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A Condition for Absolute Continuity
of Infinitely Divisible Distribution Funetions

By
M. Fisz* and V. S. VARADARAJAN**

1. Summary***

Throughout this paper the symbols r.v., d.f., ch.f,, and i.d. will stand, respect-
ively, for “‘random variable”, “distribution function”, “characteristic function”,
and “infinitely divisible”.

Let F (x) beanid.d.f.. HARTMAN and WINTNER [§] and BLuM and ROSENBLATT
[I] have given a condition, necessary and sufficient, for F(x) to be a continuous
d.f. In this note a sufficient condition for F () to be an absolutely continuous d.f.

is given.

2. The eondition for absolute continuity

As shown by KaINTCHINE [6], the logarithm of the ch.f. ¢ (v) of an i.d.d.f. is
representable in the form

1) logqa(w:m——;—a%w[of# [ 4w varw)|,
-~c0 0+

where » and o(=0) are constants, H (u) is defined and non decreasing for u < 0
and for v > 0, H(— o0) = H(+ o0) = 0, and, for any & > 0,

[ Of—f— fude(u)} < oo.
—& 0+

The function 4 (u, v) is given by the formula
ivu

(2) A(u,v):ei”“——l—H_—uz.

Theorem. Let F (x) be an infinitely divisible distribution function and let H (u) be
the function corresponding to F (x) in formula (1). If, for some wy > 0, in one at least
of the intervals (—uo, 0) and (0, wo), H (u) is both unbounded and absolutely con-
tinuous, F (x) 1s absolutely continuous.

Proof. Without restricting the generality of our reasoning, we may take y in (1)
to be 0. Further, if ¢ > 0 in (1), F (x) is obviously absolutely continuous. We may
(and do) therefore assume that ¢ = 0.
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We now remark that an i.d.r.v. X whose ch.f. satisfies formula (1) with y = ¢
= 0 may be assumed to be the r.v. X (1) of some stochastic process {X (¢),0 =t =1}
that is separable, centered, has independent and stationary increments, and satis-
fies the equation. X (0) = 0, and, moreover, is such that the ch.f. ¢ (£, v) of X (¢)
satisfies, for any 0 << ¢ < 1, the relation

0— oo
(3) logg(t,v) =t j—]—_fA(u,v)dH(u) ,
—co 0+

where A (u, v) and H (u) are given by (2) and (1), respectively.

We assume now that in one at least of the intervals (—ug, 0) and (0, ug), the
function H (u) is unbounded. In other words, we assume that one at least of the
relations

(@) H(O—) = +oo,
@) H(O+) = —oo,

holds. If, for instance, (4') holds, then the sample functions of the process X (t)
have in any interval (0, #), ¢ being any point in (0,1], an infinite number of positive
jumps, with probability one. Indeed, let IV, denote the number of positive jumps
in (0, t) of magnitude m with 2-7-1 << m = 2%, and let np be a positive integer
such that 2—% < ug. Then the N, (n = ng,np + 1, ...) form a sequence of in-
dependent Poisson variables with

An=E(Ny)=H(@2 ") — H(271),
By (4'), we have Z;{n = co. This implies (c¢f. [2], p. 115, Theorem 2.7 (ii)) that

=N
ZN n == oo, with probability one. It follows in particular that the probability
N =N
that X (1) = 0 is zero.

Let {75} (k = 1,2, ...) be a sequence of positive numbers such that 71 < ug
and 7 \, 0 as k — oo. Denote by &z (j = 0, 1, ... , vg), where v is anon-negative,
integervalued r.v., the jt jump* of the sample function X (1) whose magnitude
m is such that 7z11 < m < 75, Let

(5) Elc:%-’fjlc.
i=0

It follows from (4’) and the assumption ¢ = 0, that X (1) can be represented, with
probability one, as

(6) X()= S &,
k=1

where £ denotes the sum of magnitudes of negative jumps and the jumps of magni-
tude =uyg, if any. &g (k = 1, 2, ...) and & are independent, and the number of those
indices k, for which &z > 0, is infinite. If Fy (z) denotes the d.f. of &, we have

(7) Fi(x) = ai + (1 — ag) Fi (%),

* when the points of jumps are arranged from 0 to 1.
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where ap = P(y; = 0) and Fj(x) = P (& < x|vg > 0). From (6) and (7) it
follows that

(8) F(w)Z{H*[alc+(1—%)1”1?(%)]}*1”“(%),
F=1
where * denotes convolution and F~(z) is the d.f. of £. We also note that
9) ar = exp{— [H (vx) — H (tz+1)]} .
Since H(0-+) = — oo, we can choose the constants 7y such that 0 < ap < 1 for

all £ and H(l — ag) > 0. We shall thus assume that the 7;’s have been so chosen.
i

Suppose we now assume that, in addition to (4'), H (u) is absolutely continuous
in the interval (0, ug). We proceed to prove that the infinite convolution

oo

[*[ax + (1 — az) Fif (2)]

1

is absolutely continuous. Since H (u) is absolutely continuous, for any Borel set 8§
of numbers in (0, uo) whose Lebesgue measure is zero, we have

(10) fdH (u)=0.
S

The integral on the left hand side of (10) is the expected number of jumps
whose magnitudes m belong to S. It now follows that each F} (x) is absolutely
continuous. To complete the proof that F (x) is absolutely continuous, we need the
following lemma.

