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The General Theory of Markov Processes Aceording to Doeblin*
By

Kar Lar Caune

§ 0. Introduction

This paper is based on DoEBLIN’s paper [1] cited in the Bibliography. Although
this work probably represents his crowning achievement in the theory of Markov
processes, it is little known and almost never used, even when it is occasionally
included in the references as a collector’s item. (For what is generally known as
DorrLIN’s theory see [2] and [3, Chapter 5].) The present author gave a course on
the material of [7] in the spring of 1951 at Columbia University and the lecture
notes were mimeographed for limited circulation. The version presented here is an
expanded one over these notes, with a number of new results added, but it treats
only that part of his theory which may be called the descriptive foundations,
stopping short of the principal limit theorem. One reason for doing so is that the
presentation of the latter hard theorem still leaves much to be desired, while the
part given here seems to have reached a stage where it assumes a quite indepen-
dent place in the general theory. It is hoped that the appearance in print of this
will encourage further research towards various limit theorems in the general
context.

It does not seem necessary to detail the differences between this presentation
and DoEBLIN’s own, since the latter is easily accessible for the sake of comparison.
The curious reader may also consult the notes mentioned above which are closer
to the original. T shall therefore limit myself to a few remarks. In §§ 1—2 my work
has been mainly that of organization and clarification. Proposition 5 is due to
BrackwELL and Proposition 6 to myself, both of which are given new proofs
here. Propositions 18 and 19 summarize some basic properties of a specially
important type of space; the resemblance of Proposition 18 to the classical
theorem of Cantor’s on nested sequences of closed sets is notable. §§ 3—4 contain
substantial enlargements. In particular in § 3 the arithmetical study in Propo-
sitions 34 to 37 (ending in Proposition 45 in § 4) is new. In § 4, Definitions 10 and 11
as well as Propositions 41 and 43 are new, leading to a more stringent definition of
our H which resembles DogsLin’s D, our D being his p. With the present definition
the conjecture “D = H” was first proved by H. KesTEN (private communcation
1962) and became Proposition 48. In § 5, the proofs of Propositions 50 and 51 are
both simpler than DOEBLIN’s original ones, the first due to T. E. HARRTS (private
communication 1955).

In the remainder of this section we review briefly a constructive definition of
Markov processes in the general case considered here. The reader is supposed to
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have some knowledge of these processes at least in a more limited context. Stan-
dard terminology and notation such as in [3] or [4] will be used wherever not
specified. The letters ¢, j, &, I, m, n, v are positive integers or zero where not
specified; the complement of a set is sometimes indicated by the superseript “c”.

Let X be an abstract space and # a Borel field of subsets of X. We are given a

function P(-,*) where z € X, B e # with the following properties:

(i) for each z, P(z,") is a probability measure on &%
(ii) for each B, P(-, B) is a #-measurable function of x.

Let furthermore an arbitrary probability measure Py (-) on & be given. It is known
{see [3; p. 613]) that a probability space (2, %, P) can be constructed to satisfy
the following requirements. There exists a sequence of functions {£,,n = 0},
each of which is from Q into X and is (%, %) measurable; that is, £1(%) c Z.
The measure P is completely determined by P(-,-) and Pg(-) on the Borel subfield
F 10,0) generated by {£n, n = 0}, as follows: for any By € #:

(A) P{gmeBm,0<m<n}~jP0dxofoo,dxl ijmldxm)

The sequence {&,,n = 0} is a (discrete parameter) Markov process with the
stationary transition probability function P(-,-) and the initial distribution Py.
In the particular case Po(-) = d(x,*) where for every Be %:

1 ifzeB,

0(x B) = { 0 ifz¢B;

the corresponding P restricted to Fg,.) will be denoted by P, and the corres-
ponding Markov process is said to start from z. The function P;{A} where
xe X, Ae Fow is useful since it is a well-defined and convenient version of the
conditional probability P{A|& =

More generally, let # 1, «) be the Borel subfield of & generated by {£m,m = n},
then for each » = 0 and each A € F4,), we have for every w except a set of
P-measure zero:

(B) P{A|&(®), ..., En(0)} = Py {4},

where P is given by (A) with an arbitrary Py. The Markov property of the process
is embodied in the equation (B).

Several cases of P, (/) for important sets A will now be given with special
symbols assigned to them. These will be employed throughout the paper and
simple intuitive relations connecting them based on the above interpretations of
conditional probabilities will be passed muster.

We write B¢ = X — B below:

Pin (x B) w{én€ B} for m = 0 is obtained by putting By = {z},
B = = Bn 1=2X, and B, — B in formula (A);

K (x,B) = Py{lpe B, 1 <m =Zn—1; & e B} for n = 1 is obtained by
putting By = {«}, By = - = By = B¢, and B, = B in formula (A);

Lz, B) = ZK(nMcB x{U[EneB]}

n=1 n=1
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Q@ By =1—3 [Pu(a,dy)[l — Ly, B
n=028

= lim [P (z,dy)L(y, B)

n—>o0 X

= P,{(\ Ulnc B}

m=1n=m

Note that P® (x, B) = §(, B); and PW (x,B) = P(x, B).

§ 1. Closedness and essentialness

For an arbitrary set % in &%, we define four sets:
EY = {x:L(x, E) =0},
Bl ={x:L(z,E)=1},
Ef ={z:Q(x,E) =0},
Ex ={x:Q(z E)=1}.
For each E in 4, the functions L(-, E) and Q (-, E) are #-measurable; hence each

of the four sets above is in 4. The complement of £*, where * stands for any of
the symbols 0, 1, f or oo, will be denoted by E*¢ rather than (£*)c.

Definition 1. A nonempty set £ in & such that P(x, E) =1 for every x €
is called stochastically closed (cl.).

Proposition 1. If z € E°, then P(x, EVE°c) = 1. The sets KO and EVE¢ are either
both empty or both cl.
Proof. We have

0= Lz, B)= [ P(x,dy) + [ L(y, E) P(x,dy) + [ L(y, B) P(,dy).
E BOEe EeRe
Since the integrands in the first and third integrals above are positive, we have
Px, B EVEe) =0
or

Pz, EOEY) =1.

It follows that EO as well as B9 E¢ is cl. unless empty, and that if £° is nonempty
then so is E0Ee.

Proposition 2. If x ¢ B, then P(zx, E1U E) = 1. If E is cl., then so is EL.
Proof. We have
1=L(x,E)= P(x, B1) + P(x,E°E) + fL(y,E)P(x,dy).
EicEe
Since the integrand in the last integral is less than 1, we have
P(x, B¢ Ee) =0
or
Px,B1UE)=1.

