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Introduction 

The notion of asymptotic martingale emerges as an important and useful concept 
in the last few years. It permits simple, elegant proofs for some of the fundamental 
a.e. convergence theorems and it provides a unified treatment for martingales, 
submartingales, supermartingales, quasimartingales (see [1, 7, 13, 4]). The present 
paper is divided as follows: 

w 1. A Variant of the Double Limit Lemma 
w 2. Stability Properties 
w 3. An Example 

The main results of this article were announced in [3]. 

w 1. A Variant of the Double Limit Lemma 

We assume in this section that D is a set, T a directed set "filtering to the right" 
for <,  and (Dt)t~ r an increasing family of subsets of D, that is 

s < t ~ D ~ c D  t. 

The following lemma may be regarded as a variant of E. H. Moore's double 
limit lemma (see [12], p. 28): 

Lemma 1. For each t~ T, Iet ft: Dt ~ R. We assume that 

i) The family (ft(a))~ converges in R to a limit, f~(a), .for each a~D~ = ~ Dr, 
t~T  

and the convergence is "uniform" on D~o in the sense that for each e>0  there is 
t o ~ T such that 

seT, S > t o ~  [fs(a)-f,(a)[<=e for all a~D s. 

Then lim (supf) t~r  and lira (infft),~r exist in the extended real line R and equal 

supf~ and inff~,  respectively. 
D~ D~ 
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The proof of Lemma 1 is elementary. However, instead of giving its proof, 
we shall derive it from a more general onesided version of this lemma, suggested 
by Aryeh Dvoretzky. 

Consider the extended real line/~ = [ - o% + oe], the interval I = [ - 1, 13 and 
the bijection q) : iq-+ I given by 

x 

l + l x l '  

((p(+ oo)= l, q 0 ( - o o ) = - 1 ) .  Let d(u,v)=[u-v[ and let d ' be the distance on /~ 
obtained by transporting d to /~  under q0, i.e. 

l+ixl lYlyl for 

Clearly q0 is an isometry of (JR, d') onto (I, d) and an order isomorphism, that is 
x < y  if and only if q0(x)<~p(y). Below we shall consider R equipped with the dis- 
tance d'. 

Lemma 1 follows from Lemma 2 below by applying it first to the family (f)  
and then to the family (-ft) .  (Note that ~0 [R is uniformly continuous as a mapping 
of (R, d) into (R, d) and therefore assumption i) in Lemma 1 implies assumption 
j) in Lemma2 below.) In connection with Lemma 2 see also Proposition VII 
in [11]. 

Lemma 2 (one-sided version). For each t~ T, let ft: Dt ~ R. We assume that 

j) For each e > 0  there exists t~6T such that 

f (a)  > fs(a) 
t > _ s > t , ~ l + [ f ( a ) l = l + [ f ~ ( a ) l - ~  forall  a~D s. 

Then: 
(a) f~(a)=lim ft(a) exists in R for every 

t 

a~D~ = U D,. 
t ~ T  

(b) Setting 

Mr=supra(a) for tsT, and M~=supfoo(a) 
a~Dt a 6 D ~  

we have lim M t = Moo. 
t~T  

Proof. Note first that for uniformly bounded f condition j) is equivalent with 
the following. 

For each e > 0 there is t'~ ~ T such that 

t>s>-t '~f t (a)>f~(a)-~ for all aeD s. (I) 

It suffices then to prove the Lemma under the additional assumption that Iftl < 1 
for all t~T  (the general case follows from this one by composing with r 
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To prove  (a), let fo~(a)=l im sup f ( a ) ,  for each aeD~. Given ael)~ and e > 0 ,  
t 

there exists seT, s>t; for which aeD s andf~(a)>foo(a)-e, and then by (1) 

f (a)>f~(a)-2e for all t>s, 

whence 

l im infft(a) > f ~  (a) - 2 e. 
t 

Since e > 0 was arbi t rary ,  (a) is proved.  
T o  p rove  (b) note  first that  by  (1), we have  

t > s>_t'~ Mt> Ms-e.  