Lemma. Let 0 << ax << 1 be constanis and let H(l — ag) > 0. If the d.f. Gk (x)
1
are absolutely continuous for all k and if the infinite convolution

G@) =] [ *lar + (1 — az) Gx(2)]

k

exists, G(x) is absolutely continuous.
Proof. For any d.f. let us denote the corresponding probability measure by the

N+p
same symbol. Given any ¢ > 0, we can choose an &V such that z, = H (I —ag) >
N1
> 1 — ¢ for all p > 1. Since the infinite convolution H *lag + (1 — ag) G (2)]
N{1
exists, it follows that the family {G(®) : p > 1} of measures, where
N+p '
G® =[] *[ar + (1 — az) Gel,
N+1

has compact closure*. Moreover, the expansion of G reveals that

N+p
G@ :Zp<H*Gk>—[— (I —2p) - Ly,

N+1

* in the usual topology.
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where L, is some probability measure. Consequently, for any set £ on the line,

N-H?* 1 (
(1‘[ Gk)(E) =L qu),

N1
N+p
from which we may conclude that the family { n *Gp:p > 1} has compact
N+1
closure. Thus there exists a sequence p1, P2, ... — oo and a d.f. G () such that
N +p; ~
H *Gp = G,
N+1

Since each G (x) is absolutely continuous, so is C:Y(x). The equation

N+
G — zpj( ﬂ * G’k) + (L —2p;) Ly;

N+1

enables us to infer that Lj; = 2}, where L is some probability measure (note that

2p;—>2 =NI;[1(1 — a) with z = 1 — ¢). Consequently,

[T*as+ (1 — e Gl =3+ G+ (1 —5)- I,

Nit
and. hence
(11) G=2-G+(1—321,
~ N -
where Gy =] [ *[ar + (1 — ax) Gx]* G and

1
N

Zl :H*[ak + (1 — ag) Gk]*i
1

Since ¢ is absolutely continuous, so is él. Thus the inequality z = 1 — ¢ and
the relation (11) imply that for each ¢ the absolutely continuous component of G
has total mass =1 — e. This shows that @ must be absolutely continuous and
completes the proof of the lemma. »

The theorem now follows from (8) and the lemma. In fact, by the lemma,

o0

]_[ *Tag + (1 — ag) F{ (x)] is absolutely continuous and hence so is F(x).
1
Corollary. If F(x) s a nondegenerate L-distribution function, then it is absolutely

COREINUOUS.

Proof. As shown by the first author ([4], Lemmas 1 and 3), the assumptions of
the preceding theorem are satisfied for a nondegenerate L-distribution function, so
that the corollary follows at once.

This corollary strengthens a previous result of the first author [3] to the effect
that a nondegenerate L-distribution function is continuous.

We remark that the problem of finding necessary and sufficient conditions for
the absolute continuity of an i.d.d.f. with ¢ = 0 is still open. The absolute conti-
nuity of H (w) is not necessary. An example of an absolutely continuous i.d.d.f.
with a purely discrete H (u) has been given by Hartman and WINTNER ([5],
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p-295). In constructing that example, they made use of a theorem due to them-
selves ([4], p. 286), according to which the relation

C 0m e
(12) [+ [ w2 ad ) | = oo .

—oo 0+

where 1 << 2, implies that F (x) is not only absolutely continuous but has at every
x derivatives of any order. Obviously, (12) may be satisfied for A (u) purely dis-
crete. We, however, remark that unboundedness and absolute continuity of H (u)
is less restrictive than relation (12). Indeed, take in formula (1) » = 1 =0 and

0 (u < 0),
Hu)=1{2logu O<u=<l),
0 (w>1).

This is the H function of an L-distribution function (see KuBIix [7]) and thus, by
our Corollary, that d.f. is absolutely continuous. However, (12) does not hold for
any A < 2, since for every such 1, we have

1
2fu1—’1du<oo.
0

Our next remark is that an example of a singulari.d.d.f. has been constructed
by HAarRTMAN and WINTNER ([5], p. 288).

We finally remark thatif ¢ = 0, the necessary and sufficient condition for the
continuity of an i.d.d.f., due to HarTMaN and WINTNER and to BLuM and RosEN-
BLATT, is equivalent to the unboundedness of H (u).
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