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1. Introduction 

The processes considered in this paper  have state space R a and are character- 
ized by  the following conditions: 

(i) possess the simple Markov proper ty  

(ii) are homogeneous in t ime 

(iii) have continuous paths  

(iv) are isotropic 

(v) do no t  pass through the origin at  positive times except possibly on a set of  
paths  of  zero probability.  

These conditions will be made  precise in See. 2 after the basic notat ion has been 
presented. 

The sample space of  all continuous paths  on/~8 will be expressed as the Car- 
tesian p r o d u c t / 2  X ~ '  of  two sample spaces : /2  consists of  all continuous paths  c9 
on the radial  coordinate space [0, oo), a n d / 2 '  of  all continuous paths  co' on the 
spherical coordinate space S 2. 

A diffusion of  the type  described is expressed by  using spherical coordinates, as 

(1.1) x (t, ~ x o0') = [r (t, @, q~ (t, o~')] 

where r (t, co), co e /2 ,  is the radial mot ion and ~ (t, co'), co' e /2 '  is the spherical 
mot ion  both  associated to x (t, co • 09'). 

I t  is aimed to prove these results: 
a) The radial process r (t, co) is simple Markov and homogeneous in time. 
b) x(t ,  co X co') can be represented as the so-called skew product  of  the radial 

process and an independent  spherical Brownian motion ~ run with a clock r (t, o~) 
depending on the radial pa th  co. That  is, it will be shown that ,  with probabil i ty one 
for all t s imultaneously:  

(1.2) x(t,  co X co') = (r(t, co); ~[a( t ,  o~), ~o']). 

c) a (t, c9) is a non-negative,  continuous non-decreasing function of  t for each 
fixed co. For  each fixed t it is measurable with respect to the sub-a-field determined 
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by the radial motion up to t ime t. Moreover it accomplishes the following additive 
property:  

(1.3) s(t ,  ~o) ---- a(t -- s, oo2) ~ a(s, co) for s < t 

with probabili ty one for all pairs (s, t) simultaneously. 
co + in (1.3) is the pa th  defined by  the equation: 

(1.4) r ( t ,  o~ +) -~ r ( t  + s, w) . 

In  Sec. 3, by  considering Green operators, the problem is reduced to the computa- 
tion of the characteristic functional of ~( t ,  ~o') as indicated in (3.21). See. 4 intro- 
duces a special Markov property for ~ (t, ~o'). In  See. 5 the characteristic functional 
of q~(t, ~o') is actually computed and the desired expression (3.21) is obtained 
except for a te rm tha t  still must  be proved to be zero. In  this proof, some ideas 
from [8] and [3] are used, although special arguments have to be applied due to the 
fact tha t  S 2 is not a group and also in order to show tha t  the clock s (t, ~o) is finite. 
Sec. 6 leads to the construction of a spherical process with the characteristic 
functional of q~ (t, co') and makes the above-mentioned te rm correspond to inter- 
larded Poisson jumps in a spherical Brownian motion run with a suitable dock.  
See. 7 proves the equivalence of 9 (t, oY) with the process constructed in Sec. 6 by  
applying the special Markov property of See. 4, and produces the final result. 

2. l~otation and basic definitions 

The sample spaces to and to' already have been introduced in Sec. 1. to consists 
of all continuous functions co from [0, oo) into [0, oo), and tO' of all continuous 
functions co' f rom [0, oo) into S 2. 

Throughout this paper ~ is the Borel a-field of subsets of to • to' generated by  
sets of the type:  

(co• co': x(t, ~oX co') c A ) ,  A Borel set c / i s .  

~ s  is the sub-a-field of ~ whose generators are those in the definition of ~ in 
which t ~ s. Analogously ~(s~,8~) is tha t  sub-a-field whose generators have 
si < t ~ s2. 

d r  is the sub-a-field generated by  sets of the type : 

(cox o / :  r(t, ~o) z A ~ ) ,  A i  Born  set c [0, c~). 

~q~ is the sub-a-field generated by  sets of the type : 

(09X a)':c~(t, 09') zA2) ,  A2 Borel set c S  2, 

where S 2 is the unit sphere in R 3. 

For each point  a ~ R 8 the process defines a probabili ty measure Pa (B) for all 
B ~ ~ .  This means the probabili ty tha t  a continuous pa th  starting at  a belongs to 
the Borel set B. A dot will often be used for a generic point in R 3, for instance, 
P.  (B). I t  is understood that ,  whenever "." is used several times in an argument,  it 
always refers to the same point. 
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The name "simple Markov"  is reserved for the p roper ty  that ,  for all t > 0, 
when the process is considered at  t ime t, the probabi l i ty  of  any  future  event  is 
independen~ of  the past, i.e. of  the sub-a-field ~ t .  

I f  the process is also homogeneous in time, the simple Markov proper ty  is equi- 
valent  to the equat ion:  

(2.]) P . ( P [ x ( t ,  (coXco')~) c A  I~s  ] = P~(~)[x(t--s ,  co• = 1 

for all Borel  sets A c R z, where (coxco')s + is defined as in (1.4). 
B y  isot ropy it  is meant  t ha t  the transit ion probabilities are invar iant  under  all 

or thogonal  t ransformations tha t  leave the origin fixed. 
Tha t  is, ff  A e ~ and g is such a Cransformation: 

(2.2) P(,,; gr = P(~; ~) [A]. 

As near ly  all s ta tements  hold with P. -probabi l i ty  one, the repeti t ion of  the 
words "wi th  P . -probabi l i ty  one"  will be avoided whenever  it  is obvious from the 
preceding arguments  tha t  it  is the case. 

3. Reduction of the problem by eonsidering the Green operators 

Lemma 3.1. Let r (t, co) be a radial motion with the simple Marlcov property and 
homogeneous in time. Let 8,(a(t, co), co') be an independent spherical Brownian 
motion run with a clock a (t, co) which depends on the radial path. Moreover let this 
clock be a non-negative, continuous and non-decreasin9 /unction o / t / o r  each fixed co, 
measurable with respect to ~ r  c3 ~ t  /or each fixed t, satis/ying (1.3). 

Then the skew product 

(3.1) (r(t,  co); 8,(a(t, co), co')) 

is a simple Markov process. 
Proo/: To prove tha t  (3.1) is simple Markov it  is enough to show tha t :  

(3.2) P.  [(r (h); 8, (a (h))) e (drz; dF1 ) . . . . .  (r (tn); 8, (a (tn))) a (drn ; d~n)] = 

= P.  [(r (tl) ; 8" (a (h))) ~ (drl; d~l)] . . .  Prn_~q~n_l[(r (tn - -  tn-i)  ; 

f f ( a ( t n  - t~-l))) e (drn; d~vn)] 

for  any  choice of 0 < tl < "'" < tn. 