The a rgumen t  p rov ing  (a) shows then that  M = lira M t exists. 
t 

N o w  given e > 0 ,  there exists aeD~ with f~(a)>M~-e.  By (a) and (1) there 
exists seT, s>t~ with a~Ds such that  

t > s ~  f(a)> f~(a)-e > f~(a)-2e > M~ - 3e. 

This implies 

M~>M~ - 3 e ,  for all. t>s. 

It  follows that  

M = lim M t > Moo. (2) 
t 

Again  by  (1) we have  

s>t',~f~(a)> f~(a)-e for all aeD s, 

whence 

s > t ' ~ M ~ > M ~ - e .  

We deduce 

Moo>= M. (3) 

Conclusion (b) follows f rom (2) and (3). This completes  the p roof  of L e m m a  2. 

Application. Let (2 be a set. For  any real-valued (finitely) addit ive set function v 
defined on a Boolean  a lgebra  X of subsets of  f2, we set: 

v + (O)=  sup v(A), (4) 
A e '2 

v-  (f2) = - inf v(A) = sup ( - v(A)) (5) 
A ~ 2  A ~ 2  

(in the case when v is bounded,  v = v + - v -  is just the Jordan  decompos i t ion  of v; 
see 1-12], p. 98). 

We assume below that:  d is a Boolean algebra of subsets of O, T a directed 
set "fil tering to the r ight"  for < ,  and (sCr)t~ D an increasing family of subalgebras  
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of sg, that is: 

s _~ t:=> ~ s  ~ 6~r t . 

Corollary 1. For each t~T, let #t: ~ ~ R be a bounded additive set function. We 
assume that: 

j) The family (tq(A)), converges in R to a limit, #~(A),for each A~s~r ~ sr 
teT  

and the convergence is "uniform" on sJ~ in the sense that for each e > 0  there is 
toET such that: 

seT, S>to~]#,(A)-#~(A)l<~ for all A~ser 

Then lira #t + (f2) and lira #~-(f2) exists in the extended real line and equals #+~(f2) 
t~T t~T 

and #~o(f2), respectively. 

w 2. Stability Properties 

We assume from now on that (Q, ~, P) is a probability space. Let N - { 1 ,  2, 3 . . . .  } 
and let (~ , ) ,~  be an increasing sequence of sub-a-algebras of ~, i.e., if n_<m then 

~ ~ .  A bounded stopping time (with respect to the sequence ( ~ ) , ~ )  is a map- 
ping z: ( 2 ~ N  such that {o)~g2[z(co)=n}6~ for all nEN and r assumes only 
finitely many values. Let T be the set of all bounded stopping times. With the 
definition r__<a if z(co)<a(co) for all co~f2, T is a directed set "filtering to the 
right" (note that if ~ T, a~ T then ~ v aeT, and z/x a~T). Recall that 

~ = { A ~ l A c ~ { z = n } ~ f f ,  foral l  n~N}, 

and that z < a implies ~ ~ ~ .  
Let E be a Banach space. Let X,: f2--,E for each n~N. The sequence (X , ) ,~  

is called adapted if X.: f 2 ~ E  is Bochner ~,~-measurable for each n~N. For each 
z~T we denote by X~ the random variable defined by 

(X~)(co)=X~(o~), for ~oe f2. 

We now recall the definition of asymptotic martingale, which is basic for the 
remainder of this paper: 

Definition i. An adapted sequence (X,),~ N of E-valued random variables is called 
an E-valued asymptotic martingale if X, is Bochner integrable, i.e. 

I] X.(r dP(co) < oo 

for each n sN ,  and 

(~ X~)~T converges in the norm topology of E. 

Note that for each z ~ T, X~ is measurable with respect to ~ .  
The notion of asymptotic martingale is much stronger than it would appear 

at first glance from its definition. This is illustrated by Theorem 1 below. This 
theorem is known in one form or another (it is almost part of the folklore of 
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asymptotic martingales by now). Because of its great simplicity and importance, 
we state it and prove it in complete detail: 

Theorem 1. Let E be a Banach space. Let (X , ) ,~  be an E-valued asymptotic martin- 
gale. We have." 

1) sup Irj'X~]J < oo. 
r~T 

2) For each r ~ T define 

#~(A)= ~X~, for A ~ .  
A 

Then 
2a) The family (fl~(A))~ converges to a limit, #~(A),for each 

z~T n~N 

and the convergence is "uniform" on go in the sense that for each ~>0 there is 
~(~)~T such that: 

troT, (r>r(0~H#~(A)-#o~(A)l[<~ �9 forall A~J~. 

