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w 1. Introduction 

Let (~, ~-) be an arbitrary topological space, with Borel ~-algebra ~ (generated by 
Y). d{ +(~Y) denotes the space of all non-negative finite Borel measures on ~.  Equip 
d//+(~) with its weak topology, defined [16] as the weakest topology making the 
map # - ~ # ( f )  continuous and each of the maps #-*#(G), where G~J,, lower 
semicontinuous. Convergence in this topology is denoted by ~ .  When Y is 
metrisable this is just the usual topology of weak convergence used, for example, by 
Billingsley [2]. 

Suppose (~i, ~-~)~1 is a family of topological spaces (with Borel ~-algebras ~i), 
and that Borel measurable maps T~: 5~ ~ 5f~ are given (i.e. T~-1 ~i-c N). We seek 
conditions under which the weak convergence #~ ~ # in Jr  is implied by the 
weak convergence of the induced measures #i ~ #~ in Jr for each i, where for 
any vsJ~+(~)  we write v i for the measure in ~+(5fi) defined by vi(A)= v(T/- 1A). 
There are a number of applications for a result of this form. For  example, in 
Section 4 it will be shown that weak convergence of measures on the function space 
D [0, oo) follows from convergence of the measures induced on the spaces D [-0, t]. 
As with all the applications which we shall cite, this is a well-known result; our aim 
is merely to point out, and exploit, the simple underlying structure which they have 
in common. 

In Section 2 we begin with the simplest case: if the maps T~ are continuous and if 
they generate the topology on 5~, then we give some easily checkable conditions 
which ensure that #~ ~ #~ for each i implies #~ ~ #. This is applied to rederive results 
for weak convergence on the spaces IR ~ and C [0, oo), and in Section 3 we examine 
the more interesting case of weak convergence of random measures on a locally 
compact space. An extension to non-continuous T~'s is proved in Section 4. 

w 2. Weak Convergence Induced by Continuous Maps 

To prove our first result on induced weak convergence we shall need to make two 
assumptions. First we need the target measure # to be z-additive: for every 
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downward filtering family {F~} of closed sets #((~ F~) = inf# (F~). See [16] for some of 

the nice properties of the space ~ + (X, z) of all -c-additive members of Jg + (X). [If ~r 
is a separable metric space or, more generally, if there is a countable base to the 
topology W, then it is easy to show that every member of J/t § (X) is c-additive.] The 
other assumption constitutes a slight extension of the concept of a family of maps 
generating a topology. The family {T~: i~I} is said to u f-generate the topology Y if 
the class { T~- 1 G: G e ~-~i, ie l } forms a basis for J -  which is closed under finite unions. 

If the T~'s only generate the topology in the usual sense, a w f-generating family 
can be obtained by forming the larger family of maps Tj, from X into Wj = I~ ~ri, 

defined by taking the i-th coordinate of Tax to be T~x. Here J runs through the 
f a m i l y / I  of all finite subsets of 1. The induced measure #. T s- t will be denoted 
by S .  

Theoreml. Suppose the family {Ti:i~l} of continuous maps u f-generates the 
topology J-  on X and that the target measure # is c-additive. Then #~ ~ # iff #~ ~ #~ 

for every i~1. 

Proof. The proof of necessity requires but a simple modification of the well-known 
continuous mapping theorem [2]. 

if#is ~ #i for every i~I, then it is clear that #~(X) ~ #(~). Thus it suffices to prove 
that liminf#~(H)>#(H) for every HsW. By definition of the w f-generating 

property, the family of open subsets of H of the form T~- ~ G, where G ~ for some i, 
filters up to H. Use z-additivity of# to find such a set for which #(H) <#(T~- 1 G) + e. 
Then 

liminf #~(H) > liminf #~(T~- ~ G) 

= liminf#~(G) 
c~ 

> #i(G) since #1 s ~ #i 

>#(H)-~. [] 

Corollary 1. If the family {71: iel}  of continuous maps generates the topology Y 
(but not necessarily u f-generates it), and if # is c-additive, then #~ ~ # iff #~ ~ #J 
for every J e / I .  