B y  introducing a conditional probabil i ty  with respect  to the sub-a-field ~ ,  
the left hand  side of (3.2) yields 

(3.3) P.[ ( r (h ) ;  8,(a(tx))) e (dr1; dq~l) . . . .  (r(tn); 8,(a(tn))) ~ (drn; d~vn)] = 

= E. [r (h) a dr1 . . . . .  r (tn) ~ drn, P.  (8, (a (h)) a dqD1 . . . .  8, (a (tn)) ~ d~vn ] 2 r ) ] .  

For  simplicity, let 

(3.4) X1 (co) = P .  [8, (a (h)) e d~vl I ~ ]  

(3.5) Xa (co) = Pr,,_~r [8, (a (th - -  tn-1) e dq)l, 1 ~*] 

for  h = 2, . . . , n .  
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For fixed e), ~ (a (t, co), co') is simple Markov as a process on (o', for the standard 
spherical Brownian motion ~ (t, 09') is simple Markov and (r (t, co) is a suitable time 
scaling. 

Hence, for fixed co, 

(3.6) P. [~ ((~ (tl) e d~01 . . . .  , ff (a (tn) e dq~n [ Mr/ -~  X1, (co)... X n  (a~) 

Xl(co) is measurable with respect to Mr n ~t l ,  and also, for h ---- 2, . . . ,  n, 
X h  (o)+_1) is measurable with respect to Mr (~ M(tl,_l;th]. 

By the Markov property of r (t, ~o) : 

(3.7) E. (r (tx) e dr1 . . . . .  r (tn) e drn , X1 (co), . . . ,  

X n  (co~-l)] = E. [r (tl) e dr1, X1 (co)] . . . .  

Er~_l r [r (tn - -  tn-1) e drn, X n  (co)]. 

Now (3.7) together with (3.3), (3.4), (3.5) and (3.6) shows that  (3.2) holds, and 
thus lemma 3.1 is proved. 

Lemma 3.2. The radial motion o/ the process (1.1) possesses the simple Markov 
property and is homogeneous in time. 

Proo]: The homogeneity in time is obvious from the similar property of the 
process (1.1). To prove the simple Markov property first notice tha t  

(3.8) P . [ r ( t ) e d r l : ~ r n ~ s  ] = E . (P( r ( s ) ; v ( s ) ) ( r ( t - - s ) edr ) [ :~rn~s ) .  

As the process (1.1) is isotropic and as the event [r (t - -  s) ~ dr] is independent 
of ~s  and measurable on Mr 

(3.9) E. (P(r(s); v(s)) (r(t - -  s) e d r ) [ ~ r  n ~s)  ---- Pr(s) (r(t - -  s) edr ) .  

From (3.8) and (3.9) the simple Markov property of the radial process is ob- 
tained. 

Lemma 3.3. Let x (t) and y (t) be two Markovian processes with continuous paths 
with the same state space E.  

I / x  (t) and y (t) have the same Green operators, that is, i/ /or each/unction /~ C (E) 

o~  o o  

(3.10) E . ( f e x p ( - - c c t ) / ( x ( t ) ) d t )  - -=E.( fexp(- -o~t ) / (y ( t )d t ) ,  
0 0 

then the two processes are identical in law. 
Proo]: From (3.10) it follows, by the uniqueness of the inverse of the Laplace 

transform, that :  

(3.11) E. (/(x (t))) = E. (/(y (t))) 

for all ] ~ C(E), t ~ O. 
As indicator functions of measurable sets can be approximated by continuous 

functions (3.11) yields 

(3.12) P.[x( t )  e A ]  = P.[y(t)  c A /  

for each Borel set A c E, t ~ O. 
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By (3.12) both processes have the same transition probabilities. As their paths 
are continuous, they are identical in law as stated. 

Let S~ be the usual spherical functions. 
Theorem 3.1. To prove (1.2) it is enouqh to show that with probability one/or 

each t: 

(3.13) E. (S~ [~ (~ (t, ~o), ~')] [ Hr) -- E. (S~ (~ (t, ~')) [ H~), 

where a(t, 09) is a suitable clocl~ as described in Sec. 1 with property (1.3). 
Proo/: Both processes in (1.2) are Markovian; the one on the left hand side by 

condition (i) at the beginning of Sec. 1 ; the one on the right hand side bylemmas 3.1 
and 3.2. Also both have continuous paths. Hence to prove they are identical in law 
it is enough to show, by lemma 3.3, that  the Green operators are equal, i.e. : 

o o  c o  

(3.14) E . ( S e x p ( - - ~ t ) / ( r ( t ) ; ~ ( a ( t ) ) ) d t  ) = E . (~exp( - -~ t ) / ( r ( t ) ;q~( t ) )d t )  
0 0 

for all ] ~ C ( Ra). 
To prove (3.14) it is enough $o consider only functions of the type /(r, of) 

g (r) h (~) with g (0) = 0. 
In this case: 

o o  

(3.15) E, (~ exp (-- ~ t) / (r (t) ; ~ (o" (t))) St) -~ 
0 
o o  

E. (f exp (-- g t) g (r (t)) (W. [h (a (a (t))) I H~]] dt). 
0 

Also : 

(3.16) 
o o  

~. (f  exp ( -  ~ t) / (r (t); ~ (t)) st) = 
0 
o o  

~. ([ exp ( -  ~ t) g (r (t)) [E. [h (~o (t)) [Hr]] dr). 
0 

From (3.15), (3.16) to prove (3.14) it is enough to show that, for each t, with 
probability one : 

(3.17) E. (h [~(~ (t, ~), ~o')] [ Hr) = E. (h [~o (t, ~o')] ] H,)  

for all h e  C($2). 
As linear combinations of the spherical functions S~ are dense in O(S2), to 

prove (3.17) (and hence (1.2)) it is enough to prove (3.13), as theorem 3.1 states. 
Theorem 3.2. For any clock a(t, co) as in theorem 3.1, with probability one: 

(3.18) E. (S~[~(a(t ,  ~o), ~o')] 1H~) = S~(.) exp(-- 1/2n(n ~- 1) a(t, 09)). 

