 0~(S)= 0~ [so that ~(S)  is cylindrical in A]. We have 

SU [@(S)-~O~(S)]~ ~ ~J(lx-yl)[Sy[. sup 2~q(dSA[ a~)[Sx]. 
yeA x ~ A  O<-u < - 1 

Proof For SeY~(A), q)"(S) is a Cl-function of u, so that 

1 d 
O(s)-o~ O"(s). 

We have 

d u d SU ~uu ~ (S)=~u ~ q(dSA[ A~) cp(Sr) 

=~ q(dS A ISle) (p(Sr) ~, ~, flJxyS~S, 
x e A  yd~A 

- [fq(dSA I S~) q~(Sr)] [~ q(dSA I S~) ~ ~ fiJxySxSy] 
xEA y~A 

then 

d •  @"(S) ~2 ~ ~ ~J(lx-yl)Isyl  j" q(dSA IS~)ISA 
x e A  y~A 

Now we can prove Lemma A.8. 

Proof We must prove that if {2,Cda(h)} converges in the local weak topology to 
2Cda(h), then 2,(dSAo ) q(dS A I SAc) converges to 2(dSAc ) q(dS A I SAc) in the local weak 
topology. Now we fix q) as in Lemma A.10 and ~ and A as in Lemma A.9. Then we 
have: 

<=] ~ [~(dSA~)--)~n(dSA~)] ~t(S)] +[ ~ [~(dSA~ )-~n(dSA~)] ~t(S)l 
M M ~ 

~l ~ [A(dSAc)--)'n(dSAo)] ~(S)l +2e 
M c  

< 4e +]y [.)~(dSAc ) - -  ) ~ n ( d g A c ) ]  ~a(S)] + y 2(dSAc)]~(S ) - ~A(S)[ 
M c 

+ y  ,(dSAc)IO(s)- 0 (s)l. 
M c 

Now we have the following estimate which is true for any 26c~a(h) by using Lemma 
A.10 and Lemma A.3. 
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M r 

<2 (, 2(dSA~) ~_. ~. flJ([x-yl)[Syl sup Jq(dSAIS"Ao)lS~l 
M c y~A xEA O < u < l  

< 2e j 2(dSac ) sup ~ j q(dS A ISle)IS~I 
M e u x~A  

< 2~ ~ 2(dSao ) sup ]AI q- 1(c2 + ~ rxy ISy[) 
M e x 6 A  ygiA 

<2et/-1 IAl(cz+SU p ~ r~yahy) 
x ~ A  y(gA 

<2e lab t/- 1(c 2 +ad sup h:,). 
x ~ A  

Then 

I j [2(dSAc) - 2.(dSAc)] ~(S)l 

= 2 ~ + 2e I AI t/- 1 (c2 + a d sup h~) + ] S [5[(dSAo ) - 2.(dSAc)] ~A (S)] 
x ~ A  

where ~A(S) is a cylindrical function. 

A p p e n d i x  B 

Proof of Lemma 2.1. Call 

x 

0 _~ dy D(y, t) g(x ,  t) = 

where D(y, t) is defined in Equation (2.6). 
We start proving that for any fixed t o and N there exists a number TN(e ) s.t. when 

t 1 - t  o < TN(~ ) the following inequality holds 

]~N ~ -I-N tl Ig( x' t)l dx }*dtg(x, t) - j dx j dt <e/2( t , - to) .  
to - N to 

In fact 

+N ( t~ t) t l  } 
~Ndx~ ~ dtg(x' -toJ dtlg(x't~ <=2NK(N)(ti-t~ 

+ N  ( t l  } 

fin d x t f  dt [g(x, t)]-to~dtlg(x, to)[ <=2NK(N)(tl-t~ 

where 

K(N)= sup ~g (x ,  t) 
t o < t < t o + Z  
-N<_x<_N 
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a n d  ~ is s o m e  pos i t i ve  f ixed n u m b e r .  T h e r e f o r e  we  can  p u t  

TN(e ) = m i n  {(4NK(N))-I e, z}. 

T o  c o m p l e t e  the  p r o o f  it is suff ic ient  to s h o w  tha t  for any  e > 0  the re  exists a N(e) s.t. 

all  c o n t r i b u t i o n s  o f  the  f o r m  

oo 

dx Ig(x, t)l <e/8 
N 

u n i f o r m l y  in t for  t o < t < t o + ~. 
I f  we no t i ce  (Sec t ion  2) t ha t  

+CO --oO 

j" a~lg(x, t)l= j" ax(x ~-x(x),)D(x, t) 
- o o  - o o  

where  

+ c o  

(x)~= ~ dxxD(x,t) 
co  

it is easy to c o n v i e n c e  ou r se lves  tha t  t o < t < t o + z the re  exists a G(x) ( i n d e p e n d e n t  

on  t !) s.t. 

+CO +CO 

f. dxlg(x,t)l~ f. dxa(x)<+oo.  
co  - c o  
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