2b) I f  in addition sup ~ilX~JI < 0% then there is a constant M>O such that 
n ~ N  

Jrp~(A)][_-<M foreach z ~ T a n d A ~ .  

Proof. 1) By assumption there is n '~N such that 

a > n ' ~ [ l f x ~ - S x , , l l  <1. (6) 

For arbitrary r ~ T note that 

X ~ + X , , = X ~ v , , + X ~ , ,  

whence 

= sup IIXkll). 

and hence 1) is proved. 
2a) Since the net (~X~),~ r is convergent in E, given e>0, there is r(e)~T such 

that: 

r'-->_ r(~), <->_ r(~)~ IIS x ~ , -  ~ x~,,ll-<_~. (7) 

Let now r>_a>_r(e) and A ~ .  Choose n e N  such that n>_r>_a and define 

h = - A '  ~ = " n on f2 on f 2 - A '  

then rl~T, or1 eT, r z ~0" 1 _~"L'(E) and 

/'~*c(A)- ~o-(A)= ~X,~I-  SXo.1 
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and hence, by (7) above 

II#~(A)-#~(A)II G~. 

Thus we showed that for each ~ >0,  there is z(a)e T such that 

~>a>z(e)~ IIp,(A)-#~(A)II <e, for each A ~ G .  (8) 

Let now A e ~ , .  Then A e @  for some peN.  Now &(A) is defined for all z>p 
and (#~(A)),>=p is Cauchy in E, since for each e>0,  we have by (8), for a > ~ ( e ) v p  
and z >'c(e) vp,  

I]#~(A)-#r G II#~(A)- g,(ov p(A)l [ + H#r g,(~),, p(A)i [ <-2~. 

Hence the limit #oo(A) exists in E, for every AEJ~oo . We may now pass to the limit 
with z in (8) and thus statement 2 a) is proved. 

2b) Let n'elN be as in relation (6). 
For -c > n' and A e~, ,  define , ' by setting r ' =  z on A and z '=  n on f2 -A,  for 

some integer n > z. Then z' e T, , ' > n' and 

#~(A)=~X, , -  ~ X. 
f2-A 

whence using (6), 

II~(A)ll < IIS X~,ll +S IIX.II 
<(1 + 11S X,,II)+f IIX~}] < 1 + 2{sup 5 IlX.ll}. (9) 

Now for an arbitrary a c t  and B a N ,  note that B c ~ { a > n ' } ~ C ~ v , ,  ; 
we have 

Ix = i I xo 
B B n { a < n ' }  Bn{a>n'} 

~n{a__<n'} Bn{~r>n'} 

Using the previous computation (9), we get 

115 X,}I < 5( sup I]X,]I) + 1 + 2 {sup 511Xkll}. 
B 1 <j<-<_n' k~N 

With 

M =  ~(1 S<=~Pn'J]XJ]I)-~ 1 + 2 {sup 5 I}Xkll}, 

statement 2b) of the theorem is proved. This completes the proof of Theorem 1. 

Remarks. 1) The proof of the fact that if (X.),~ N is an E-valued asymptotic martin- 
gale, then (5 X~)~r is bounded in E is the same as in the real-valued case (see [13], 
Lemma 1.2). 

2) Statement 2a) of Theorem 1 may be regarded as a refinement of Lemma 2 
of [7]; the convergence of the net (#,(a))~ to a limit for each Ae ~ ~ was already 

ne~'q 
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established there, as well as the fact that for each fixed n~N the convergence is 
uniform on ~ .  

3) In connection with statement 2b) of Theorem 1 note that even though the 
ranges of the measures #~ (r ~ T) are uniformly bounded in E, their total variations 
need not be, that is sup ~ JJx~lj need not be finite; see the Example at the end of 
Section 2 in [7]. ~ r  

4) The technique used in the proof of Theorem 1, namely changing a stopping 
time v~ Ton a set A e ~ ,  is a familiar one. It has been consistently used in [2, 1, 7], 
and [13]; whence the similarity in all these proofs. 