If E is cl., then E c E1; hence the first assertion implies the second.
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Proposition 3. Ef is cl. or empty.
Proof. Suppose Ef is nonempty and let x € Ef; then
0=Qx, E) = fQ (y, B) P(z,dy) = [ Q(y, B) P(x,dy) = 0
Bie

Since the integrand in the last integral is positive, we have P(x,/f¢) =0 or
P(x, Bf)y = 1.

Proposition 4. E> is cl. or empty.

Proof. Suppose E» is nonempty and let x € E~; then

1=¢ fQ Y, B) P (z,dy) + [ Q(y, B) P(x,dy).
Eooe

Since the integrand in the last integral is less than 1, we have P(x,E>¢) = 0 or
Pz, Ew) =].

Proposition 5. If B =\_) By, then B0 = mEg; where {Ey} is an arbitrary

n n

sequence of sets in %.
Proof. Clearly E°c E2 so that EO cm EY. On the other hand, if z emE

then for every n we have L(x, B,) = 0; consequen’cly
Lz, E) = L(x,\ JEn) =3 Lz, Hy) =0,
n n

and so z € E°. Thus (M) £Y c E°.

Definition 2. A set E in % such that Q(x,E) = 0 for every x e X is called
inessential (iness.); otherwise it is called essential (ess.). An essential set which
is the union of denumerably many inessential sets is called improperly essential
(imp. ess.); otherwise it is called absolutely essential (abs. ess.).

The next two propositions are basic for the sequel. Proposition 6 was given by
Brackwerr [5], and Proposition 7 in the lecture notes mentioned in the Intro-
duction and essentially reproduced in [4; p. 19]. Both were proved by simple,
direct arguments. For the sake of completeness but variation we give alternative
proofs below based on the convergence of martingales.

For any E in 4, let

A(E) =lim sup{&, € B},
and for any ¥ and F in £, let !
Q= B, F) = P{A(B) N A(F)}.

Proposition 6. If

sup @ (z, F) < 1,
zek

then for every x € X we have
Q@ B, F)y=0

Proof. Fix an z as the initial point of the process {n,n = 0}. Since A (&) and
A(F) are invariant sets we have with probability one:

Px{A(E)nA(F)]‘SO:-u:fn} =Px{A(E)nA(F)|§n}= Q(‘fn:E5F)
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This shows that {Q (£, E, F'), n = 0} is a martingale and PavL L&vy’s zero-or-one
law asserts that for almost every w:

1) lim @ (€n (@), £, F) = Samn aw)

n—roo

where 3, denotes the indicator function of A. Now if w € Ag, then &, (w) e H for
infinitely many values of #, and consequently for these values of n we have

2) Q(Sn(w),E,F)éQ(En(w),F)ésqu(x,F)<1-

It follows from (1) and (2) that P,(A(E) N A(F)) = 0.

Proposition 7. If
inf L{z, F} >0,
zekl

then for every x € X we have

Qx, B) = Qx, K, F).
Proof. Let

n=F
so that in the previous notation we have

A\ M= A(F).
We have if n = k: e
Py {Ap|&o,....En} = Po{Mus1|&o, ... En} = Pop{Mg|&o, ..., En}
with probability one. Letting # —> oo, then k — oo, we obtain
Sapy =Um Pop{Myy1|&o, ... En} < lim Sar, = Sy -
Since T e
L(&n, F) = Py{Mpi1|én} = Po{Mpi1|&o, ..., &n}

with probability one, we conclude that

(3) m Ly, F) = S ) -

n—>

If we A(E), then &,(w) € E for infinitely many values of » and consequently
for these values of n we have

(4) L{Ep (), F) = inf Lz, F) > 0.
zeE

It follows from (3) and (4) that Py(A(E)) = Py(A(E) N A(F)).
Proposition 8. If E is ess., and inf L(x, F') > 0, then F is ess.
el
Proof. Since E is ess. there exists an « for which @ (z, £} > 0. By Proposition 7,

Qz, Y= Q(x, B, F)=Q(x,E)>0.
Hence F is ess. '
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Proposition 9. If E is abs. ess., and inf L(z, F) > 0, then F is abs. ess.
zeE

Proof Tt is sufficient to prove that for any sequence of sets F'y in % such that

F = U Fy, there exists an ng such that U Fy is ess. We note the simple relation:
E=1

Lz, F) =lim L(x UFk

n—>0co

Let x € B, then L(x, F') = « > 0; hence there exists a finite mq(x) such that

Mo (Z)
U Fy) > >0.
Let By = {x € E: mo(x) = n}, then B = U E,. Since ¥ is abs. ess. there exists

n=1
an ng such that K, is ess. By the definition of £, we have

inf L(x UFk)>—

x€En, k=1
Hence by Proposition 8, U Fp is ess.
=1
Proposition 10. For any K in B, if there exists an F in B such that
sup @ (x, F) <1, inf L (&, F) >0,

zeE xckE
then % is iness.

Proof. For every x we have by Propositions 6 and 7:
Q(sz) = Q(x’E:F) =0
Hence £ is iness. by definition.

Proposition 11. If X — E° is abs. ess., then E is abs. ess.
Proof. Let

' En:{x:L(x,E)g%};
then we have

X:EOUOEn.

n=1

If X — EYis abs. ess., then K, is abs. ess. for some », and so E is abs. ess. by
Proposition 9.

Proposition 11.1. If X is abs. ess. and B9 = 0, then E s abs. ess.

Proposition 12. For any E in &, X — (E°U E®) is not abs. ess.
Proof. Let

Bn={o: Q@ B) S 1~ L B) = o}
then
X:EOUEmuUEn.

n=1
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Bach X, is iness. by Proposition 10, hence their union X — (E0U Ey) is not abs.
ess.

Proposition 12.1. If E is abs. ess., then for any F in B the set BE(FO0U Fo) ¢
abs. ess., hence nonempty.

Proposition 13. If Z is abs. ess., then EE® is abs. ess., in particular E® + 0.
Proof. Applying Proposition 12.1 with F = E we see that EEU EE> is
abs. ess. But E EO is clearly iness., hence K E* is abs. ess.

Proposition 14. If C is cl., then X — (C'U 00 does not contain any cl. set and
is not abs. ess.

Proof. Any cl. set contained in X — C must be contained in (9 hence
E =X — (Cu (% does not contain any cl. set. Since CU (0 is cl., any point in E1
must belong to E; in particular B c Bl c E. But B> is cl. if not empty, hence
Eo = 0 by the first assertion. It follows from Proposition 13 that £ is not abs. ess.

Proposition 14.1. If C and D are cl. sets such that D c C and C — D does not
contain any cl. set, then C — D is not abs. ess. In particular, O — C(D v D) is
not abs. ess.

