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Austin, Edgar and Tulcea [-1] have shown that an Lt-bounded asymptotic 
martingale of scalar-valued functions converges almost everywhere. Consequently 
an Ll-bounded uniformly integrable martingale of scalar-valued functions 
converges in L 1 norm as well. This is no longer the case for asymptotic martingales 
of Bochner integrable functions. Indeed, Chacon and Sucheston [2] have shown 
by example that there is an asymptotic martingale of Bochner integrable functions 
on [-0, 1] with values in a Hilbert space H that is LI([0, 11, H)-bounded and 
uniformly integrable but fails to converge in LI([0,11, H) norm. Chacon and 
Sucheston did show that such an asymptotic martingale necessarily converges 
weakly almost everywhere. We shall show that such an asymptotic martingale 
also converges in the norm of Pettis integrable functions. We shall also see that, 
roughly, the difference between the mean convergence properties of vector- 
valued martingales and vector-valued asymptotic martingales is the difference 
between Bochner integrals and Pettis integrals. 

Let us briefly collect some terminology and notation. Throughout this note 
(f2, 27, #) is a finite measure space and X is a Banach space. The space of all #-Boch- 
her integrable functions with values in X will be denoted by LI(#, X). The Pettis 
norm of a function f i n  L~(#, X) is defined to be sup { ~ Ix*f[ d/~: x * ~ X * ,  IIx*ll < 1} 

.e 
where X* is the dual of X. If (B.) is an increasing sequence of sub-a-fields of X 
and (f.) is a sequence in LI(#, X) such that f .  is B.-measurable for all n, then 
(f. ,  B.) is an asymptotic martingale if lira ~ f~ d# exists when the limit is taken 

over the directed set of all bounded stopping times z. 
The following lemma is basically a restatement of Chacon and Sucheston 

[2; Lemma 21. 

Lemma 1. Let  ( f . , B . )  be an asymptotic martingale in Lx(#,X ). For each e>0  
there is a bounded stopping time z a such that if ~r and r are bounded stopping times 
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with zl <-_ z < ~r, then 

H 5 f,~ d # -  5 f,d#ll <e  
E E 

for all EeB, where Be is the or-field consisting of all finite unions of sets of the form 
Em {s: z(s)=n} where EeB, .  

Proof. Let 5>0 and pick a bounded stopping time z, such that if o-, z>~l then 
Ill fed/i- 5 f,a/il l<~. Fix a > z > z  I and suppose E~B~, Define new stopping 

times ~ and g by ~ = cr on E, g = z on E and a = ~ = nl on • \ E where nl is a positive 
integer larger than max(a, z). Then ~>--~>--z>-zl and 

Ilf f ,  d / i -  f f, d/iN = Ill f~ d / i -  f A d/ill <e .  
E E f2 .Q 

This completes the proof. 
It follows immediately that if (f,, B,) is an asymptotic martingale in Ll(/i, X), 

then lira. ~f,d/i=F(E) exists for every Ee U B,. The vector measure F will be 
E n 

called the limit measure of (f,, B.). The next theorem shows that the range of the 
limit measure of an asymptotic martingale partially governs the convergence 
properties of the asymptotic martingale. 

Theorem 2. An asymptotic martingale in LI(#,X ) is Cauchy in the Pettis norm 
if and only if its limit measure is ~i-continuous and has a relatively norm compact 
range. 

Proof. The proof is based on the elementary observation that a sequence (g,) in 
L 1 (/i, X) is Cauchy in the Pettis norm if and only if the sequences of integrals 
~g,d# are uniformly Cauchy in EeS. This fact is, in turn, an easy consequence 

of the inequalities 

sup [~hd/i[_- < ~[h]d/i<=4supl~hd/i I 
E e ~  E ~ E e ~  E 

for scalar-valued functions h e Ll (/i ). 
Since the range of an indefinite Bochner integral is norm relatively compact 

[9], the only if part is a trivial consequence of the above observation. 
The if part is a consequence of a theorem of Hoffman-Jorgensen's. Suppose 

(f,, B,) is an asymptotic martingale in Ll(#, X) with limit measure F. If F is 
/i-continuous and has a norm relatively compact range, an appeal to [4, Theorem 9] 

produces for each 5>0  a function f~ of the form f~= ~'~XiZEi where xieX and 
i = 1  

E i e ~  B, such that IIF(E)-5s <e for all EeL)B, .  We have to show that 
n E n 

l!m 115 r i d / i -  5 fJ d/ill = 0  
t, J ]2, E 

uniformly in EeZ. For this it suffices to show that this limit is uniform in Ee ~ B, 
n 