The following result is now an immediate consequence of Theorem 1 and 
Corollary 1 : 

Corollary 2. Let (X,)n~ N be a real-valued asymptotic martingale. Then 

a) lim (~ X~ +) and lim (y X~-) exist in the extended real line. 

b) Suppose in addition that sup ~ IX.l< oo. Then (Xd) ,~,  (X~),~v and hence 
n~N 

also (IX~j)n,~ are asymptotic martingales. 

Proof With the notation of Theorem 1, it is enough to note that for each re  T, 
#~ is a bounded measure on ~ ,  that X~ is ~-measurable,  and that 

/A + (Q) = ~ X~ + and #~- (f2) = y X~-. 
f2 1? 

Remark. Statement b) of Corollary 2 is due to [1] (see Lemma 2). The generalization 
given in statement a) is due to A.Dvoretzky (see [11], Proposition VII). 

Definition 2. We say that a family (Xj)j~: of E-valued integrable random variables 
i s /2-bounded if sup ~ ][Xjp] < co. 

jeJ 

It is clear that the class of al l /2-bounded asymptotic martingales is a linear 
space. From Corollary 2 follows easily the "lattice property" for the class of real- 
valued/2-bounded asymptotic martingales: 

Corollary 3. Let (X,) ,~ and ( u be real-valued ~2-bounded asymptotic martingales. 
Then (X~v Y~),~ and (X,A Y,),~ are ~2-bounded asymptotic martingales. In 
particular, for each a > O, ( - a v X, A a),~ is an ~2-bounded asymptotic martingale. 

Proof It is enough to note that for each n e N  

X.v Y.=�89 + ~o +IX.- Yol), 
x.A Yo=�89 + ~.- Ix . -  Y.I). 

The second statement of Corollary 3 follows from the first since a constant sequence 
is obviously an / J -bounded  asymptotic martingale. (See also [13].) 

We now recall the fundamental a.e. convergence results for asymptotic martin- 
gales. We begin with the following elementary but Basic Lemma first proven in [1]. 

I) Let (X,) ,~ be an adapted sequence of E-valued random variables. Let Y 
be a random variable measurab(e with respect to a( U ~} ,  the a-algebra spanned by 

n~N 
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~) ~,,  and such that for each coE(2, Y(co) is a cluster value of the sequence (X,(co)),~. 
nEW 

Then there exist zkE T, with r k + 1 > rk > k for all k, such that 

lira X~k(co ) = Y((~), a.e. 
ken  

The proof is the same as in the real-valued case: see Lemma 1 of [1]. 

II) Let (X , ) ,~  be an adapted sequence of real-valued random variables, such that 
sup IX.IE/2. Then the following assertions are equivalent: 
n~N 

(i) (X , ) ,~  converges to a limit a.e. 

(ii) (X,) ,~ is an asymptotic martingale. 

Statement II) follows from I) above, as an easy application of the Lebesgue 
Dominated Convergence: note that lim sup X,, and lira infX, are random vari- 

n~N n~N 

ables Y satisfying the assumptions in I) above (for details see [1], Corollary 1). 
The result of statement II) has by now become classical. In the case of uniformly 
bounded random variables (even for continuous parameter processes) it goes 
back to P.A. Meyer (see [20], p. 232), who apparently was the first to consider 
"'stopping time directed convergence." See also W. Sudderth [26], J.F. Mertens 
[18], and J.R. Baxter [2]. 

III) (The real-valued asymptotic martingale). L e t ( X , ) , ~  be a real valued 12- 
bounded asymptotic martingale. Then (X,),~ N converges to a limit a.e. 

This basic a.e. convergence theorem for real-valued asymptotic martingales 
is due to D.G. A u s t i n - G . A .  E d g a r - A .  Ionescu Tulcea: Theorem 2 in [lJ. See 
also [6], for a related result. It was J.R. Baxter's pretty paper [2] and his clever 
use of the stopping time technique that inspired us in [1]. The term "asymptotic 
martingale" was actually introduced later by R.V.Chacon and L.Sucheston, 
in their paper [7]. 1 

Simpler, elegant proofs of Theorem III) are now available (see for instance 
[13]). We sketch below a very simple proof due to A.Dvoretzky (based on his 
idea of an S-martingale; see Proposition VI in [11]): 

Proof of III) (following Dvoretzky). For each a > 0 denote by c a the "truncation 
at a": 

c a ( x ) = - a v x A a ,  for x E / ~ = [ - o e ,  +oe] .  