§ 2. Decomposability

Definition 3. A cl. set which does not contain two disjoint cl. sets is called
indecomposable (indecomp.); otherwise it is called decomposable (decomp.). An
indecomposable set which is not properly contained in any indecomposable set is
called maximal indecomposable (maz. indecomp.)

Proposition 15. If E is indecomp., then (EO)0 is max. indecomp.

Proof. Suppose (E)0 is decomp.; let C and D be two disjoint cl. sets contained
in it. For any ® € C we have x ¢ E° since E°(E0)0 = 0; hence L(z, E) > 0. Since
C'is cl. this implies that CE =+ 0. Similarly DE + 0. Thus C £ and D E are disjoint
cl. sets contained in  and E is decomp. We have thus proved that if £ is indecomp.,
then so is (£%)0. Now suppose that F is cl. and contains (E0)0 properly. Let
ze F — (B9, then L(x, £9) > 0. Thus E° is nonempty and hence cl. by Propo-
sition 1, and F E° is also nonempty and hence cl. The set I contains the disjoint
cl. sets K and F E° and so is decomp. We have therefore proved that any cl. set
properly containing (E°)° is decomp. Hence (£°)? is max. indecomp.

Proposition 16. T'wo mazx. indecomp. sets are either identical or disjoint.

Proof. Let E and F be two distinet max. indecomp. sets. Then EU F is cl. and
contains either of them properly. Hence it is decomp. and contains two disjoint cl.
sets C' and D. Since # is indecomp. at least one of £ ¢ and £ D is empty. Suppose
EC is empty; then F > C and since F also contains B F which is either cl. or
empty we must have EF = 0 since ¥ is indecomp.

Proposition 17. If X is indecomp. and E is abs. ess., then E0 = 0.

Proof. By Proposition 13 we have E* + 0, hence E» is cl. by Proposition 4.
By Proposition 1, E9 is ol. if not empty. Since EVE* = 0 and X is indecomp., we
must have E0 = 0.
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Proposition 18. If X is abs. ess. and indecomp., then every sequence of cl. sefs
has a cl. intersection whose complement is not abs. ess.

Proof. Let {C} be a finite or infinite sequence of cl. sets. Then D, = n Cyis
not empty since X is indecomp. We have T

X=UD,u(\Dn).
7w n

Each Dy, is cl. and D¢ does not contain any cl. set by the indecomposability of X.
Hence Dj, is not abs. ess. by Proposition 14.1. with ¢ = X; and so {_) D, is not
n

abs. ess. Since X is abs. ess. it follows that m D, is abs. ess., hence it is nonempty,
hence it is cl. ”

Proposition 18,1, In an indecomp. space the complement of amy cl. set is not abs.
es8.

Proposition 19. In an abs. ess. and indecomp. space X, an abs. ess. set B is
characterized by any one of the following three properties:

E0=0, Ee =0, Ef=0.

Proof. The first characterization follows from Propositions 11.1 and 17. Next,
each of the three sets B9, B> and E is either cl. or empty, by Propositions 1, 4 and
3. Now at least one of the two sets £? and E* is nonempty by Proposition 12.1.
Hence exactly one of them is nonempty since £0E» = 0 and X is indecomp. Thus
E» =+ 0is equivalent to E0 = 0 and we have proved the second characterization.
Finally, since BE? c E7, Ef = 0 implies E® — 0; on the other hand since £/ E® = 0,
Ef + 0implies F® = 0 because of indecomposability. Hence the third characteri-
zation is a consequence of the first two.

Remark: Let “H e/ stand for the proposition “F is abs. ess.”, “=>" for
“implies” and “s+»” for “does not imply”. The following table shows the
various relations under different hypotheses regarding the space X ; where * 4"
stands the required example is trivial from the theory of Markov chains.

Table

. - Abs. ess. and
Arbitrary X Abs. ess. X Indecomp. X indecomp. X

Eeod =>E» + 0

Eeo +>E0=0
Eeof +>Ef =0
Ee +0+>F e
EV=0=>F e.of
Ef=0=F e«

Eeol =y E0 =0
Eeod =>Ef =0
Eo+0+>E eof
E0=0+>E esf
Ef=Q+)>E esf

|

B+ 0= FEed

Proposition 20. If X is indecomp. and E is abs. ess., then the series

(%)

f P (2, F)

n=20

diverges for every x € X. If X is abs. ess. and the series in (5) has a positive sum
for every x € X, then E is abs. ess.

Proof. Suppose that the series in (5) converges for some 2, then by the Borel-
Cantelli lemma: @ (x, £) = 0 so that Ef + 0. If X is indecomp. a glance at the
preceding table shows that £ is not abs. ess. Next suppose that the series in (5)

Z. Wahrscheinlichkeitstheorie, Bd. 2 17
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has a positive sum for every x, then £° = 0. If X is abs. ess., a glance at the
preceding table shows that E is abs. ess.

Remark. The converse to the first assertion in Proposition 20 is false. More
precisely, it is possible in an indecomp. X that the series in (5) diverges for every
z but % is iness. Consider the following example from Markov chains. The space X
consists of {y,,n = 1} and {wpg, 1 <k < n, n = 1}.

1
Py, y2) = 5
1 1
Pyn, yns1) =1— 55 Plyn,y1) =5, n=2;
3
P(yl,xnl):pnzw, n=1;
P@pp, @n, p41) =1, 1<k<n—1;

Pana,1)=1.
It is clear that X forms one nonrecurrent class. Let

E={mu,1<k=nn=1}.
We have

PO, B) 2 3 e =2 > &
= k=mn

so that the series in (5) diverges for x = y1. Since L{x, y1) > 0 for every z it
follows easily that it diverges for every z. To see that F is iness., we vexify that

inf L (x, #11) = L (y1, 211) = p1 > 0,
zeR

sup @ (x, 211) = @(y1, 711) = Ly, 211) <1 — 5

xel n=2

jo

—
—

~——

Hence F is iness. by Proposition 10.

Definition 4. A set £ in & such that @Q(x, £¢) < 1 for some z € X is called
perpeluable (perp.). Equivalently, B in & is perpetuable if there exists an z in B
such that L(z, E¢) < 1 (see Proposition 24 below). In the literature a perp. set
has been called a “sojourn set”; of. [4; p. 110].

Proposition 21. If E is perp. then it is ess.
Proof. We have for every E in #:

(6) Q@ B) + Qx, E) =1

hence ¢ (=, E¢) << 1 implies Q(x, E) > 0.
Remark. A set E for which there is equality in (6) for every x € X has been
called “almost closed’; cof. [4; p. 108].