Proof. {Tj: J s / I }  satisfies the conditions of the theorem. [] 

Corollary 2. I f  { T~: ieI} is a family of continuous maps u f-generating (generating) 
the topology on X then the family of maps {# ~ #i: i~I} ({# ~ #]: J~ f I } )  generates 
the weak topology on Jg§ [] 

Example 1 (cf. [2, p. 191). Let X = IR ~ (a countable product of real lines), equipped 
with the product topology. Since W is separable and metrisable, Jg§ 
= J/Z+(X, z). Let T~ denote the projection map of X onto the i-th coordinate space. 
If, for a net {#~} in JC/+(X), {#~J} converges weakly to some #Jeo/g+(lR J) for each 
finite J _  {1, 2,...} then the #J's can easily be shown to form a consistent family of 
distributions. By the Kolmogorov extension theorem, there exists a #~Jg+(X) 
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having these #J's as its finite dimensional distributions. It follows immediately fi'om 
Theorem 1 that #~ ~ #. A similar analysis can be given for more general product 
spaces. [] 

Example2 (cf. [18]). Let C[0, Oo) be the space of continuous real functions on 
[0, Oo), equipped with the topology of uniform convergence on compacta. This is a 
separable metrisable topology. For every rE(0, Oo) define the continuous map T, 
from C[0, ~ )  onto C[0, t] by: Tt(x ) = the  restriction ofx  to [0, t]. It is easy to verify 
that the family {77,: 0 < t <  Oo}, or even {Tto: {t,} is some sequence of real numbers 
Too}, satisfies the conditions of Theorem 1. So weak convergence of measures on 
C[0, oo) is equivalent to convergence of the measures which they induce on the 
spaces C[0, t], where 0 < t < o o  or even t~{tl,  t 2 . . . .  }. [] 

w 3. Random Measures 

In this section we show that weak convergence of random measures on a locally 
compact space is equivalent to convergence of the so-called finite dimensional 
distributions (fidis). When the underlying space is second countable further 
simplifications can be achieved by invoking an existence theorem for random 
measures (Theorem3); the argument is similar to that of Example1. Some 
comparison is made with the alternative approaches which are to be found in the 
literature. 

Let 5 P be a locally compact Hausdorff space. Take X as the space of non- 
negative Radon measures on ~ i.e. the non-negative linear functionals on ~ ( = the 
continuous real functions on 5 p having compact support). Equip &r with its vague 
topology ~, the weak topology induced by the maps x ~ x(g), g~Cg, thus making 
( f ,  J )  a completely regular Hausdorff space. A random measure on 5 ~ is defined to 
be a tight (=  inner regular with respect to compact sets) Borel probability measure 
on ~. The space ~ of all such random measures is a subset of./r + (W, ~) from which it 
inherits the relativised topology of weak convergence. This topology on ~ is the 
same as that employed in [7] and [9] (see [16, p. 40]). 

For  any finite subset F={gl ,  "' ,gk} of<g write T r for the map from Y" into IR r 
such that Tr(x ) has gi-th coordinate x(gi). Also, if F2gF 1, write Trlr2 for the 
canonical projection of IR r' onto IR r2. Notice that each Tr, Tr~ r2 is continuous and 
that the family of all such Tr's u f-generates the vague topology on Y'. Thus the 
following result is an immediate consequence of Theorem 1. We write pr for the 
induced measure P.  T r- 1 ; the class of all such pr's constitutes the finite dimensional 
distributions of the random measure P. 

Theorem 2. A net {P~} of random measures converges weakly to P ~  iff Pf  ~ pr for 
every finite F ~ cg. [] 

Now let us assume that 5 p is second countable, i.e. there is a countable base for 
the topology on 5~. This places us in the setting adopted by Jagers [7] and 
Kallenberg [9] amongst others. It can be shown that under this extra assumption 
each of the spaces ~,, ~f and ~ is Polish (cf. [1, pp. 224, 241~). By using these 
separability properties we can strengthen Theorem 2; it is no longer necessary for 
the target random measure P to be given a priori. It can actually be constructed 
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from the limiting fidi measures by means of the following existence theorem. The 
construction is based on a method of Le Cam [12] and Prohorov [,14]. We write ~+ 
for {g~<g: g>0}. 

Theorem 3. Given Borel probabilities pr  on [,0, oo)r, for F a finite subset of ~ +, there 
is a uniquely determined random measure P having these as fidis iff : 

(i) F2 ~_F ~ implies that p r~=pr l .  Trl~.2 ,. 
(ii) if F={gl ,  g2,g 1 +g2} then pr is concentrated on the closed set {Oe[,0, oo)r: 

g'(g~ + g~) = ~'(g0 + 0(g~)}. 

Proof Clearly the two conditions are necessary. 