Note that a sequence (x,),~ N of elements of the extended real line/~ converges in 
/~ if and only if (cV(x,)),,~ converges in R, for each peN. By Corollary 3, for each 
peN,  (cP(X,)),e~ is an asymptotic martingale, and since Icv(X,)[ <p for all hEN, 
the sequence (cP(X,)),eN converges to a limit a.e. by Theorem II) above. It follows 
that for a.e. coEf2, the sequence (X,,(co)),e ~ converges in/~. The fact that the limit 
is finite a.e. follows from Fatou's Lemma. 

See also [13] which contains the first systematic study of"  amarts", both in the 
ascending and the descending case. 

1 The  t e rm " a m a r t "  is now also in use (see [13]) 
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Remark. The fact that, in the real-valued case, the martingale, the submartingale, 
the supermartingale are examples of asymptotic martingales was shown in [1]. 
The fact that the quasi martingale is also an asymptotic martingale was shown 
in [13] (for the theory of quasimartingales see [14, 23], and [25]). 

To simplify the terminology we make use of the following definition (see [7]): 

Definition 3. We say that an E-valued asymptotic martingale (X,) ,~  is of class 
(B) if the family (X~)~ r i s / J -bounded (that is, sup ~ IIX~ll < oo). 

$~T 

IV) (The vector-valued asymptotic martingale). Assume that the Banach space 
E has the Radon-Nikodym property and that the dual E' is separable. Let (X,) ,~  
be an E-valued asymptotic martingale of class (B). Then there exists an E-valued 
random variable X~ such that the sequence (X,(co)),~ N converges to Xoo(co ) weakly 
in E, for a.e. co~f2. 

This basic a.e. convergence theorem for vector-valued asymptotic martingales 
is due to R.V.Chacon-L.Sucheston: see their paper [7]. Examples were given 
in [7] for the case of the Banach space E = f  v (1 < p <  oo), showing that strong 
convergence of the sequence (X,(co)),~ to X~(co) for a.e. co~2 need not hold. 
This is all the more striking since in the case of martingales, strong convergence 
a.e. always obtains, as long as the Banach space has the Radon-Nikodym property. 

The above considerations led to the following theorem recently proved in [4]: 

V) For a Banach space E the following assertions are equivalent: 

(i) E is of finite dimension. 

(ii) Every E-valued asymptotic martingale of class (B) converges to a limit 
strongly a.e. 

(iii) Every E-valued asymptotic martingale (X, ) ,~  such that lIX,(oo)l[ <=l for 
all n s N  and co~(2 converges to a limit strongly a.e. 

Theorem V) had been conjectured byGilles Pisier and the question explicitly 
raised by Louis Sucheston at the San Antonio Meeting (January 1976). 

The key tool in the proof is the Dvoretzky-Rogers L e m m a - t h e  beautiful 
lemma on which Dvoretzky and Rogers based the proof of their celebrated 
theorem on absolute and unconditional convergence in Banach spaces ([10]). 

A similar method permits to show that ifE is a Banach space of infinite dimen- 
sion, there exists an E-valued asymptotic martingale which is ~J-bounded, but is 
not of class (B). 

Theorems IV) and V) strikingly illustrate the difference between the vector- 
valued martingale and the vector-valued asymptotic martingale (for the vector- 
valued martingale see [-16, 8, 22], and [7]). 

Before giving the next stability property of the class of real-valued asymptotic 
martingales, we need some preliminary observations, which we shall state in the 
form of lemmas: 

Lemma 3. Let (X, ) ,~  be a sequence of real-valued random variables. Suppose 
that for each 0 < e < l  we have X,=Y,~)+Z~ ~, where (Y_<~>~ is an I2-bounded n ]n ~ N  
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asymptotic martingale and (7(~)~ is an adapted sequence such that 

IZ~)l<e for all zeT.  

Then (X , ) ,~  is an ~j-bounded asymptotic martingale. 