Proposition 22. If C is cl. and C¢ is ess., then C°¢ is perp.
Proof. Sinee C¢is ess. there exists an z for which @ (z, C¢) > 0. Since C is clL
this implies that
Q@ C) < Lz, 0) <1
Hence C¢ is perp.
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Proposition 23. Any imp. ess. set is contained in an imp. ess. and perp. set.
Proof. If X is imp. ess. the proposition is trivial. Now suppose that X is abs.
ess. and E is imp. ess. Then E® = 0 by Proposition 11.1, and EOE¢ is cl. by
Proposition 1. Since £ is not abs. ess., E% is not abs. ess. by Proposition 11.
Hence
By E = (E0Ec)e
is not abs. ess. It contains K and is perp. by Proposition 22 since it is ess. and its

complement is closed.

Proposition 23.1. If E ¢ O where E is imp. ess. and O is cl., then there exists an
imp. ess. and perp. ¥ such that Ec F c 0 and C — F is cl.
Proposition 24. If E is perp. then

inf L(z, B¢) = 0.
zeE

Proof. We have for any z in X and E in &, as a completion of (6):
(6%) 1=Q@ BV E)= Q= B)+ Q@, B) — Q(x, E, E°).
If inf L (x, E¢) > 0 then by Proposition 7 we have
- Q. B) = Qla, B, )
so that the equation (6%) implies Q (x, E¢) = 1 for every « € X. Thus ¥ is not perp.

§ 3. Cyecles

The properties of a set & such as “closed” and “‘essential”” were defined with
reference to the basic transition probability function P(-,-). If the latter is
replaced by its Ath iterate P®)(-,-) then the corresponding property will be
prefixed by “P® -, Thus the previously defined concepts are the PM-versions,
with the prefix “P® - omitted from the terminology. The results we have
proved so far have their P®¥).versions which need no new proofs. In terms of the
process, we shall be considering {£,z4,,n = 0} for a fixed £ and some 7 in lieu of

Proposition 25. A set is P®)-iness., P®-imp. ess., or P®)-abs. ess. according
as tf 18 iness., imp. ess., or abs. ess.
Proof. If a set is iness., it is clearly P®).iness. If & is ess. there exists an
x € X such that @ (z, E) > 0. Then for each k there exists an r, 1 < r < k, such
that
P{énr+r € E for infinitely many values of n|& = z} > 0.

Hence there exists a y € £ and an integer ny such that
P{&pprr € E for infinitely many values of n|&p pir = y} > 0.
This shows that £ is P®*)-ess. The other assertions follow easily.
Definition 5. For an arbitrary set F in # we set
WE)={z: Pz, BE)y=1}.
17%
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Let AV (E) = K, UL(E) = A(K) and define W/ (E) for each j =1 by
W(H) = WA(W-L(H)).
A7 (£) is called the jth antecedent of E.

We have U(E)e Z for any E e %, sénce P(-, B} is #-measurable for each
EecZ.

Proposition 26. If P& (x, E) = 1 then we have

P (x, W(E)) =1, l1<isk.
Proof. We have
1=PO@B) =[ [ + | 1P E) P, dy),
wWE)  WE
where in the second integral the integrand is less than one. Hence the assertion
follows for § = 1, and the general case then follows from this by induction on j.

Proposition 27. We have for each j = 0,
W(E) = {x: PO (2, E)=1}.

Proof. The assertion is true for j = 1 by definition. Assume for the sake of
induction that it is true for a certain j, then if x € W (H) = AW (F)) we have
P(x, W (E)}) = 1 and consequently :

PG (@, E)= [ PO(y,E)P(x,dy)= [ 1P(z,dy)=1
W(E) ‘ WI(E)
by the induction hypothesis. Hence W+1(E) c {x : PU+D (x, E) = 1} by induction.
Conversely, if PU+1) (x, E) = 1 then by Proposition 26 we have PO (x, W (E)) = 1,
and so by definition z € AW(W (E)) = WH1(E).

Definition 6. A sequence of k sets {E;,1 <j <k} in & is said to form a
k-cycle if
E;cW(Bj), 1=j=k—1,
and

EpcW(Ly).
k
The union |_J £; will also be called the cycle when no confusion is likely and each
i=1
E;, 1 £4§ <k, a member of the cycle. The cycle is called clean if the Ej’s are
disjoint. Note that in general the members of a cycle need not be distinct.

Proposition 28. Each member of a k-cycle is P%).cl. and the cycle itself is
P _¢l. If E is P® .cl., then the sequence Ak—I(E), 1 < j = k, forms a cycle.

Proof. 1t follows from Proposition 27 that E c *(E) if and only if £ is
P& .cl. Now if E c F then U (E) c U(F). Hence by the definition of a cycle we have

Ej C QI(E‘H_]_) CerrcUYE— (Ek) c Yr—i+1 (El) cr-c Uk (Ej) .
Thus each E; is P®).cl. Furthermore we have
k k-1 k
U E; c\JU(Bj) = A Ey);
j=1 =0 j=1

hence the cycle is P(1)-cl.
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If £ is P®-cl., then
A (E) = B c Wk (B) — A(U1(E)),
and
Wk~ () = W(UrI-L(E)), l=j=k;

and consequently {%57 (), 1 <j < k} forms a cycle.

Definition 7. The cycle in the second part of Proposition 28 is said to be
generated by K.

Proposition 29. If E is P®.cl. or P®-indecomp. or P& -maz. indecomp.,
then so is W(E) for each j = 0.

Proof. 1t is sufficient to prove the assertion for j = 1, since the general case
then follows by iteration. Let ' = A (E). If £ is P®¥.cl., then F is P®.cl. by the
second part of Proposition 28. Next, suppose that B is P®.cl. and F is Pk
decomp; we are going to show that £ is P(*).decomp. There exist disjoint P¥)-cl.
subsets F; and Fs of F. Define

B, = A-1(Fy), n=1,2.
Then ¥, and Ej are disjoint P®.cl. sets. If x € ¥,,, we have

1 = P® (z, Fp) = f P&=1) (y, Fu) Pz, dy)
B
since P(x, ) =1 by the definition of F. Hence there exists a yc F with
P&=L(y, F,) =1 and consequently y € E, by definition. Thus & N ¥, + 0 for
n =1,2. Each £ N B, is P¥.cl. and so K is P®).decomp. as was to be shown.
Finally, suppose that E is P%®).max. indecomp. Then F is P&). indecomp as

]ust proved. Let Fbe Pt_cl. and contain I properly. Define B = - LF ) Then
E>E IfxeF then Pz, E) = 1 by Proposition 26. If x¢ F then P(z, E) < 1
by the definition of F. Since F_Fis nonempty we see by choosing an z in this

difference that E contains E properly. Hence Eis P decomp. and so must be F
by what has been proved. Therefore F is P*).max. indecomp.