Proo/: First it will be shown that  

(3.19) E. (S~[~(t,  c9')]) = Sin(-) exp(-- 1/2n(n -~ 1)t) 

for the spherical standard Brownian motion $ (t, w'). 
In fact, the right hand side of (3.19) is the unique solution of the heat equation: 

(3.20) ~u (., t) 0t -- 1/2A'u(. , t)  

Z. Wahrscheinl ichkei ts theor ie ,  Bd. 1 25  
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with  initial  condit ion u (., 0 +) = SZn ('). (A' in (3.20) is the  spherical  Laplacian.)  
t r rom the theory  of  the  spherical Brownian  mot ion,  the  semigroup opera tor  of  

this process applied to  S~ (.), t h a t  is 

HtS~( ' )  = E. (S~[l~(t, co')]) 

is equal  to the unique solution ment ioned  above,  which proves  (3.19). 
Now,  to compute  E.(Stn[l~(a(t, co), co ' ) ] l~r) ,  for a fixed co, amoun t s  to per- 

fo rm the same computa t ion  as for  (3.19). I n  fact ,  b y  the  boundedness  and  con- 
t inu i ty  of  ~((~(t, co)) with respect  to t, i t  holds wi th  probabi l i ty  one: 

E.  ( # ,  [ ~ ( a  (t, co), co')] [ ~ )  = E.  (S~ [~(s,  co')])1~ = o(,,~,)- 

This gives the  result  (3.18). 
l ~ e m a r k :  ]~y theorems 3.1 and  3.2 to prove  (1.2) it  is enough to show tha t ,  for 

each t, wi th  probabi l i ty  one 

(3.21) E.[S~(~( t ,  c o ' ) ) ] ~ ] = S ~ ( . ) e x p ( - - 1 / 2 n ( n +  l )a ( t ,  co)) 

where a (t, co) has  all the  conditions described in See. 1, c). 

4. Markov property of the spherical process 

The result  obta ined  b y  ])AVID BLACKWELL ill t heorem 5 of his paper  [2] will 
now be appl ied to (St2 • f2', ~ ,  P.) .  

According to  t h a t  theorem,  for each co there  is a probabi l i ty  measure  P.~ on 
such t h a t  

(4.1) for fixed B e ~ ,  P~.(B) is a ~ r -measu rab l e  funct ion of co • co', 

(4.2) P .  [P.~ (B) = P.  (B I Nr)] = 1. 

Consider the  angular  mot ion  q~ (t, co'). B y  Blaekwell 's  theorem it  is possible to 
work  wi th  the  t rans i t ion probabil i t ies:  

+ 

(4.3) po~(t', O',t,  dO) %" = -P(r(t',,~),o')[~(t - -  t ', co') ~dt~] 

for each fixed co, each pair  t' < t and  ~ ' ,  ~ ~ S 2. 
The process thus  defined for each co has  a Markov  p rope r ty  in the sense of 

theorem 4.I  t h a t  follows. This is not  quite the  usual  simple Markov  proper ty ,  for 
equat ion  (4.4) does not  hold wi th  p robabi l i ty  one s imul taneously  for all n-vectors  
(ti, . . . ,  tn), but  ra ther  on a var iable  set of  p robabi l i ty  one depending on (ti, . . . ,  tn). 

Theorem 4.1. Given tl < " ' "  < tn, the following equality holds on a set o/ 
probability one which depends on (tl . . . . .  tn). 

(4.4) P~019 (tl) e d~01 . . . . .  9 (t~) c d ~ ]  = 

P~0[~ (tl) e d~01] ""  P ,-1 

The  proof  is ve ry  similar to t h a t  of l emma 3.1 and will be, therefore,  omit ted.  
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5. Characteristic functional of the spherical process 

The purpose of this section is to prove  the  following theorem:  
Theorem 5.1. On a set o/probability one which depends on t it holds: 

(5.1) E.(SZn[~(t, co')]]~r) : S ~ ( . ) e x p [ - - 1 / 2 n ( n - ~  1) ~(t, ~o) - -  

[1 - Pn (cos ~)] ~ ([0, t / •  d~, o~)] 
0 + 

where the/unctions Pn are the usual Legendre Polynomials and 
(i) a(t,  w) is non-negative, continuous and non-decreasing in t /or fixed co, 

measurable with respect to ~ r  ~ ~ t  /or fixed t, and has the addition property (1.3). 
(ii) r(dt • d~, co) is a non-negative measure on [0, c~)•  (0, r / s a t i s /y ing :  

Y~ 

(5.2) f (1 - cos ~) ~ fro, t / •  da, co) < ~ .  
0 + 

Besides ~([0, t / •  dv ~, co) ~- (1 - -  cos ~) ~([0, t /•  d~, co) is weak-star continuous. 
(iii) a(t, co) and r(dt•  dye, co) in (5.1) are uniquely determined. 
Since the  proof  is ra ther  lengthy it will be preceded by  several  lemmas.  
L e m m a  5.1. Let G be the group o/rotations o/ the  sphere S 2, and K be the sub- 

group o/those rotations which leave the North pole N fixed. Let d k be the Haar measure 
in K.  Then /or  gl , g2 E G it holds: 

(5.3) f Z/n (gl k g2) dk : S/n (gl) Pn (g~). 
k e K  

Proo/: For  a fixed gl the  left  hand  side of  (5.3) is a funct ion of g2, say:  

(5.4) 1 (g2) = ] ~ (gl k g~) dk. 
keK 

I f  A'  is the  spherical Laplacian,  clearly: 

~A,S  1 , (5.5) ~J' (/(g2) : J n(gl kg2)dk : 
k e K  

- n ( n  + 1) ~S~(g~kg2)dk = --n(n + 1)/(g2). 
k e K  

On the other  hand,  f rom (5.4) and the  fact  t h a t  Sin is a funct ion of left cosets 
g K  i t  follows t h a t  : 

(5.6) / (g2) = ] (g2 K) ----- / (K g~). 

B y  (5.5) and (5.6),/(g2) mus t  be of  the form:  

(5.7) /(g~) ~-- c Pn (g2) 

where c is a constant  to be determined.  
Le t  in (5.4) g2 ~ k* e K.  Then by  (5.7) 

(5.8) /(k*) = e = yS~(g~kk* )d~  = Sn~ (g~). 

(5.4), (5.7), (5.8) prove  (5.3) and hence the  lemma.  
L e m m a  5.2. On a set o/probability one which depends on t it holds: 

(5.9) E. ( ~ [ q ,  (t), co')/I ~ )  ~ = Sn( ')E~(Pn[q~(t ,  co')/). 