Proof The/j-boundedness of (X,).+~ is obvious, and one can easily check that 
(~ X+)+~ T is a Cauchy net. 

Below, when the sequence of a-algebras is not explicitly mentioned, it is 
assumedthat(~),+~ is the "minimal" sequence, that is o~ = a(Xj , . . . ,  X,) for each 
n~N. 

Lemma 4. Let Q = [0, 1], f f  = the a-algebra of Borel sets and P = Lebesgue measure. 
Let (a,)n~ N and (b,) ,~ be sequences of real numbers with b,> 1, b~,~ + oo. For each 
n~N let 

X,(o))=a,1 1 (co), for o)eQ [0,~) 
Then (X,) .~ is ~j-bounded if and only if a(~_+ ) is a bounded sequence, and (X , ) .~  

\vn  in eN 

is an I2-bounded asymptotic martingale if and only if [ a, ] is a convergent sequence. 
\b,],+~ 

Proof It suffices to note that 

a, fa,[ 

S f +x.l= b-- ? 
and that if z e T  and ~(0)=k, then X+=X k. 

We may now state and prove the next stability theorem: 

Theorem 2. For a function G: R ~ R the following assertions are equivalent: 

(i) The function G satisfies the conditions: 

(ia) G: R ~ R is continuous: 

(ib) lim G(x) and lim G(x! exist and are finite. 
x x x~q-oo x~--c~ 

(ii) I f  (X,),,~N is any real-valued I2-bounded asymptotic martingale 1, then 
(G(X,)).~ is an Ll-bounded asymptotic martingale. 

Proof. Let N be the set of all G: R ~ R  satisfying ia) and ib). 

(i) ~ (ii). We claim that it is enough to prove: 

(P) For any GeN and any asymptotic martingale (X,).~ N with X . > 0  for all 
neN, the sequence (G(X,)),~N is an/J-bounded asymptotic martingale. 

In fact, assume (P) proved. Let Ge.~ and (X,),+~ an arbitrary /_}-bounded 
asymptotic martingale. Let G 1 (x)--= G(x) -  G(O), for x e R. Then G 1 e N and G(X,)= 
Gt (X,)+ G(0) for all neN;  thus (G(X.)),~ is an/J-bounded asymptotic martingale 
if and only if (GI(X.)),~N is. Now (X~+).~ and (X2),~ ~ are asymptotic martingales 

1 On any probabili ty space 
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(Corollary 2b)) and 

G~(x.) = G~(X. +) + C~(-X2)  = C~ (X2)+ ~ ( X ; ) ,  

where G*(x)=Gi(-x), for XeR, and clearly G~'E~f. Thus (GI(X.)).~ is an /2- 
bounded asymptotic martingale. 

We shall now prove (P). Let GeN and let (X.).~ N be an asymptotic martingale 
with X. >0 for all n~N. We may assume, without loss of generality that 

G(0)=0 and lira G(x-)=0 (10) 
X 

(otherwise we replace G by H, where 

H(x)=G(x)-G(O)-c~x, for xeR, c~= lira G(x)., 
x ~ + o o  X 

clearly H e N  and H(X.)= G(X.)- G(O)- c~X,,, so that (G(X.)).~N is an/2-bounded 
asymptotic martingale if and only if (H(X.)).~N is). 

By Theorem 1, part 1), there is M > 0  such that 

fX~<M for each r~T. (11) 

By Theorem III), there are a random variable X~ and a setA~, P(Aoo)=0, such 
that lira X,(co)=X~(co) for each coCAs. 

n~N 

Let now 0 < e <  1. By (10) there is K > 0  such that 

x>K " lG(x)'< (M) X; 

we shall also choose K so that i fB~ ={X~ =K} then P(B~)--0. 
We now define for each n e N  

U.=I~x.<K}X ., and V.=I~x,,~K}X.; 

then X. = U. + V,,, and since U. and V. have disjoint supports 

c(x . )  = G(u.) + ~(vo). (12) 

Let now cor if X~(co)<K, then U.(co)=X.(co)<K for all n large 
enough, while if X~(co)>K, then X.(co)>K and so U.(co)=0 for all large n. In 
any case lira U. (co) exists for each co(~A~wB| and P(A~wB~)=O. Since (U.).~ N 

nEIN 

is adapted, since 0 < U. < K for all n~N and since G is continuous, an application 
of Theorem II) yields that 