Notation. If %; and kg are two positive integers, we write kllkz if k1 is a
divisor of ks.

Proposition 30. Let d|k. A P@-cl. set is P®-cl. A P®.cl. and P®)-indecomp.
set is P@-indecomp. A PD-max. indecomp. and P®.indecomp. set is P®H _-maz,
indecomp. A P@D-cl. and P®.mazx. indecomp. set is P@D-mazx. indecomp.

Proof. Without loss of generality we may suppose d = 1, since we may consider
P@ (-, ) in lieu of P(-,-) as the basic transition probability function. The first two
assertions are trivial.

Let E be PM-max. decomp. and P®)-indecomp. and let F be a P®).-cl. set
which contains E properly. We are going to show that F is P®.decomp. Let &
be the k-cycle generated by F. Then @ is P(-cl. and contain E properly. Hence @
contains two disjoint P(M-cl. sets 4 and B. If 2 € 4 then by the defining property
of a eycle we have PU)(x, F') =1 for some j,1 < j < k. Since 4 is PM.cl. this
implies 4 N F + 0. By the same token BN F = 0. The two sets 4 N F and
B N F are disjoint and P®*)-cl. Hence F is P .decomp. as was to be shown.
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To prove the last assertion in Proposition 30, let £ be PM-.cl. and P®.-max.
indecomp. Then £ is PM.indecomp. by the second assertion in Proposition 30.
Let F be PM-cl. and contain F properly; we are going to show that F is PW-
decomp. Since F is P®)-cl. it must be P®.decomp. Let 4 and B be disjoint,
Plk)-cl. sets contained in F. Since E is P®.indecomp. at least one of 4 N E and
B N E is empty. Suppose 4 N E = 0 and let C be the k-cycle generated by 4.
Then ¢ N & = 0 by the property of a cycle. Hence €' and E are disjoint, PM-cl.
sets contained in ' and F is P)-decomp. as was to be shown.

In Propositions 31 to 37 the state space X is assumed to be PM)-indecomp.

Proposition 31. There are at most k disjoint P®).cl. sets.
Proof. Let By, 1 < m = n, be disjoint, P*)-cl. sets. By Proposition 28, each
of them generates a k-cycle Cp which is PM-cl. Since X is P.indecomp.

n
C =) Cn is nonempty. Let x € C, then by the property of a k-cycle for each
m=1
m, 1 < m < n, there exists an integer j;, 1 < jp < I, such that PUn ( E,) = 1.

Since the £,,'s are disjoint the jp's must be distinet. Therefore n < k.

Proposition 32. Each P®)-cl. set contains a P®)-indecomp. set and infersects a
P& naz. indecomp. set. The number of distinct P®)-max. indecomp. sets is the
maximum number of disjoint PF).cl. sels.

Proof. If there were a P®).cl. set which does not contain any P*).indecomp.
subset then the set itself is P®*)-decomp. and hence contains two disjoint P*)-cl.
sets each of which is P(¥)-decomp. Hence by induction there would be an infinite
number of disjoint P®¥)-cl. sets, contradicting Proposition 31. Now by the P&).
version of Proposition 15, each P®-indecomp. set is contained in a P®¥)-max.
indecomp. set; hence each P®).cl. set intersects a P®*).max. indecomp. set.
Two disjoint P®.cl. sets cannot intersect the same P®).max. indecomp. set,
proving the last assertion.

Proposition 33. For each k let & (k) be the number of distinct P®)-max. indecomp.

sets contained in X ; then 0 (k)| k. These 6 (k) sets form a clean cycle {I;, 1 =i <6 (k)}.
o(k)

X — U I; does not contain any P&)-cl. sets and is not abs. ess.
i=1

Proof. By Proposition 32, there exists a P¥.max. indecomp. set I. Set
I = Wiy, t=0.

By Proposition 28, {Iz;,1 <¢ =<k} is the k-cycle generated by I. We have
I = I c Iy. But by Proposition 29, each I; is P(®).max. indecomp. Hence by the
PE)_version of Proposition 16, Iy = I} and consequently I; = I;if ¢ = j (mod k).
Let d be the least positive integer such that Iy = I4. Then I; + I;for0 <¢ < j <
< d — 1, for otherwise one would have

Io = Ip = Wb0(I;) = Ak~¢(1;) = WUkHI% (Lo} = Ippjg = I,
contradicting the definition of d. By the P¥).version of Proposition 16, the sets I;,

1 < = d, are disjoint and so form a clean cycle. We have now I; = I; if and
only if ¢ = j (mod d), hence d|k.
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This d is the d (k) asserted in the proposition, that is, any P®)-max. indecomp.

set is one of the I;’s. To see this let J be such a set. As before, there is an integer e
e
such that e|k and {W(J), 1 =j < e} is a cycle. Let D = {_J W (J). Since X is
i=1
indecomp., C N D + 0 and consequently (1) N W(J) + O for some ¢ and j.
But then At () = W (J) because both sets are P¥)-max. indecomp. and it follows
that
J = Uk (J) = Yr+i-I(]).

Thus J is one of the I;'s and therefore d = § (k).

By Proposition 32, any P(*).cl. set must intersect one of the I;'s. Hence X — C
does not contain any P®).cl. set. Then X — (' is not abs. ess. by the P%¥)-version
of Proposition 14 and Proposition 25.

Definition 8. d(k) is called the cyclic index belonging to k and the §(k)-cycle
described in Proposition 33 is called the cycle belonging to k. It is uniquely defined
for each k.

Notation. For two positive integers k and &' we denote their least common
multiple by & \V k' and their greatest common divisor by & A %'

Proposition 34. For arbitrary k and k', we have
(7 O(k \V k') = 0(k) V (k)
(8) Ok N K)=0(k) \O(K).

Proof. Let {D;, 1 <¢ < §(k)}and {E;, 1 <7 =< §(k')} be the cycles belonging
to k and k' respectively.
We first show that

9) a(k) =k NO(K).
Writing d = &k A §(K') and § (k') = qd, we set

g—1
Fr = U Emd+r-
m=0

The sets {F;, 1 < r < d}, are clearly disjoint and P{@-cl., hence P®.cl. It follows
from Proposition 32 that there are at least d distinet P®.-max. indecomp. sets;
hence (k) = d, which is (9).

Next, we show that

(10) if k|’ then d(k)|S(K).
o(k) (k")

Since X is indecomp., and |_J D; and {_J E; are both PM-cl., we have D; N E; + 0
i=1 i1

for some ¢ and j. By relabelling we may suppose that D1 N E; =+ 0. Define D; and

E; for all + =1 by setting D; = D; if i =j (mod §(k)) and E; = E; if 1 =5

(mod §(£')). Then it follows from the properties of cycles that the sets Dy N E;,

1 =4 =6(k)V 6(k'), are disjoint and P®~E)-cl.,, hence P*"-cl. if k|%'. Hence
d(k) VoK) = 6(K)

by Proposition 32 and consequently (10) is true.
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We can now prove that
(11) if k|k' then 0(k)=1Fk A J(K).
For (k)| k by Proposition 33; together with (10) this implies
o)y =k AS).