Second countability of 5 P implies the existence of a countable subset of Cg which 
is dense with respect to the topology of uniform convergence ([-1, p. 224]). Without 
loss of generality it can be supposed that this subset forms a vector lattice over the 
field of rational numbers. Let ~ be its positive cone, and ~d the set of [0, oo)-valued 
functions on N which satisfy the additivity condition: y(gl + g2)= Y(gl)+ Y(g2) for 
g~, g2e~.  Equip 0y with the weakest topology making each of the maps y--* y(g) 
continuous, g s ~ .  It is routine to show that the obvious correspondence between ~d 
and 2F establishes a homeomorphism between the two spaces. 

From (i) and the Kolmogorov extension theorem, there exists a tight Borel 
probability measure P0 on [0, oo) ~ having the required finite dimensional 
distributions p r  for F__ ~. [Notice that the product a-algebra coincides with the 
Borel a-algebra of [0, oo) ~, since ~ is countable.] 

is a topological subspace of [0, oo) ~, being a countable intersection of closed 
cylinder sets of the form {0e[0, oo)~: 0(gl +g2)=0(gl)}-  ~t(g2)} where gl, g2 e~ .  
From (ii) each of these closed cylinder sets has P0 measure one, hence P0 (qr = 1 also. 
The required random measure P is obtained by transferring Po from ~ to the 
homeomorphic space 3f. 

This P has the desired fidis for F_c N. A simple approximation argument can 
now be used to prove that not only is P uniquely determined, but also that it has the 
required fidis for every F ~ cg+. [Use the tightness of P and the fact that the maps 
x--+x(g), gE~, generate the topology on 5F.] [] 

Random measures can also be constructed from the family of setwise fidis 
pA ...... Ak induced by the measurable maps x ~ [x(A1), ...,x(Ak)], where the sets 
A1, ..., A k run through a suitably large class of bounded Borel subsets of ~ Such a 
method has been employed by Jagers [-7] for the locally compact case, Harris [5, 6] 
and Kerstan, Matthes & Mecke [11] for Polish spaces, and Jifina [-8] in an abstract 
setting. With our method, a random non-negative linear functional on cg (a Radon 
measure) is constructed; this corresponds to a random countable additive measure 
on 5 P since Radon measures automatically possess the countable additivity 
property. When working from the setwise fidis it is also straightforward to 
construct a random finitely additive measure, but the countable additivity is no 
longer automatic. An extra condition is needed to convert finite additivity to 
countable additivity. The appropriate proper ty- inner  approximation by a 
compact system of se t s - i s  guaranteed by a continuity condition on the setwise 
fidis [7, p. 193, (2)]. Kallenberg [-9] has given yet another existence proof for 
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random measures on a locally compact space, based on a number of preliminary 
results on weak convergence; but his method is not as direct as ours. 

With our existence theorem we can now improve upon Theorem 2. We write P~g 
instead of Plug}. 

Theorem4. Let {P~} be a net o f  random measures on a second countable locally 
compact Hausdorf f  space ~ Then {P~} is weakly convergent in ~ iff {P~} converges to 
a probability measure on [0, c~) for  each g~Cg+. [Not ice  that no target random 
measure is specified.] 

Proof  (cf. [11, p. 233]). In view of Theorem2 it suffices to find a P ~  such 
that p r ~ p r  for every F _ cg +. For  if F = {gl . . . .  , gk} and if p r* ~ pr* where F* = 

{g[,gi- , . .  + - -, gk, gk } then the continuity of Tr, r implies that p r ~  pr. So choose F = 
{gl, ..., gk} _ccg +. Then by considering {P~g} for g = sl gl + . . .  + s k gk, si > O, we see 
that the Laplace transforms of {pr}  converge pointwise to a function which is 
continuous along each ray {s e: s > 0}, where e > 0. The multivariate version of the 
continuity theorem for Laplace transforms [4, p. 431] is thus applicable (even for 
nets, unlike the corresponding pointwise convergence result for characteristic 
functions), and it follows that there exists a probability measure p r  such that 
p r ~ p r  for each such E These pr 's  satisfy the conditions of Theorem3:  
if F represents any of the closed sets in condition (ii), p r ~ p r  implies that p r ( F ) >  
limsup P~r(F)= 1; and the continuity of Trlr2 takes care of (i). Thus they are the 

fidis of some P e g .  It follows that P=~P. [] 

Various versions of this result are to be found in the literature: see for example 
[14] (general compact spaces), [17] (a-compact, locally compact spaces), [6] and 
[11] (Polish spaces), and [7] and [9] (second countable locally compact spaces). In 
[6] the problem was transformed to one involving 1R ~~ where the result described in 
our Example 1 could be used, while an argument similar to that which we employed 
in Theorem 1 was given in [11, pp. 231-232]. The other authors proceeded by 
demonstrating that tightness (or relative compactness) of a family of random 
measures is equivalent to the same property for the families of fidis. In Theorem 5 
below we show that this result is itself a simple consequence of our Theorems 2 
and 3. 

