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A Condit ion for A b s o l u t e  Cont inui ty  

of  In f in i t e ly  Div i s ib le  D i s t r ibut ion  F u n c t i o n s  

B y  

M. Flsz* and V. S. VARAnARAJA~** 

1. Summary*** 

Throughout  this paper  the symbols r.v., d.f., ch.f., and i.d. will stand, respect- 
ively, for " random variable",  "distr ibution funct ion",  "characterist ic  funct ion",  
and "infinitely divisible". 

Le t  F (x) be an i.d.d.f.. HARTMA~ and WINTrieR [5] and BLVM and ~OSENBLATT 
[1] have given a condition, necessary and sufficient, for F(x)  to be a continuous 
d.f. I n  this note a sufficient condition for F (x) to be an absolutely continuous d.f. 
is given. 

2. The condi t ion  for absolute  cont inu i ty  

As shown by  KHINTCItINE [6], the logari thm of the ch.f. ~ (v) of  an i.d.d.f, is 
representable in the form 

1 ~2 v2 + + f A (u, v) dR (u)] , (1) log ~v(v) : i y v  -- -~ 
0+ 

where ~ and ~( :~0)  are constants,  H(u) is defined and non decreasing for u ~ 0 
and for u ~ 0, H ( - -  c~) = H(-}- c~) = 0, and, for any  e ~ 0, 

1 f +  u~dH(u) < ~ .  

The function .4 (u, v) is given by  the formula 

ivu 
(2) A (u, v) = e~W -- 1 1 + u  2 " 

Theorem. Let F (x) be an infinitely divisible distribution/unction and let H (u) be 
the ]unction corresponding to F (x) in ]ormula (1). I f , /or  some uo ~ O, in one at least 
o/the intervals (--uo,  O) and (0, uo), H (u) is both unbounded and absolutely con- 
tinuous, F (x) is absolutely continuous. 

Proof. Withou t  restricting the generali ty of  our reasoning, we m a y  take y in (1) 
to be 0. Fur ther ,  i f  g ~ 0 in (1), _F(x) is obviously absolutely continuous. We m a y  
(and do) therefore assume tha t  a = 0. 
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We now remark  tha t  an i.d.r.v. X whose ch.f. satisfies formula (1) with y ~ 
0 m a y  be assumed to be the  r.v. X (1) of some stochastic process {X (t), 0 --~ t G 1} 

t h a t  is separable, centered, has independent  and s ta t ionary  increments,  and satis- 
fies the equat ion X (0) = 0, and, moreover,  is such tha t  the ch.f. ~ (t, v) of X (t) 
satisfies, for any  0 G t G 1, the  relation 

(3) log~o(t,v)=t ~ +  (u,v)dH(~) , 

where A (u, v) and H ( u )  are given by  (2) and (1), respectively. 
We assume now t h a t  in one at  least of  the intervals ( --  u0, 0) and (0, u0), the 

funct ion H ( u )  is unbounded.  I n  other  words, we assume tha t  one at  least of  the 
relations 

(4) H ( 0 - - )  = + ~ ,  

(4') H ( 0 + )  = - r 

holds. If,  for instance, (4') holds, then  the sample functions of  the process X (t) 
have  in any  interval  (0, t), t being any  point  in (0,1], an infinite number  of  positive 
jumps,  with probabi l i ty  one. Indeed,  let N n  denote the number  of  positive jumps 
in (0, t) of  magni tude  m with 2 -n-1 ~ m ~ 2 -n, and let no be a positive integer 
such t h a t  2-n0 ~ u0. Then  the  N n  (n : no,  no -]- 1 . . . .  ) form a sequence of in- 
dependent  Poisson variables with 

An : E ( N n )  : H (2  -n) - -  H(2-n -1 ) .  