Together with (9) this implies (11).
Let k£ \V k' = I, then we have by (11):

(12) ‘ dky=k NSy, S(E)Y=k Nd().
Since d(1)|1 it is a simple arithmetical fact that
(13) (EANS@)VE ANO) =k VE)YANID =LA D =0(0).

Substituting from (12) into (13) we obtain (7).
Finally, let & A k' = d; then it follows from (12) that

(14) d(d)=d A (0(k) \o(k)).
Since §(k)|k and (k)| &' by Proposition 33, (14) reduces to (8).

Proposition 35. We have for an arbitrary k,
(15) 8(d(k)) = o(k);

and the cycle belonging to 6 (k) coincides, member for member, with that belonging fo k.

Proof. Writingd = 6 (k), we observe that each I; in Proposition 33 is P(@-cl.
and P®.max. indecomp. Hence it is P@.max. indecomp. by the last assertion
in Proposition 30. Thus 6(d) = d and since d(d)|d we have §(d) = d. The rest

follows.
The equation (15) also follows from (8) if we substitute d (k) for &’ there and
use the fact that & (k)| k.

Proposition 36. To each prime number p there corresponds an ey which is either
a nonnegative integer or ,infinite, such that

5(_’[)”) e pmin(n,ep)
for each m = 1.

Proof. For each prime p define ¢ = ¢ to be the least nonnegative integer such
that § (petl) + p¢*l, or oo if such an integer does not exist. Then 6 (p") = p» for
0 < n < e+ 1. If e = oo there is nothing more to prove. Suppose now 0 < e <C oo,
then by (10):

p°=0(p°) | d(pett) < peti,

so that §(petl) = p¢. Hence for each n = e + 1 we have by (11):
pe =0 (pe*l) =p*tt A\ d(p").

It follows that 6(p®) = pe since 0 (p”) | p».
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Proposition 37. Let E=]]»"

be the prime-factorization of k, then
(k) — 1—1’ pmin(fp,e,,)
2

where ey is as given in Proposition 36.
Proof. This is an immediate consequence of Proposition 36 and equation (7).

§ 4. Consequent sets

Definition 9. The set C in & is called a kth consequent of x if P®) (x, C) = 1.
The sequence {Cx, k = 1} is called a consequent sequence of x if for each k = 1, Cy
is a kth consequent of .

Proposition 38. Given a consequent {Cr, k = 1} of x, there exists a consequent
sequence {Dy, k = 1} of  such that Dy c Cy and Dy c U(Dy1).

Proof. Let

m Ok+]

Then _D]c C Sl[o(O]‘;) = Ok; and

U (Dp+1) = ﬂ W (Cpr14g) = m W (Cr4g) > Dy .

j=0 j=1
Since P&+ (z, Oyy) = 1 for each j = 0, we have by Proposition 26,

P (2, W(Crey)) =1
and consequently

PO (a1, (Y W (Cry)) = 1.

j_
This proves that Dy is a kth consequent of z for each & = 1.

Definition 10. For each # we define a probability measure z,(-) as follows:
for each ¥ € 4,

715 () :n; 217 P (2, B) .
It is clear that s (-) is a probability measure, and that 7, (&) = 0 if and only if
Lz, B) = 0, or equivalently if and only if x € E9.

Definition 11. A kth consequent C of z is called minimal if C is minimal with
respect to the measure 7;, namely if there does not exist a kth consequent D
with 7, (D) << 74 (C). A minimal consequent sequence is one in which each member
is minimal.

Proposition 39. For each x and each consequent sequence {Cr, k = 1} of x, there
exists a mintmal consequent sequence {Dy, k = 1} such that Dy c Cy, for each k = 1.

Proof. There always exists a consequent sequence of #, namely the sequence
all members of which are X. Writing for & moment C € € (x) if C is a k2 con-
sequent of x we set

ap = inf 7,(C).
Cetrlx)
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Then there exists a C, 5, in € (z) with 7y (C,4) < g —[— — . Let Dy =CgN m Chons
=1

then Dy is a kth consequent of x and 7, (Cx) = ag. Clearly {Dr,k=1}isa mmlmal
consequent sequence and Dy c Cy for each b = 1.

Proposition 40. In an indecomp. space X two minimal kth consequents of a given
x differ by a set which is not abs. ess.

Let (% and Dy be two minimal kt® consequents of x, then 7, (Cr A D) =0
and so by a previous remark (Cy A Dg)? =+ 0. Consequently O A Dy is not abs.
ess. by Proposition 17.

Proposition 41. Let X be indecomp., x an arbitrary point of X, and {Cy,n = 1}
an arbitrary consequent sequence of x. There exists a not abs. ess. set F (depending
on x) and for each y e X — F there exists a positive integer m(y) such that {C .y 1y,
n = 1} is a consequent sequence of y.

Proof. We have for each pair of integers m and n with m < n:

1 = P (z, Cyp) = [ Pa=m)(y, Cy) Pim) (z, dy) .
X

Hence there is a set Fyy y in & with P (z, Fp,.,) = 0 and such that if y € X —
— Foy,n then
P=m)(y, Cp)=1.

Let Fyy = U Fun. Then P (x F)=0; and if ye X — Fy,, the above equation
n=m+1
holds for every n = m 4 1. Let F = m Fp, then F e # and P (z, F) = 0 for

=1
every m = 1. Consequently FO + 0 and F is not abs. ess. by Proposition 17. If

yeX — F, then there exists a positive integer m = m (y) such that y e X — Fy, and
P® (y, Cpyg) = 1 for every k = 1. This proves the proposition.

In propositions 42 to 48 the space X is assumed to be abs. ess. and indecomp.

Proposition 42. Let X be abs. ess. and indecomp. For each x there exists a finite
positive integer k(x) such that if {Cy, k = 1} is any consequent sequence of x then
there extst m and n both less than k(x) -+ 1 such that Cyp, N Cy is abs. ess.