It is also possible to characterise weak convergence of random measures in 
terms of the setwise fidis. But since the maps x --+ x(A), A a bounded Borel subset of 

are not necessarily continuous an extra condition such as P {x: x ( a A ) >  0} = 0 is 
required. Here ~?A denotes the boundary of A. Notice that the target random 
measure P must therefore be specified in advance. It is interesting to note that this 
result for random measures on Polish spaces was proved in [11] by showing that 
convergence of suitably many of the setwise fidis implies convergence of the fidis 
induced by certain continuous maps; arguments like those in our Theorem 1 can 
then be used. The alternative methods of [7] and [9] (based on deducing relative 
compactness of {P,} from convergence of the setwise fidis) can be viewed, in the 
light of our next theorem, as an example of proof by the standard "relative 
compactness plus convergence on a separating class" type of argument (cf. [-3, 
p. 1 6 5 ] - i n  this case the separating class consists of almost surely continuous 
functions). 
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Theorem 5. Let 5 ~ be second countable. Then ~ ~_ ~ is relatively compact in ~ iff 
Nr ( = {pr : p e ~}) is relatively compact in ~ + (IR r) for every finite F c_ cg. 

Proof Suppose the closure ~ of ~ in ~ is compact. Then ~r_~ ~ r  = the continuous 
image of the compact set ~ under the continuous map P ~ pr. Thus ~ r  is a 
compact subset of ~/{ + (IR r) containing Nr, as required. 

Conversely, we use a possibly little known result valid for any regular Hausdorff 
space E: A~_E is relatively compact in E iff every universal net {e~} on A is 
convergent in E (see [10, pp. 81,136] and [-16, prelim 7]). If {P~} is a universal net on 
~, then the image net {Pf} is a universal net on ~r ,  for each Fe/cg [10, p. 81], which 
is therefore convergent in ~+( IR r) if r is relatively compact in ~r Say 
Pf  ~ Pre~g(lRr). Then the pr's are the fidis of a random measure, as in the 
proof of Theorem4; and the result follows from Theorem2. [] 

Notice that the relative compactness of ~ in ~ is in fact equivalent to the 
relative compactness of ~g in ~+( [0 ,  ~)) for all gcCg +, by virtue of Theorem4. 
This also follows directly from Theorem 5, by noting that {P: PeN} is tight iff 
{Pa: PeN} is tight, where g=  ~ Ig, I. 

gi~F 

w 4. Weak Convergence Induced by Non-Continuous Maps 

In this section we extend Theorem 1 to cover the case of noncontinuous T~'s: it then 
suffices to have arbitrarily large pieces A s of the space for which the maps T~]A~ 
( = the  restriction of T~ to the domain A~) are continuous in the relative topology on 
A~, and so that they u f-generate that topology. Notice that continuity of T~ [A is a 
weaker requirement than continuity of T~ at each point of A. We write # , ,  #~, for 
the inner measures associated with # and #~. 

Theorem 6. Given a net {#~} in J/g+(3?) and a z-additive target measure #, if for every 
> 0 there is an A so_ 32 such that: 

(i) # , ( ~ \ A ~ ) < ~  and l imsup#~,(X\A~)<~, 

(ii) for every ieI,  T~IA~ is continous in the relative topology on A~, 
(iii) {T lIAr : ieI} wf-generates the relative topology on A,, 

then #i ~ #~ for every ie I  implies that #~ ~ #. 

Proof The argument is conceptually the same as for Theorem 1. Trivially 
/~(~)~#(~) ,  thus we have only to prove that liminf#~(H) > #(H) for each HEY-. For 

c~ 

such an H, A s c~ H is a relatively open subset of A s and hence it is the union of an 
upward filtering (by (iii)) family {Hp} of relatively open subsets of A~ of the form 
TI[a-IG~(=A~nTI-1G~), where G~er for some i depending on /~. Let H~ 
=int(A~ ~ Ha), so that {H~} is an upward filtering family in J-  for which A~ n H~ 
= H a. Since # is z-additive, there exists a rio such that #(H~o ) > #(H*) - 5, where H* 