25* 
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The random variables 

(5.]0) Cn (t, w) = E ;  (Pn (~  (t, co))) 

are continuous and non-increasing in t /or  fixed co and satEs/y: 

(5.11) 0 ~ cn(t, co) ~ 1 

(5.12) c~ (t, co) = c~ (s, co ) c~ (t - s, c o D ,  

with probability one depending on the pair  (s < t). 
Proo]: By (4.2) 

(5.13) E. (S~ (~  (t, co')] i ~ r )  = E r  [S~ (~, (t, ~'))] 

on a set of probability one depending on t. 
Let  g be a rotation that  sends the N north pole N to 0; let /c be a rotation 

around N, and d/~ the Haar  measure on K as in ]emma 5.1. 
By  lemma 5.1 and the isotropy assumption: 

(5.14) E~. (S~[~(t ,  co')] = E ~ ( S ~ [ g ~ ( t ,  co')]) = E~v(~S~(gk~( t ,  co') dk) 
K 

l o) -~ Sn ( ' )E~(Pn(r  (t, co'))) 
which is (5.9). 

]~y the Marker  property of the spherical process, for s < t: 

(5.15) E~(Pn(c~( t ,  co'))) -~ E ~ ( E ~ [ P n ( ~ ( t ,  co'))l~s]) 
o~ + 

= Ely (Ev<~) [Pn ( ~  (t - -  s, co') )]). 

By applying to the right hand side of (5.15) the computation in (5.14) 

~o (9 + (5.16) E~v(Pn(~( t ) ) )  = E ~ v ( P n ( c p ( s ) ) ) E J  (Pn(cp(t --  s))) ,  

on a set of probability one depending on the pair s, t, as asserted in (5.12). 
The assertion that  the integral 

(5.17) cn (t, co) ~- ~ Pn  [e~ (t, o)')] P~  (dee') 

is continuous in t for fixed co is easily justified from the continuity of Pn and ~ .  
To prove inequalities (5.11) first notice that,  as -Pn (~) ~ 1, the integral (5.17) 

is also ~ 1. This shows that  the inequality on the right holds. 
As cn (0, co) = Pn (N) ~- 1, from the continuity ~lready proved it follows that,  

for a fixed co, i f  Cn (t, co) is not positive for all t > 0, there must exist a least 
value, say ran(co) > 0, such that :  

(5.18) cn(mn(co),co) -~O; cn(t, co) > O for t < m n ( c o ) .  

By (5.12) it is then clear that :  

e~(t, co) = 0 for t > m~(co).  

So the inequality on the left in (5.10) is also proved. 
Finally cn(t, co) is non-increasing for, by (5.12), it is obtained from cn(s, ~)  

by multiplying by a factor not greater than one. 
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Nex t  the usual spherical coordinates e,/~ for the unit  vector  r are introduced.  
:r is the spherical longitude and fi the eollatitude (i.e. the  angular distance from 
the Nor th  pole N). 

Lemma 5.3. Cn (t, co) = 0 i /and  only i/ 

P ~  (max fl (s, co') < an) = 0 
s N t  

where an i8 the smallest positive root o/the equation Pn (cos fl) = 0. 
Pro@ Clearly: 

(5.19) cn(t, c o ) = E ~ [ P n ( ~ ( t ) ) ,  Maxfl(s, c o , ) < a n ] +  
s > t  

+ E~ [Pn ($  (t)), Max fi (s, co') > an]. 
s < t  

Let  hn(co') = inf(s : fl(s, co') = an). Then:  

(5.20) [E~v[Pn($(t)),  Maxfl(s, c o ' ) > a n ] [ = ] E ~ [ P n ( $ ( t ) ) ,  hn <t][ < 
s < t  

2 m 

< ~ ] E~((~  --  1)2-.~t < h~ < k2-.~t, P~(q,(0))  [ 
k = l  

2m 

= ~ ]E~((~ -- 1)2-mr < hn < k2 mr, E ~22_:I ) (Pn(q~(t - -  k 2 - m t ) ) ) ) ]  
k = l  

(by the Markov proper ty  of the spherical process) 
2 m 

= ~ ] W~((k -- 1)2-rot < hn =< ~2-mt, 
k = l  

Pn ($  (k 2-m t) ) E~vk 2-"t) Pn (cO ( t --  k 2-m t) ) ) ) l 

(similarly as in (5.14)) 
2m 

g ~E~v[(k -- 1)2-mt  < hn ~ k2-mt,  ]P~(q~(k2-mt))1] 
k = l  

= (as 0 < E~z-mt[Pn(c~(t -- k2-mt)] ~ 1) 

= E~[[ Pn(cO((E[h~2m]] + 1)2-m))l]  

where [[hn2m]] is the greatest  integer smaller than  hn2 m. 
Obviously as m -+ c~ the right hand side of (5.20) tends to E~ [P (r (hn))J ~- 0. 

According to (5.18) the "i f"  condition immediate ly  follows. The "only  i f "  con- 
dition is also clear from the fact tha t :  

E~[Pn(~( t ) ,  Max fi(s, co') < an] > 0 
s N t  

unless 

P ~  (Max fi (s, co') < an) = O. 
s < t  

Lemma 5.4. Let mn(co) be defined as in (5.18). Then/or  fixed co the sequence 
mn  (co) is strictly decreasing as n increases. 

Proo[: B y  lemma 5.3 and (5.18), 

mn (co) ~- min (t : P ~  (Max fi (8) < an) =- 0). 
s < t  
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As obviously it holds, for n l  < n2, the  str ict  inequal i ty  

P ~  (Max//(s)  < an1) > P~v (Max//(s)  < an2), 
s<=t s G t  

l emma  5.4 follows. 
L e m m a  5.5. Consider/or  fixed ~, ~, the set A i ~ - ~  (r : rn~(r ~ i). 
Then /o r  almost all r e A'tn, t ~= ~ and n ~ ~ it holds: 

(5.21) cn(t, co) = exp [ - -  1 /2n(n  q- 1) a(t ,  co) - -  f (1  - -  Pn(COS 0 ) ) v  ([0, t) xdt~, o9)] 
0 + 

where: 
(i) a (t, w) is non-negative, finite, non-decreasing in t /or  fixed 09, measurable with 

respect to ~ r ~ t  /or fixed t, and satisfies the additive property (1.3). 
(ii) v (dt x d~, o~) is a measure on [0, ~] x (0, 7r] which is non-negative and satis- 

fies 

(5.22) ~(1 - -  cos ~)v([0,  t]X d~, ~o) < oo. 
0 + 

Proo/: Since cn(t, o9) ~ 0 holds for ~o e A ~  and n G ~/, t ~ i, 

(5.23) Cn (t, r = exp ( - - / n  (t, r ). 