It is sufficient to prove this for a fixed minimal consequence {Cj, & = 1}. For

then the conclusion will remain valid with the same m and n for any consequent
sequence of z by Proposition 40. Furthermore we may suppose on account of

Propositions 39 and 38 that Cy ¢ A (Cp+1). Hence O = U Cris cl. and consequently
abs. ess. by Proposition 18. Set

Dy = Cy — U(Ck N Criy) -
§=1
If y € Dy then PW(y, Cryy) = 1 and hence PW(y, D) = 0 for each j = 1, since
Dy N Opyy = 0. Thus L(y, Dy) = 0 and Dy c D%. Such a Dy is clearly iness. and

consequently D = UDk is not abs. ess. But
r=1

O—D:U U Olngk—{—j
E=1 =

It follows that at least one Cy M Cr; is abs. ess., as was to be proved.
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For each x let {Cr(x), k = 1} be a minimal consequent sequence of x and let
h(z) =min{|m — n|: Cpn(x) N Cp(x) is abs. ess.},
B (xz)=g.c.d. {|m —mn|:Cplz) N Cn(x)is abs. ess.},

where “‘g. . d.”” stands for ‘““the greatest common divisor”. According to Propo-
sition 42, ' () = h(x) < k(%) << oo, and both k(x) and &' (z) are independent of
the choice of the minimal consequent sequence.

Proposition 43. There exist an integer H and a set Fg which is in # and not
abs. ess. such that h(x) is equal to H for all xe X — Fy, and h(x) < H for all
xeX.

Proof. Let x be an arbitrary point and let {C, » = 1} be a minimal consequent
sequence of « such that C,, ¢ ¥ (Cp4x) for each n = 1 and k = 1. Such a choice is
possible by Proposition 38. Let % (x) = I, then by definition there exists an integer
4 such that

C; N Cyyq is abs. ess.

For every y in this intersection, we have by the choice of {Cpn,n = 1}, for each
k=1, \

P® (y, Cpare O Ciyprr) = 1.
Hence by Proposition 9,

Cjip N Cipryg 18 abs. ess., for each &k = 0,
or

(16) CunCpyyisabs.ess., foreachn =j.

According to Proposition 41, there exists a set ¥ in % which is not abs. ess. such
that if ye X — F, then {C,,).,,n = 1} is a consequent sequence (but not
necessarily minimal) of y for some m(y) = 1. Hence we have h(y) = by the
definition of 7 (-).

We now prove that the function A(-) is bounded on X. For otherwise let
{n,n = 1} be points of X such that lim k(x,) = co. By what we have proved,

n—>c0

for each x,, there exists a set F; in & which is not abs. ess. and such that
hy) Zh(x,) if yeX —F, .

Since X is abs. ess., X — |_J Fy, is not empty; and if y is in this set, 2 (y) would
n=1
be oo which is impossible. Hence we may set

max h(z) = H < co.
zeX
By the argument above, there exists a not abs. ess. set F such that h(x) = H,
hence h(x) = H on X — Fy, as was to be proved.
ERemark. It has not been shown that the function % is #-measurable, but this
information will not be needed below.
Definition 12. The integer H is called the overlapping index, and the set
X — Fy (in &) the overlapping core of the abs. ess. and indecomp. space X.
Proposition 43.1. For each x in X — Fy there exists an integer v(x) such that
for an arbitrary consequent sequence {Cy, n = 1} of x,

Con Cpopr is abs. ess. for n = v(x).
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Proof. This is merely a restatement of (16).

Proposition 44. For each k, (k)| H .
Proof. Consider the cycle {I;,1 < ¢ < §(k)} belonging to &k and set I; = I;
(k)
if ¢ = j(mod §(k)). Then C' = |_J I; is abs. ess. by Proposition 33, since X is
i=1
abs. ess. and X — Cisnot. If x € C N (X — Fpy), then {I;, ¢ = 1} is a consequent
sequence of z, and we have by Proposition 43,
I,; NIl +0
for some i. But the cycle is clean according to Proposition 33, hence & (k)| H.

Definition 13. Let D = max d(k); D is called the maximum cyclic index and
=1
the cycle belonging to D is called the maximum cycle.

Proposition 45. In the notation of Proposition 36, we have
D= 1_[ peP
»
where 0 < ey << oo for each prime p and also ep > 0 for only a finite number of
values of p. Furthermore, we have for each k = 1,
(17) 6ky=kAD.

Proof. This is immediate from Propositions 36, 37 and 44, the last implying
that ey < oo for each p. A more direct proof of (17)is as follows. Let § (k') = D,
then by (9),

(18) Sy =k A D.

On the other hand, by (7), :
Bk \/ k)= 0(k) V D;

hence &(k)|D for otherwise one would have §(k \V %') > D which is impossible

by the definition of D. Since 8 (k)| % it follows that 6 (k)| (¢ A D) and so there must
be equality in (18).

Examplel. X ={1,2,3,4,5}.
Pn,n+1)=1 for n=1,2,3;
P4,1)=1; P(51)=P(52)=4%.

Each {n},n =1,2,3,4, is PW-max. indecomp.; {1,3} and {2, 4} are P®-
indecomp., but {2, 4} is not P®-max. indecomp. since {2, 4, 5} is. This example
shows that the cycle belonging to a divisor of % is not necessarily obtained by the
obvious grouping from the cycle belonging to k.

Example 2. X =1{1,2,3,4,5,6,7,8}.
P(,5) = P(1,6)=1;
P@2,5)= P(2,6)=P(2,7T) =P(2,8) =};
P(3,7) = P(4,8)=P(5,3)= P(6,4) = P(7,1) = P(8,2) = 1.

Here the maximum index D = 2 and the maximum cycle is composed of
{1, 2, 3,4} and {5, 6, 7, 8}. It is easily verified that H — 2 and Fg = 0.
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The minimal consequent sequence for {6} is
{6}, {4}, {8}, {2}, {5,6,7,8},{1,2,3,4},{5,6,7,8},....
If we denote this sequence of sets by {Cy, # = 0}, it is to be noted that 1N Cp =0
for n =2,3,4but Can Cy = 0.
Example3. X ={1,2,3,4,5,6,7, 8}.
P(1,2)=P(1,4)=P(3,4)=P(3,6)=1%;
)

The minimal consequent sequence for {1} is:

{13, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 1},
{2, 4,8}, {1,3,5}, {2,4, 6}, {3,5,7}, {4,6,8), {5,7, 1},
{2,4,6,8),{1,3,5,7},{2,4,6,8}, ....

Here in notation similar to the above: C;NC3 *+ 0, 03N C5 + 0, but C1NC5 = 0.

Proposition 46. There exist an integer H' and a set Fyg. which is in # and not
abs. ess. such that b’ (x) is equal to H' for all x € X — Fyg., and b (x) < H' for all
zeX.

Proof. Let

H' = max b’ (z);
zeX

since &' (x) < h(x) for every z, we have H' < H < co. The rest of the proof is
exactly the same as the first part of the proof of Proposition 43.