By  (4'), we have ~ An : c~. This implies (cf. [2], p. 115, Theorem 2.7 (ii)) t h a t  
n ~ no 

N n  ~ c~, with probabif i ty  one. I t  follows in part icular  t h a t  the probabi l i ty  
n >=no 

t h a t  X(1)  = 0 is zero. 
Le t  { ~ }  (k = 1, 2 . . . .  ) be a sequence of  positive numbers  such t h a t  r l  ~ u0 

and T~ ~ 0 as k -+ ~ .  Denote  by  ~j~ (j = 0, 1 . . . . .  v~), where vk is anon-negat ive ,  
integervalued r.v., the j th j ump*  of  the sample funct ion X (1) whose magni tude  
m is such t h a t  "ck+l < m ~ "c,~. Le t  

Vk 

(5) ~ = ~ ~j~. 
j = 0  

I t  follows f rom (4') and the assumption a --~ 0, t h a t  X (1) can be represented, with 
probabi l i ty  one, as 

(6) x(1)  = ~ $ ~ + ~ ,  

where ~ denotes the sum of magni tudes  of  negative jumps and the jumps of  magni- 
tude  ~ u0, if any. Sk (/c : 1, 2 . . . .  ) and $ are independent,  and the number  of  those 
indices k, for which ~k ~ 0, is infinite. I f  Fk (x) donotes the d.f. of ~k, we have 

(7) F k ( x )  - -  a~ + (1 - -  a~) F~. (x) , 

* when the points of jumps are arranged from 0 to 1. 
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where a~ : P(vk = 0) and F~(x) = P (~:~ =< xIv~ > 0). :From (6) and (7) it 
follows t h a t  

(8) F(x)  : * [ak -~ (1 - -  ak)F~(x)] * F - ( x ) ,  

where * denotes convolution and F - ( x )  is the d.f. of  $. We also note t ha t  

(9) a~ = exp {--  [H (~ )  - -  H (~k+l)]} �9 

Since H(0~- )  ~ - -  c~, we can choose the constants ~k such tha t  0 < a~ < 1 for 
c o  

all k and ~ ( 1  - -  a~) > 0. We shall thus assume tha t  the Tk'S have been so chosen. 
1 

Suppose we now assume that ,  in addit ion to (4'), H (u) is absolutely continuous 
in the interval  (0, u0). We proceed to prove tha t  the infinite convolution 

I ~  *[a~ + (1 - ak)F~(x)] 
1 

is absolutely continuous. Since H (u) is absolutely continuous, for any  Borel set S 
of  numbers  in (0, u0) whose Lebesgue measure is zero, we have 

(10) f d H ( u )  -~ O. 
,s 

The integral  on the left hand  side of (10) is the expected number  of  jumps 
whose magni tudes  m belong to S. I t  now follows tha t  each F~ (x) is absolutely 
continuous. To complete the proof  tha t  F (x) is absolutely continuous, we need the 
following lemma. 

co  

Lemma.  Let 0 < ak < 1 be constants and let I ~  (1 - -  a~) > 0. I] the d.f. G~ (x) 
1 

are absolutely continuous [or all k and i/ the infinite convolution 

O(x) -~ I-[ *[ak -~- (1 --  ak)Gk(x)] 
k 

exists, G (x) is absolutely continuous. 
Pros/. For  any  d.f. let us denote the corresponding probabil i ty measure by  the 

2~T + p 

same symbol.  Given any  e > 0, we can choose an N such tha t  Zp - ~-[ (1 --  a~) > 
N§ 

oo  

> 1 - -  s for all p > 1. Since the infinite convolution ] ~  * [a~ ~- (1 - -  a~) Gk (x)] 
2~+1 

exists, it follows tha t  the family {G(P) : p  > 1} of measures, where 

2V+p 
G(p) ~-~ ]-~ *[ak -~ (1 --  ak) Gk], 

/V+l 

has compact  closure*. Moreover, the expansion of  G(P) reveals t ha t  

G(P) ~ z~(Zc~* G~) + ( 1 -  z~) " + x 

* in the usual topology. 
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where L~ is some probabi l i ty  measure .  Consequently,  for any  set  E on the  line, 