=0u . 
# 
As A~c~H~o=H~o=A~c~ T~-IG~o, the symmetric difference T~ 1G~oAH'~o is a 

Borel measurable subset of Y" \ A s. Similarly A s c~ H* = U (A~ ~ H~) = A~ c~ H 
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implies that  HAH* is also a Borel measurab le  subset of f \ A ~ .  Thus f rom (i) 

l iminf /~  (H) > l iminf p ,  (H *) - e 

> l iminf p~ (H~o) - e 

> l iminf #~(T~- 1G~o) - 2 e  

= l iminfp i s (G~o) - 2 
c~ 

>=,ui(G~o)- 2 e 

since i i #~ ~ # .  Similarly 

/~'(Cpo ) = /~(~-~  Cpo ) 

> ~ (HL) - 

>#(H*)-2e 

> / ~ ( H ) - 3 e  

and the result follows. [ ]  

As with T h e o r e m  1, condit ion (iii) can be relaxed by requir ing only that  
{Ti [A~" i~I} generates  the relative topo logy  on A~ in the usual sense, but  then we 
would need gJ~gJ for every JE/I in order  to deduce that  g ~ / ~ .  

We conclude with two il lustrations of the use of Theo rem 6. 

Example3 (cf. [13], [19]). Let  5~ '=D[0,  oe), the space of all real valued functions 
x( . )  on [0, oo) which are right cont inuous  and have left limits at every point.  We 
equip W with Stone's  [15] separable  metr ic  topology,  for which x,  converges to x iff 
there are cont inuous  strictly increasing maps  2, of [0, oo) onto  [0, oo) such that  
x~(2~(.)) converges uniformly to x(-) ,  and 2,(t) converges uniformly to t, on the 
compac t  subsets of  [0, oe). 

Fo r  any probabi l i ty  P E ~  + (W) define C v as the set of those t~ [0, oo) for which 
P{x: x is cont inuous  at t} = 1. It  is easy to prove  that  [0, o o ) \  C~ is denumerab le  
and that  the restr ict ion m a p  Tt: x ~ x[[0, tl of D [0, oo) onto  D [0, t] is cont inuous  P 
a.e. for every t e C  v [2, p. 124], [13], [19]. So for any sequence of probabi l i t ies  
{P,} in ~ + ( W )  such that  P , ~ P ,  P,,T~- 1 ~ P T t  -1 for every t~Cp. 

Conversely,  if P, T t -  z ~ P T  t -  ~ for every tE Cp, then P~ ~ P. This results f rom 
an appl icat ion of T h e o r e m  6. Fo r  if C is any countable,  unbounded  subset  of 
(~ Cp.)c~C e, then A={xeD[O, ~ ) :  x is cont inuous  at each t~C} is a Borel 

n 

measurab le  subset  of D[0,  oo) for which P(A)=P,(A)=I for n = l ,  2 . . . . .  Also 
s traight  f rom the definition of Stone 's  topo logy  (cf. T h e o r e m  2.1 of [19]) it follows 
that  the family { T t]A: t ~ C} generates the topo logy  on A, and in fact u f -genera tes  
it: if t~ < t 2 bo th  belong to C then the restriction m a p  T~t~ : z ~ z l[o,,~] is a cont inuous  

='T. o T~h. []  m a p  f rom D [0, t2] ~ Tt~(A ) onto  D [0, t l ]  ~ Tt~ (A), satisfying Tt~la t~  

Example 4 (cf. [2, p. 54]). Let  X = C[0, 1], equipped with the uniform topology.  Fo r  
every finite S = {sa . . . .  , s~}, where 0 < s <- . .  < s~ < 1, the fidi project ion T s is defined 
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on ~ by Ts(x ) = (x(sl) . . . . .  x(sk))elR k. Suppose {P, P.: n = 1, 2 , . . .}  is uniformly tight 
[2, p. 37] and that P. T s- 1 ~ p T  s 1 for every T s. Uniform tightness means that for 
every e > 0  there exists a compact K~ such that P(Y' \K~)<e ,  P.(Y'\K~)<e,  
n=  1, 2 . . . . .  Each of the maps T s is continuous on f and the family of TslK's vof- 
generates the uniform topology on K~ since pointwise and uniform convergence are 
equivalent on the compact subsets of C[O, 1] (the pointwise topology on K~ is a 
Hausdorff topology weaker than the uniform topology, therefore these two 
topologies must coincide on K, [10, p. 141]). From Theorem 6, P. ~ P. [] 
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