(G(U.)).~ is uniformly bounded 

(G(U.)).~ is an asymptotic martingale. (13) 

On the other hand it is clear that O<V.<X~ and that IG(V,)I< ~ V,, for 
each n~N, whence 



286 A.  B e l l o w  

We deduce (use also (11)) 

~JG(V~)t<e, for each zeT. (14) 

Clearly the sequence (G(V,)),~N is also adapted. Hence by (12), (13), (14) and 
Lemma 3, the implication (i) ~ (ii) is proved. 

(ii) ~ (i). Assume (ii). That G satisfies i a) is clear, since a sequence of real 
numbers is an asymptotic martingale if and only if it is convergent. 

As before we may and shall assume that 

c(o) = o. 

To show that G satisfies ib) we reason by contradiction: suppose that ib) 
were false. We shall only vonsider the case of the limit at + oo; the case of the limit 
at - o o  can be treated similarly. 

We have to consider separately the following two cases: 

Case I. 

- oo < c~ = lira inf ~(x)--" < lim sup ---G(x) = p < + oo. 
x ~ + o o  X x ~ + c c  X 

Case II. 

lim inf G(x) or lim sup--G(x~ 
x ~ + o ~  X x ~ + ~  X 

(possibly both) are infinite ( + ~).  
We now take (~?, ~, P) as in Lemma 4. 

Case I. Let y~ > 1, y , 7  + oo and so that 

6(y2.) 6(y2._1) 
Y2n Y2n-1 

and set 

X.(o~)=y. lEo, y~)(co ), for o)e~.  

Then 

6(x.)(co)=c(y.)l[o,r for ooEo. 

If we apply Lemma 4 first with G=bn=y, and then with G =  G(y~), bn=y,, then 
it is clear that (Xn),~ ~ is an /]-bounded asymptotic martingale, that (G(X~)),E~ 
is/]-bounded, but that (G(X~)),~N is not an asymptotic martingale. 

Case II. We shall consider the following subcases: 

II1) lira sup G(x)= + oo. 
X X ~ + O 9  
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By induction construct a sequence (x.),,~, x . > l ,  x~...* +c~ such that for each 
hEN 

G(x")>2" and G(x"~)<I 
Xn Xn + 1 

Since t ~ G(xk) is decreasing on the interval [xk, Xk+Z] , we can also find a sequence 
t 

(Yk)k+~, xk<Yk <Xk+~ SO that 

Y2n Y2n-1  

We then have 

X2n - 2X2n 2 and X 2 n - 1 - -  X2n-1 1 

Y2n G(x;.) < 2 ~ Y2n-Z G(x2n-1) < ~ ' ;  

for all n. We now define for each n ~ N  

110 , 
Then 

for co~f2. 

G(X.)(co)=G(x.)l[o+~)(co), for coeQ. 

If we apply Lemma 4 first with a. = x .  and b. =y .  and then with a. = G(x.) and b,, = 
y., then it is clear that (X.).+ N is an L~-bounded asymptotic martingale, that 
(G(X.)).~ is L~-bounded but that (G(X.)).~ is not an asymptotic martingale. 

II2) l iminf  G ( x ) -  oe. 
x 

By induction again construct a sequence (x.).+~, x . > l ,  x . /"  +oc such that for 
each n e N 

G(x.) -2"  G(x.) 
- - <  and - - >  - 1 .  

Xn Xn + 1 

Then find a sequence (Yk)k+N, Xk <Yk <Xk+l SO that 

G(x2- " - ) = - 2 ,  G ( x 2 " - l ) -  1, 

Y2n Y2n-1  

and set for each hEN 

X,(oo) = x,  1 [o, ~)(co), for co ~ f2. 

The conclusion is the same as before: (X,) ,~  is an/2-bounded asymptotic martin- 
gale, (G(X,)),~ is Ll-bounded but is not an asymptotic martingale. 