( iv ~v,  G ~ ) ( E ) <  1 G( , ) (E) ,  
iV+l ~ l--e 

fiv§ ] 
f rom which we m a y  conclude t h a t  the  family  / ~ + 1 "  G,~ : p  > 1 has compac t  

closure. Thus  there  exists a sequence P l ,  1o2, .-. -+  ~ and a d.f. 0 (x) such t h a t  

I-I , a~ ::> d .  
2 i §  

Since each G~ (x) is absolutely  continuous,  so is G (x). The equat ion 
~ + v j  \ 

G(P') = z,iI I~+ ; Gk) + (1-- zp,)L~j 

enables us to  infer t h a t  Lp~- =~ L, where L is some probabi l i ty  measure  (note t h a t  

zpi -+ z = ]--[ (1 - -  ak) wi th  ; => 1 - -  s). Consequently,  
N+I 

*[ak ~- (1 - -  ak) G~] = z .  G ~- (1 - -  z ) .  L ,  
iV+I 

and hence 

I l l )  

N 

where b~ = ~ * [a~ + (I -- a~) G~]* 5 and 
i 

N 

~ -- ]-[ * [a~ + (1 -- a~) Gk] * Z. 
i 

Since G is absolutely continuous, so is G1. Thus the inequality z ~ 1 -- ~ and 
the relation (11) imply that for each ~ the absolutely continuous component of G 
has total mass ~ I -- ~. This shows that G must be absolutely continuous and 
completes the proof of the lemma. 

The theorem now follows from (8) and the lemma. In fact, by the lemma, 
co 

�9 [ak -~ (1 - -  a~)F~ (x)] is absolutely  continuous and  hence so is F(x). 
1 

Corollary. I / F  (x) is a nondegenerate L.distribution /unction, then it is absolutely 
continuous. 

Proo]. As shown b y  the first au thor  ([4], L e m m a s  1 and 3), the  assumpt ions  of  
the  preceding theorem are satisfied for a nondegenera te  L-dis t r ibut ion function,  so 
t h a t  the  corollary follows a t  once. 

This corollary s t rengthens  a previous result  of the  first au thor  [3] to the effect 
t h a t  a nondegenera te  L-dis t r ibut ion funct ion is continuous.  

We r e m a r k  t h a t  the  prob lem of finding necessary and  sufficient conditions for 
the  absolute cont inui ty  of  an i.d.d.f, wi th  a ---- 0 is still open. The  absolute conti- 
nu i ty  of  H (u) is not  necessary.  An example  of  an absolute ly  continuous i.d.d.f. 
wi th  a purely  discrete H(u) has been given b y  HAI~TiYIAN and WII~TI~]~I~ ([5], 
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p. 295). I n  construct ing t h a t  example, they  made use of  a theorem due to them- 
selves ([5], p. 286), according to  which the relation 

(12) u 2 - ~  u = o o .  

where ~ ~ 2, implies t ha t  F (x) is not  only absolutely continuous but  has at  every 
x derivatives of  any  order. Obviously, (12) m a y  be satisfied for H(u) purely dis- 
crete. We, however, remark  t h a t  unboundedness and absolute cont inui ty  of  H (u) 
is less restrictive than  relation (12). Indeed,  take in formula (1) y ~ ~ ---- 0 and 

H ( u ) =  l o g u  ( 0 < u = < l ) ,  

(u>  11. 
This is the H function of  an/5-dis t r ibut ion funct ion (see KUBIK [7]) and thus, by  
our Corollary, t ha t  d.f. is absolutely continuous. However,  (12) does not  hold for 
any  ~ < 2, since for every such 2, we have 

1 
2 .~ul-~du < oo. 

o 

Our next  remark is t ha t  an example of  a singular i.d.d.f, has been constructed 
by  HA~TMAN and WINTNER ([5], p. 288). 

We finally remark tha t  if  a ---- 0, the necessary and sufficient condition for the 
cont inui ty  of  an  i.d.d.f., due to HARTMAN and WINTNER and to BLU~ and RosEN- 
~LATT, is equivalent  to  the  unboundedness  of  H(u). 
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