B y  l emma  5.2, /n  (t, co) is clearly continuous in t for fixed r finite, non-negat ive,  
non-decreasing in t, and  satisfies the  addi t ive p roper ty :  

(5.24) /~ (t, ~o) = / ~  (s, ~)  + / ~  (t - s, o~$) 

for a lmost  all r in A~;~, on a set depending on each pair  (s, t). Therefore (5.23) 
also holds for  a lmost  all r in As for all pairs belonging to a countable  dense 
subset  D c [0, ~). As In (t, r is a cont inuous funct ion in t for fixed r i t  is deter- 
mined  b y  its values  on D for all such r P rope r ty  (5.23) obviously applies for s 
or  t not  in D b y  a simple cont inui ty  a rgument .  Therefore (5.23) holds for a lmost  
all re ~ A ~  for  all pairs (s, t) s imultaneously.  

B y  (5.23), (5.24), 

(5.25) E~*~(Pn[$( t  s) ~o')]) : e x p [ - -  ([n(t, w) - -  ]n(S, w))] .  

Hence  if 0 ~ t, < tl < t2 ~ " ' "  ~ t n  : t ,  (5.25) yields 

(5.26) /n(t~) - -  ]n(tk-1) = 1 - -  E~tk-~(Pn(c~(tk - -  t/~-l))) q- (~[/n(tk) - -  ]n(tlc-1)] 

for ]c ~-- 1,2 . . . . .  m. 

Le t  ZJm ~-- Max (t~ - -  tk-r). 
k 

Then clearly: 

(5.27) /n(t, o9) = lim (1 - -  E_~o~-~[Pn (~( t~ - -  t~- l ) ) ] ) .  
dm--,"O I~ = i 

I n  wha t  follows Pn (9) is replaced b y  Pn (cos fl) since Pn (9) depends only on 
the collat i tude ft. 



Representation of an Isotropie Diffusion as a Skew 1)roduct 369 

F rom (5.27), 

(5 .28)  /n (t, ~) = lim ~ f (1  --  Pn  (cos 8)) P ~  t+k-~ [/~ (t~ - -  t~-~) e dO] 
A m - + O  k = 1 0 

= l i m  S ( 1 - P n ( e o s O )  ~t~-~(fi(t~--t~_~)~dO) . 
Am'-:,'O 0 " =  

The following measures are introduced:  

(5 .29)  ~,~ ([o,  t] x dO, co) = p~t~_~ [/~ (t~ - -  t~_~) e dO] ,  
k = l  

(5.30) ~)m ([0, t] X dO, co) = (1 --  cos 0) vra ([0, t] X dO, o9). 

B y  (5.28), (5.29), (5.30): 

(5.31) lim ~l'~_P~(cos) ~ ~m([0, t] xdO, co) = / n ( t ,  co) 
1 - -  cos v ~ " " 

For  n = 1, (5.31) yields: 

(5.32) lira ~m ([0, t] X [0, 7@ co) = / 1 (t, o)) < oo. 
~n---> r 

Hence for fixed t and co, the sequence of measures (~m) is weakly compact .  
There is a subsequence (~m~) which converges weakly to a certain measure ~). 

Pn has the well known properties:  

(5.33) 1 - -  P n ( c o s  ~ )  < l i r a  1 - -  P n ( c o s  a !  .~- l /2n(n q- 1) 
1 - - c o s #  --  0r 1--cos 

(5.34) [ Pn (cos 8) ] ~ 1 Pn (cos 0) ~-- 1. 

By  (5.31), (5.33) and the convergence of ~)m~ to ~) 

(5.35) /n(t, co) = 1/2n(n @ 1) (r(t, co) -}- f~ @ 1 - P.(eos ~) ~([0, t] • co) 
1 -- cos 

0 + 

for each fixed t ~ t, co ~ A~n, n =< ~, where 

(5.36) ~([0, t] X (0), w) = a(t, co). 

Thus, (5.31) is obtained by  simply defining: 

(5.37) ~([0, t] x d 0 ,  co) = ~([0, t] x d 0 ,  @/(1  - -  cos O). 

Prope r ty  (5.22) of ~ ([0, t] X dO, co) immediate ly  follows from (5.32). 
To prove tha t  v(dt X dO, o~) is non-negative it  is enough to show tha t  

([0, t] • dO, co) is non-negative and increasing in t for fixed co. 
Tha t  it is non-negative follows from the way the approximat ing sequence @m) 

is defined in (5.29). 
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I t  is also plain, f rom (5.29), t h a t  ~([0, t] x d~, co) accomplishes the  addi t ive  
p rope r ty :  

(5.38) ~([O,t•215 + ~([O, t - -s]•  

f o r s  ~ t. 
As ~([0, t - -  s ] •  dye, cos +) ~ 0, (5,38) shows the m o n o t o n y  of v([0, t] X d~, co) 

wi th  respect  to t. 
According to  the  definition of  a (t, co) in (5.36) a similar a rgumen t  applies to  

show t h a t  i t  is non-negat ive ,  finite, non-decreasing in t for fixed co, and  satisfies 
the  addi t ive  p rope r ty  (1.3). I t  is also clear t h a t  (;(t, co) is measurable  wi th  respect  
to ~ r  n ~ t  for fixed t. The  proof  of l emma  5.5 is thus  complete.  

L e m m a  5.6. For all t and all n 

(5.39) P .  Iron (co) < t] = 0 .  

Proo/: Suppose t h a t  for, say, n = ~ and  t ---- i, P .  [m~ (co) < i] > 0. 
I t  is sufficient to consider ~ > 1 for, i f  (5.37) is not  t rue  for n = l ,  it is no t  

t rue  for n > 1 either, b y  l e m m a  5.4. 
For  a lmost  all co in such a set, b y  ]emma 5.5: 

(5.40) ]~(t, co) -~ 1 / 2 n ( n +  1) a(t ,  co) -]- ] (1  - -  P~(cosO))v([O,t]xd~,co)  
0 + 

for t < rnn (co). 
B u t  b y  l e m m a  5.4 rn n (co) < m l  (09) and, for t < rnz (co): 

(5.41) ]l(t, co )=a( t ,  co) + ~(1- -cosO)v([O, t ] •  co) < oo. 
0 + 

Compar ing  (5.40) and  (5.41) and  apply ing  the  cont inui ty  of  ]~(t, co) 

l i m / ~  (t, co) < oo 
t--+ mn(~) 

in contradic t ion to the  definition of ran. 
Therefore  l emma  5.6 is proved.  
L e m m a  5.7. With probability one: 

(5.42) cn (t, co) > 0 /or all t and n. 