(since all the f,'s are measurable relative to sub-a-fields of the field U B,). By the 
n 
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triangle inequality and the definition of the limit measure, it suffices to show that 

lira I[ Sfd#-F(E)]l  =0 
i E 

uniformly in E~ U B,,. To this end, let e>0  be fixed and let g=f(~/4). Then, for 
n 

each fixed positive integer i, 

sup ]l~fd#-F(E)l] < sup II~fld#- ~gd#]l +e/4, 
E E U B n  E E E U B n  E E 

n n 

by the definition of g and the triangle inequality. Next pick i 0 such that g is mea- 
surable relative to Bio. Then for i > i o the above quantity is equal to 

sup I l S fd# -  ~gd#] I +e/4 
E e B i  E E 

since both f and g are Bi-measurable. Again, by the triangle inequality, this 
quantity is no greater than 

sup ]l Sfid#--F(E)]l +sup I f ( E ) -  ~gd#] I +e/4 
E~BI  E E~Bi E 

_<sup HSf, d#-F(E)H+~/2 for i>i o, 
E e B i  E 

by the definition of g. But now an appeal to Lemma i produces a positive integer 
il > io such that the first term in the above sum is smaller than ~/2 for all i>  il. 
This completes the proof. 

Unfortunately, if # has a non-atomic set, the space of #-Pettis integrable 
functions that are locally Bochner integrable is incomplete by a theorem found 
in Thomas [-7]. On the other hand, if # is purely atomic, then it is easily seen that 
the space of Pettis integrable functions is complete and that every #-continuous 
vector measure has a relatively norm compact range. Thus, if # is purely atomic, 
then a uniformly integrable ~ (not necessarily LI(#, X)-bounded) asymptotic 
martingale converges in the Pettis norm to a locally Bochner integrable Pettis 
integrable function. 

Special properties of the Banach space X can also force uniformly integrable 
L 1 (#, X) (not necessarily L 1 (#, X)-bounded) asymptotic martingales to be Cauchy 
in the Pettis norm. For, if an asymptotic martingale is uniformly integrable, it 
is easily checked that its limit measure is continuous relative to the underlying 
measure. Hence, by [8], the range of the limit measure is relatively weakly compact. 
Thus, if X has the Schur property (every weakly convergent sequence is norm 
convergent (e.g. la)), then a uniformly integrable asymptotic martingale in L 1 (#, X) 
is Cauchy in the Pettis norm for every finite measure #. 

In general, convergence of asymptotic martingales in the Pettis norm is 
evidently related to Radon-Nikodym derivatives. 

1 An asymptotic martingale (f., B,) is uniformly integrable if lim ~ f, d# = 0 uniformly in n 
~(E)~ o E 
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Corollary 3. An asymptotic martingale in Lieu, X) converges in the Pettis norm 
to a member of L1 (#, X) if and only if its limit measure has a Radon-Nikodym deriva- 
tive in LI (#, X). 

Proof. The proof is an essentially trivial consequence of Theorem 2. If the limit 
measure has a Radon-Nikodym derivative in LI(#, X), then the limit measure 
is #-continuous and has a norm relatively compact range [8]. By Theorem 2, 
it is Cauchy in the Pettis norm and it is a simple matter to prove that it converges 
to the Radon-Nikodym derivative of its limit measure. 

Conversely, if an asymptotic martingale in LI(#, X) converges in the Pettis 
norm to a member of L l(#, X), the very definition of the limit measure implies 
that the limit measure has the Pettis norm limit as a Radon-Nikodym derivative. 
This completes the proof. 

In some cases it is possible to use the results of [6] to see when the limit measure 
has a derivative (see [10]). For  most purposes the following corollary should be 
enough. 

Corollary 4. Suppose X has the Radon-Nikodym property. Then an Ll(#, X)- 
bounded uniformly integrable asymptotic martingale in Lt (#, X) converges in the 
Pettis norm to a member of L 1 (#, X). 

Proof The uniform integrability assumption implies that the limit measure is 
#-continuous. The boundedness assumption implies that the limit measure is of 
bounded variation (see Chacon and Sucheston [2]). The assumption that X has 
the Radon-Nikodym property then guarantees that the limit measure has a 
Radon-Nikodym derivative in L 1 (#, X). An appeal to Corollary 3 completes the 
proof. 

All the above results remain true in the context of locally Bochner integrable 
Pettis integrable functions and can be deduced from the above results by showing 
that an asymptotic martingale of locally Bochner integrable Pettis integrable 
functions can be approximated in the Pettis norm by an asymptotic martingale 
of Bochner integrable functions. The details are omitted. 

The following question is motivated in part by the asymptotic martingale 
constructed by Huff in his important paper [5]. If X lacks the Radon-Nikodym 
property, is there an Ll([0, 1],X)-bounded uniformly integrable asymptotic 
martingale in L1 ([0, 1], X) that is Cauchy in the Pettis norm but is not convergent? 
I fX has the Schur property, the answer is yes. It can also be shown that the answer 
is yes for X = L I [ 0 ,  1] or X = c  o. 
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