II3) l imsup -- oo. 
x X ~ - ?  oo 
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Then lim inf G(x) oo also and we are reduced to case II2). 
X x ~  q- oo 

II4) lira inf G(x)= + oo. 
X x ~  -k co 

Then lim sup G(x) = + oo also and we are reduced to case II1). This completes 
x ~ + c o  X 

the proof of the implication (ii) ~ (i) and hence of the theorem. 

Remarks. 1) In connection with Theorem 2 above note that the class of continuous 
functions G: R ~ R for which 

lim G(x) and lira G(x) 
X X 

exist (finite or infinite) is quite large; it includes the piecewise linear functions, 
the concave functions, the convex functions (see [5], Chap. I, p. 52, Excercise 6), 
the subadditive functions (see [15], p. 244, Theorem 7.6.2). 

2) Let us call a function G: R ~ R  a "stability function" for the class of/A- 
bounded asymptotic martingales if whenever (X,) ,~ is a real-valued/A-bounded 
asymptotic martingale (on any probability space) such that (G(X,)),+N is /2- 
bounded, then (G(X~)),~ is an asymptotic martingale. The proof of Theorem 2 
(see in particular the proof of the implication (ii) ~ (i)) shows that conditions ia) 
and ib) are necessary as well as sufficient for G: R ~ R to be a stability function for 
the class of/2 -bounded asymptotic martingales. 

3) The standard examples of functions G: R--~R satisfying lim G(x) - - - -  q- oo 
are x++~ x 

[x[log+txl and Ix] p (p>l ) .  

As Theorem 2 shows, the classical stability theorems from <<martingale theory>> 
concerning these functions (see [-9], pp. 295-296; alternatively see [17, 19, 21, 22]) 
do not carry over to asymptotic martingales. 

w 3. An Example 

We present here an instance when the asymptotic martingale property fails. 
We assume below that O = [0, 1), ~ :  the a-algebra of Borel sets and P a non-atomic 
probability measure. Note also that since the sequence of a-algebras is not men- 
tioned explicitly, it is assumed that (~)n~N is the "minimal" sequence, that is, 
~ =  a(X t, ..., X,) for each n~N. The following example was suggested to us by 
Proposition 2.4 in [13] : 

Example. Let S: ~--+Q be an ergodic measure-preserving transformation. There 
are then functions f~/A+ such that if we set 

f + f o S + . . . + f o S  n-1 
X~ , for each n ~ N 

n 

then (X,),~ N is not an asymptotic martingale. 



Several Stability Properties of the Class of Asymptotic Martingales 289 

Proof Let f~L1+ be such that f l o g  + fq~/2 and a( f )= ~ (Such functions are easily 
constructed. In fact, let C > 0  be a constant such that 

o~ 1 

,=2 t g 

Let (I,),>_z be a partition of [-0, 1) into successive intervals I ,=[a, ,  b,) such that 

C 
P(I,) =n2(log n) z , for n >2 .  

Define now f: f2 ~ R as follows. On I, = Jam, b~) set 

f(a,) = n, f(b~) = n + 1 

f i s  linear on [a,, b,). 

Then f~Ll+ since 

C C C 
~ f <  (n + 1) n; (log n) 2 - n(log n) 2 q n 2 (log n) 2 

In 

1 
and ,,:~a n(l~,~ n) z < oo. On the other hand, f log+f(~L 1 , since 

C C 
f log + f > (n log + n) n2 (log n) 2 - n log n 

In 

1 
~2 - + oo. Furthermore it is clear that the a-algebra spanned by f is and n log n 

n :  

all of ~ )  
Now it is obvious that ~ = a(X1, ..., X~)=@ for all hEN. It follows that every 

~--measurable mapping z: Y2~N is a stopping time. In particular X * =  
sup(X 1, ..., X,) can be written in the form 

X , - X ~ . ,  for some z,~T, ~ < n .  

But by Ornstein's theorem (see [24]), X * =  sup X~q~/2; hence 
j ~ N  

It follows that the family (~ X~)~ r is not bounded. Since the boundedness of 
(f X~)~ r is a necessary condition for (X~)~ N to be an asymptotic martingale, 
(see statement 1) of Theorem 1), the desired conclusion is reached. 

Acknowledgment. The author is indebted to A. Dvoretzky for several valuable 
comments that led to substantial improvements of the Lemma in Section 2 and of 
Theorem 2. 
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