Proo/: I t  is an obvious corollary of  l emma  5.6. 
Proo] o] Theorem 5.1. B y  the preceding l emmas  it  only remains  to prove  the 

assert ions of  cont inui ty  and  uniqueness.  
The proof  of  the  uniqueness of  the  representa t ion  is similar to a proof  given b y  

S. B o c R z ~  [3]. 
The  uniqueness of  (~ (t, co) follows f rom the fact  tha t ,  b y  (5.33), (5.34) : 

(5.43) f [1 - -  Pn(cos  ~)] ~([0, t ] xd~ ,  co) = o(n2). 
0 + 

The uniqueness of  ~ ([0, t] • d#, co) (and hence of ~ ([0, t]xd~, co)) follows f rom 
the  fact  t h a t  any  polynomia l  in x is a l inear combinat ion  with constant  coefficients 
of  the  polynomials  of  degree n - -  1 (1 - -  Pn(x))[(1 -- x) and f rom the classical 
t heo rem on the  m o m e n t  problem.  
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To prove the cont inui ty  of ~r (t, co) it will be first shown tha t  lim a (t, co) ---- a (s, co). 
qs  

B y  the cont inui ty  o f / n  (t, co) 

(5.44) l ira/~ (t, co) = / ~  (s, co). 
tts 

By the monotony  of  a (t, co) and 9 ([0, t] x dr% co) : 

(5.45) ~(t, co)$~(s, co) as 4 s .  

(5.46) ~([0, t] X d a ,  co)$~([0, s] x d v  q, co) as t~s.  

By (5.35), (5.44), (5.45), (5.46) and the uniqueness of the representat ion (5.35) : 

(s, o~) = ~(s, co) + ~([0, s] • (0), co). (5.47) 

Bu t :  

(5.48) 5 ([0, s] • (0), co) ~ lim lira f / ,  ([0, t] X dv a, co). 
~0  tJ, s 0 + 

From (5.48) and the monotony  of ~ it  follows, for s' > s: 

(5.49) 5([0, s] X (0), co) ~ lim 5([0, s'] x d ~ ,  09) = 0.  
~0 

F rom (5.45), (5.47), (5.49) lim a (t, co) = a (s, co). 
tds 

In  a similar way  it  can be shown tha t  lira cr(t, co) -~ (r(s, co). Thus the con- 
tts 

t inn i ty  of a (t, co) follows. 
To prove tha t  ~ ([0, t] X dye, co) is weak-star-continuous in t notice t ha t  

~ l - -  Pn (cOS @) 
i ~ - i, ([0, t] x d#, co) 

0 § 

is continuous in t, as it  is the difference between In(t, co) and 1/2n(n  ~- 1)a(t,  co) 
which have been proved to be continuous. 

As any  continuous function ] (x) in (--  1, 1] can be approximated  by  polynomials 
in x, and any  polynomial  in x is a linear combination with constant  coefficients of 

the polynomials 1 -- Pn (x) of  degree n --  1, it clearly follows t h a t / ,  ([0~ t] X dr% co) 

is weak-star-continuous in t. The proof  of theorem 5.1 is complete. 

6. Construction of a spherical Brownian motion with interlarded Poisson jumps 

Consider a non-negative,  continuous, non-decreasing funct ion a(t), and ~ non- 
negative measure v (dt • dz$) on [0, c~) x (0, ~z] satisfying: 

(6.1) f (1 - -  cos z~) v([0, t] xd~ )  < oo for each t ~ 0 ,  
0 + 

(1 - -  cos v ~) v ([0, t] X dv ~) weak-star-continuous.  

This section is devoted to the construction of  a sequence of isotropic processes 
(~fm (t, co')) on the unit  sphere S~, with the following propert ies:  
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(i) Each  ~m (t, co') can be described, in the sense explained below, as a spherical 
Brownian mot ion  run  with a clock a (t), with inter larded Poisson jumps (a finite 
number  for each path).  

(ii) The characterist ic functionals satisfy: 

(6.2) , limEar(Pn(~om(t, c o ' ) ) ) ~ e x p [ - - 1 / 2 n ( n  + l ) a ( t ) - -  
ft~ ---> r  

(1 - -  Pn (cos tg)) ~ ([0, t] • dO)]. 
0 + 

(iii) Wi th  probabi l i ty  one, (yJm(t, co')) converges uniformly on compact  t ime 
intervals.  

The following steps lead to the construct ion:  
(a) Le t  I~ (a (t)) be the  spherical Brownian mot ion run with the clock a(t), the  

same for all paths.  First  inter lard in I~ (a (t)) one single (isotropic) jump of , , length" 
# at  t ime s. A process, say y/(t ,  co') is thus obtained. 

Wha t  is mean t  is this:  the  process ~(a( t ) )  is unchanged for t < s. At  t ime s, for 
each fixed pa th  co', the  process " j umps"  isotropically f rom l~(a(s), co') to any  
point  whose angular  distance from ~(a(s ) ,  co') is #. After  t ime s the spherical 
Brownian mot ion goes on from ~0' (s @ 0, co'). 

Hence,  similarly to theorem 3.2: 

(6.3) E~v(Pn(y/(t ,  co'))) = e x p ( - -  1/2n(n  ~- 1) a(t)), for t < s .  

At  t ime s there  is a jump tha t  can be described for fixed co', as g/c where g is a 
f ixed ro ta t ion  of length ~ from l~((~(s), co') ~ - ~ ' ( s -  0, co'), and /c  is a rota t ion 
a round  ~0' (s - -  0, co'). Le t  dk be the Haa r  measure defined on K (the set of all 
ro ta t ions  k). 

Then  by  lemma 5.1 : 

(6.4) Eiv(Pn(~o'(s, co'))) : E x ( ] P n ( g k ~ v ' ( s  --  O, co'))glc) = 
K 

Pn(cos  O)En(Pn(~f ' (s  --  0))) = Pn(cos  O) exp (--  1 /2n(n  @ 1) a(s)).  

Clearly : 

(6.5) Elv(Pn(~O'(t, co'))) = Pn(cosO)  e x p ( - - 1 / 2 n ( n - t -  1) a(t)) .  

for  t > s. 
(b) Analogously m~ jumps of lengths 0t ,  respectively, for i = 1 . . . . .  /c can be 

interlarded.  Le t  the  resulting process be ~0" (t, co'). Then:  
k 

(6.6) EN(Pn(~p"(t ,  c o ' ) ) - - e x p ( - - 1 / 2 n ( n +  l)(~(t)).]-~[Pn(eosOi)]mi. 

(c) Le t  (qm) be a decreasing sequence of positive numbers  such t ha t  

(6.7) qm~0 as m -* co.  

Define a sequence (~pm (t, co')) from ~ ((~ (t)) by  interIarding in each pa th  a finite 
number  of isotropic independent  Poisson jumps with measure Vm (dt • dO) given by:  

(6.8) vm(dt • B) = v(dt • B n (qm, co)] 

for  each Borel set B c (0, ~]. 
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I t  will be proved tha t  (~Om) satisfies properties (i), (fi), (iii) s tated at  the outset 
in Sec. 6. 

(i) is already clear. 
The proof of (ii) and (iii) deserves separate theorems. 
Theorem 6.1. The sequence (~)m) satisfies (6.2). 
Proo/: For a fixed path  co', let h ([0, t] X dz$, co') be the number of jumps occur- 

ring before t ime t, whose length is between z$ and v~ ~- dt$. 
The ident i ty  

(6.9) E~v (Pn (~fm (t))) = EN [Pn (Y~m (t)) ] h ([0, t] • dye)]) 

will be used in the following argument.  
Suppose tha t  the fixed co' has before time t jumps of lengths ~1 . . . . .  ~ at 

t imes tl < ""  < tk respectively. 
Then, for tha t  fixed co', similarly as in (a) : 

E~v ( Pn (YJm (t) ) l h] ~, = 
E2v (Pn (y~m (t -- tk -- 0))[ h)[+, Pn (cos ~k) exp( - -  1/2 n (n -[- 1) a (t -- tk)). 

After  k similar steps 
k 

(6.10) EN(Pn(Y~m(t) )]h)]+,=exp[--1/2n(n ~- l ) a ( t ) ] l ~  Pn(cosO~)= 
i = 1  

exp (-- 1/2 n(n ~- 1) (r(t) I-[  [Pn (cos v~)] h([~215 . 

From (6.9) and (6.10): 

(6.11) E;v(PnOfm(t))) : e x p [ - - 1 / 2 n ( n  ~- 1)a(t)]E2v(I-~(Pn(cos~))n ) . 

I f  (am, ~] is divided into intervals of length A the following computat ion can be 
performed: 

(6.12) EN(I-~ (Pn(eosO))h ) = E N ( E ~ v [ ~  Pn(eos+))h[h([O,t]X(qm,qm ~- d]) = 

(p ')- i  exp (-- v ([0, t] • (q m ,qm + A])) [~m ([0, t] X 
p = 0  

(qm, qm -4- A)]P • [Pn (cos ~')]P EN ((Pn (cos ~))a') 

where qm < ~' < qm ~- A and h' ([0, t] • A) - h ([0, t] X A 53 (qm + z~, ~r]) for all 
Borel sets A c (qm, ~J. 

By repeating the procedure in (6.12) 
r  

(6.13) E2v(I~Pn(cOs~))h ) = l - - ~ ( p ' ) - ~ e x p [ - - v [ O , t ] •  ~- (i -- 1)z], 
i p ~ O  

qm + i A) )] • (Pro (cos ~9 i))p (Vm ([0, t] • (qm + (i -- 1) zJ, qm + i LJ) )P = 

~ I  exp [--(1 -- Pn(cos ~9i))Vm ([0, t ]•  (qm + (i -- 1)z], qm + iLJ))] 
i 

where qm + (i -- 1)4 < v ~l < qm + iz]. 
From (6.13) i t  is clear that ,  by  letting zJ --~0 

(6.14) E2v ((Pn (cos v~))a) = exp ( - - / ( 1  -- Pn (cos #)) vm ([0, t] X d#)). 
0 § 

From (6.11) and (6.14) it  easily follows tha t  (~Pm) satisfies (6.2) as stated. 
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Theorem 6.2. There is a sequence (Vm(t, ~o')) such as described which, with 
probability one, converges uni/ormly on compact time intervals. 

Proo/ : Let 

(6.15) At = .~(1 -- cos 0) v([0, t] xdO) < oo. 
0 + 

Define (qm) by the conditions: 

qm 

(6.16) ~(1 - -cos~)v([O, t ]•  q) = 2 - m A t ;  q l=zZ .  
q m §  

Clearly (qm) satisfies (6.13). I t  will be proven that  the corresponding (~m) has 
the required property. 

First it is necessary to have the same sample space for all the terms of the 
sequence (Vm). To achieve this an appropriate ordering to the jumps occurring in 
each sample path must be given. As for each Vm each sample path has only a finite 
number of jumps it suffices the following criterion: A sample path of ~Pm is de- 
scribed by interlarding, in the corresponding sample path of 8~(a(t)), successive 
jumps so that :  

(I) if two jumps have different lengths, the one with greater length is inter- 
larded first. 

(II) ff two jumps have the same length, the one occurring first in time is inter- 
larded first. 

Clearly the sample space thus obtained can be considered for all %0m. 

The following remark is important for the proof: 

(6.17) vm(t, ~o') is a Martingale with respect to t. 

t~ig. 1. (corresponding to theorem 6.2.) 
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Actual ly,  (6.171 is an immedia te  consequence of the  i so t ropy of the  process. 

Hence  also Fm ( t ) -  Fn (t) is a Mart ingale and satisfies the  inequal i ty:  

(6.18) PN (sup ([ ~fm (S) - -  ~fn(s)]) > 2  -n13) < (2n/3)2 EN((~om(t) 
s < t  

- -  gin(t)])2)for m > n .  

I n  order to  es t imate  Ely ((] ~Om (t) - -  ~0n (t) ]) 2), consider a fixed p a t h  in the  
process Fn (t), say eo~. Le t  co ~ f rom the sample space of ~Om (t) be the  pa th  t h a t  
is made  to correspond to ~o n- 

Bo th  pa ths  have  the  same jumps  with  length bigger than  qm occurring a t  the  
same t ime.  Bu t  co ~'n has a finite number  of  jumps  whose length is between qm and qn 

/ 
and co n has no such jumps.  

/ 

Assume first t h a t  co n has only two jumps  between qm and qn (and possibly other  
jumps  with  length bigger t han  qn) before t ime t. 

I n  Figure  1 the  pa th  A B C E represents  co~ and A B B'  C ' D E '  represents  co ~ .  
Bo th  pa ths  coincide up to the first j u m p  of length v~l, between qm and qn in co~, 
which occurs a t  B. F r o m  then  unti l  the  nex t  j ump  eo~ describes B C  and corn 
describes B '  C'. Clearly if  the geodesic B B '  is considered to be a pa r t  of  the  equator ,  
then  C and C' have  the same la t i tude and keep the same difference of longitude as 
exists be tween B and B' .  So: 

(6.19) ~'1 =< 01. 

After  the  second such j u m p  of length ~2 a t  t ime t2, the angular  distance 
between bo th  pa ths  is y. F rom t2 to t O  n describes C E  and (9"roDE'. At t ime t the  
angular  distance is x and, b y  the  same a rgument  t h a t  yielded (6.191 : 

(6.20) x__< y .  

Hence  

(6.21) ([ ~om(t, ~oi~) - -  ~on(t, con)])2 = 4sin2x/2 g 4sin2y/2 = 2(1 - -  cosy) .  

I n  the spherical  t r iangle CC'D:  

(6.22) cos y = cos ~1 cos ~2 @ sin ~1 sin ~2 cos ~ .  

The expecta t ion  over  the  pa ths  such as co ~, with only two jumps  of lengths 
~1, ~2 between qn and qm can be es t imated as follows: 

E(~ ) ((] ~m (t) - -  ~n (t)[) 2) < E ~  ) [2 (1 - -  cos ~ cos ~ - -  sin ~ sin ~2 cos ~)] = 

= 2 - -  2 cos ~1 cos 02 = 4 [sin2 (1/2 01) -~ sin 2 (1/2 02) =< 4 [sin 2 (1/2 ~1) ~- 

-~- sin 2 (1/2 ~2)]- (for E(~ ) (cos ~0) = 01 

Considering, b y  induction,  all pa ths  with k jumps  before t ime t with lengths 
~1 . . . . .  Ok between qn and qm 

k 

E~)((] ~om(t) - -  ~fn(t)[12) ~ 4 ~ sin2 (1/2t~d. 
i = 1  
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And in general: 
qu 

(6.23) Elv((Ivm(t ) - -  ~pn(t) D2 ) ~ 4 f s i n 2 ( 1 / 2 ~ ) v ( [ O , t ] •  -~ 
qn qm 

2 f (1 - cos 0) ~([0, t] • d~).  
qm 

From the estimate (6.23) and (6.16), (6.18) 

(6.24) P i v  ( s u p  (1 ~ m  (8) - -  ~o n (8)[ )  > 2 -n/a) < 
s~_t  

m - - n - - 1  m - - n - - 1  

22n/3+1 ~ A t  2-(n+i) = A t  2 -n/3+1 ~ 2-~. 
i = 0  i = 0  

Adding the right hand side of (6.24) over all n, 

2 2 m - n - i  ~ 2 -(i+n/a) < Bt < ~ ,  (6.25) At  2-n/3+i ~ 2-~ < 2 A t  
n = l  i = 0  i = 1  n = l  

where Bt is independent of m. 
By the Borel-Cantelfi lemma it follows that  y~m(t) converges uniformly on 

compact time intervals with probability one, as stated. 

7. Final result 

From the results of See. 6 and the properties of the process ~( t ,  co') in Sec. 5 
the following theorem is obtained: 

Theorem 7.1. For each fixed ~o there is a sequence (~fm( , o)')) such as described 
in Sec. 6 (c) with the/ollowing properties: 

o, p (i) lira E ~ ( P n ( v m ( t ,  co')) = E ~ (  nCp((t, ~o')) 
/~---~ OO 

holds with probability one/or  each t. 
(li) ~0~ converges with probability one uni /ormly on compact time intervals to some 

,po~ ( t , oo').  
From theorem 7.1 the following fundamental corollary can be inferred: 

Corollary 7.1.1. The measure v ([0, t] • d~, (o) in (5.1) vanishes identically with 
co-probability one. 

Proo/:  From theorem 7.1 and the results of the preceding sections 

(7.1) E~(Pn(q~( t ,  O)'))) = EN(Pn(y~~ e)'))) = 

exp [-- 1/2 n (n + 1) a (t, ~o) -- ;~(1 -- Pn (cos ~)) v ([0, t] • d~, o~)] 
0 + 

with probability one for each t. 
By (7.1) and (ii) in theorem 7.1 it is clear that:  

(7.2) Piv(v([0, t] • ~o) ~ 0) = Ply (yJ~(t, ~o') has no jumps). 

From the uniqueness of characteristic functionals (7.1) yields the equality of 
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the probabil i ty distributions: 

(7.3) P ~ ( ~ ( t ,  co')~dcf) = Pzc(gJ~(t)~dq~), dq )cS  2 , 

for fixed co, with co-probability one. 
By  the ?r proper ty  (4.5) of  qo (t, co'), the equation (7.3) and the isotropy 

of  both  processes which permits the replacement of  N by  any  other point  on S 2, 

(7.4) P~v [~  (tl) e d~vl . . . . .  qo (te) e d~k] = Ply [~0~ (tl) e d e l l , . . . ,  ~f~ (t~) ~ d~v~] 

on a set of  probabil i ty one depending on tl ,  . . . ,  t~. 
The indicator functions of  the events ( ~  (t) has no jumps) and (~0~ has no 

jumps) can be approximated  by  linear combinat ions of  indicators of  events as in 
(7.4), using only a countable number  of  time values. 

Hence : 

(7.5) P~v(~o~(t) has no jumps = P ~ ( ~ ( t )  has no jumps) 

with co-probability one. 

Bu t  

(7.6) Piv (qa (t) has no jumps) = Piv [P~  (~  (t) has no jumps] = 1 

by  the cont inui ty  assumptions (iii) and (v) at  the outset  of  Sec. 1. 
Then (7.2), (7.5), (7.6) prove the corollary. 

Corollary 7.1.2. The two processes in (1.2) are equivalent. 

Proo/: Corollary 7.1.1 together  with theorem 5.1 completes the proof  of  (3.21) 
and thus yields the equivalence (1.2). 

F i n a l  r e m a r k s .  The results promised in a) b) and c) of  Sec. 1 are achieved by  
Lemma 3.2, Corollary 7.1.2 and Theorem 5.1 (i), respectively. 

The equivalence thus proved can be obviously generalized to any  Euclidean 
space. The proof  for more general spaces should need a less special a rgument  than  
the one used in theorem 6.2 for the uniform convergence of  the sequence (~Om). 

I t  might  be possible to remove assumption (ii) in See. 1 about  homogenei ty  in 
time, by  considering the process (x(t, co X co'), t) which has state space R 3 • [0, r 
and is homogeneous in time. 

Assumption (v) is essential for the clock (r (t, co) to be finite with probabil i ty 
one. The discussion of  boundary  conditions at  the origin constitutes a topic for 
fur ther  research. 

Formula  (5.1) should have a generalization for homogeneous spaces. I t  is 
believed that ,  if  the space is compact,  an extension of  the method  used in theorem 
6.2 might  be possible. 
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