Remark. In Propositions 43 and 46, we may replace the sets X — Fy and
X — Fy. by cl. subsets. For if we set

(19) G=(X—Fa)n(X— Fg)?,

(20) ¢ =(X—Fg)n (X —Fg)°,

then ¢ and G’ are cl. by Proposition 1, and X — @ and X — @' are not abs. ess.
by Proposition 18.1.

The next proposition is due to S. T. C. Moy.

Proposition 47. D= H'.

Proof. Choose any x in KN ' where X is the maximum cycle and G is given
in (20), K N G’ being cl. by Proposition 18. Let {C;(x), j = 1} be a minimal conse-
quent sequence of z. Then Cp, (x)NCp(x) + 0 implies D|(m — n); hence D|H'.
On the other hand, let us set for such an z:

Er:UOnH’-l-r(x), 0=sr=H —1
n=10

where the C;s have been chosen to satisfy
@1) 03() € A (Cpaa ()

by Proposition 38. Then each E, is P®#)-cl. and the H' sets {£,,0 < r < H' — 1}
form a H'-cycle. If F denotes the union of the pairwise intersections of the E,s,
F is not abs. ess. by the definition of H' = %'(z). Hence F0 n Fe¢ is cl. by Propo-
sitions 19 and 1. The H' sets F'0 N F¢ N E, are disjoint; their union is nonempty
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since the union of the E,s is cl. and X is indecomp., hence each F0 n Fe N E, is
nonempty and so P#").cl. by properties of a cycle. Thus we have by Propositions
32 and 33:
D=z§H)=H".
Hence D = H'.
The next proposition, conjectured by the author, was first proved by H.
KusTEN. The version given below, using an essential idea of his, is simpler.

Proposition 48. H' = H.

Lemma 1. Let x be arbitrary and {Cp, n = 1} a minimal consequent sequence
of x. Suppose that n = m and

(22) Cm 0 Cy is abs. ess.,
then
(23) P (x,Cp) > 0.

Proof. By Proposition 19, (22) implies that (Cp N Cp)0 = 0. 1t follows that

ﬂx(om N On) >0,
and consequently
7z {Cn \ Cp) < 75(Cy) .

Since €, is a minimal »'h consequent set of z, C’n\ Oy, cannot be likewise. Thus
P (z, Oy \ Cm) < 1
which implies (23).

Lemma 2. Let the hypotheses in Lemma 1 hold for an x in G where Q is given by
(19). Then there exists an I = 1 such that

(24) Curr+i N Cpay is abs. ess.

Proof. We may choose the C;'s to satisfy (21) and furthermore C; c G for every
j=1 Let ye 0y and {D;(y),j =1} be a minimal consequent sequence of y.
Owing to (21) we may suppose that for every y in € we have D;(y) c Cjiq for
every j = 1. Since k(y) = H, there exists a j = j(y) such that

Dy (y) N Dgj(y) is abs. ess.
It follows from Lemma 1 that
(25) POy, Cniryg) = PO (y, Dryi(y)) > 0.
If j < k, we have by (21)
POy, Cormig) = PO (y, Crossr) -

Consequently if we set

1
Cn = {y€Cn: POy, Crorran) Z 7

then Oy =|_) Cp,x and in particular
E=1

F=1
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The hypothesis (22) then implies the existence of an / such that

E=0Cpnn0Cy,is abs. ess.
Let us write also
F=0Opn Cprmy.

For each y € E, it follows from (21) and the definition of Uy, that
1
POy, F) = POy, Cpag) = -

Therefore

inf Lz, F) = 7 > 0.
zeE

Since E is abs. ess., this implies F is abs. ess. by Proposition 9.

Lemma 3. Under the same hypotheses as in Lemma 2, we have H | (m — n).

Proof. We may suppose that n < m and

m—n=qH+r, 0=Z¢q, 1=r<H.
Applying Lemma 2 successively g times, we infer that there exists an [ = 1 such
that ‘
Cosqu+r N Cpqy is abs. ess.
By the definition of H = k(x), this implies
H<(m+l)—(n+qH+)=r=H

Hence r = H and H|(m — n).

Proof of Proposition 48. Choose any = in G N &' (see (19) and (20)) which is
nonempty since the space is indecomp. Then A(x) = H, 2/ () = H’'. By the
definitions, we have %'(z) =< H. Furthermore it follows from Lemma 3 that
H|}W (). Hence H' = I’ (x) = H.

Proposition 48.1. For every x € @ N &, we have

hix)=h'(x)=H=H =D.

§ 5. Decomposition theorems

Proposition 49. Suppose that X is indecomp. and abs. ess. For each x in X
there exists a cl. set C such that: if E c C then either E is abs. ess. or Q(x, B) = 0.
Proof. Let € be the family of cl. sets in X, and set

(26) o =o(x) = inf Lz, ().
Ce¥
For each n, there exists a cl. set C, such that

L(x,Cn)goc—l—%.

Let ¢ = C(x) =(")Cn. We have
n=1
Lz, C) = lim L(z, Cp) < o ;
n—00

hence

Lz, C)=u
by the definition of «. Furthermore o > 0 since €0 = 0.
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If E c C and E is not abs. ess., then either K is iness. and so @ (y, E) = 0 for
every y € X; or E is imp. ess. In the latter case E® + 0 by Proposition 19, and
E°N Cis cl. by indecomposability. Starting from z, if the process {£,,n = 0} is in
E infinitely often, then it must be in C infinitely often and never in B0 N C; it
follows that

Q, By L(x,C)— Lz, BN C).
Both terms on the right side are equal to « by the definition of « and C, hence
¢ (x, ) = 0 as was to be proved.

Let us write, for any z in X and % in %:

27) M E) =1— Q(x, E°).

Thus M (x, E) is the probability that the process starting from xz ultimately stays
in E. In this notation the set E is perp. (Definition 4) if and only if M (x, B) > 0
for some x in X.

Proposition 49.1. Let A" be the family of all sets which are not abs. ess., and

o (x) be defined as in (26), then for each x:
supM(z, B) =1 — a(z).
Ee V"
Proposition 50. Let X be arbitrary, C a cl. subset such that X — C does not

contain any cl. set. Then there exists a sequence of disjoint iness. (possibly empty ) sets
{E;, 1 = 1} such that

(28) X—-C0=\JE;
i=1
(29) lim P (z, €) = L(z, C)
n—>oco

for each x; and

(30) lim P(") (z, UEi) =1—LxCO)
f—> 00 i=j+1
for each § = 0.
Proof. Let

1 1
Ei=leeX —0: 1 L@ 0) <21}

for7 = 1. Since X — C does not contain any cl. set, 00 = 0 and consequently (28)
holds. The set E; is clearly iness., and each E;, i = 2, is iness. by Proposition 10.
Since C is cl., we have
n oo
S K (2,0) < P (z,0) < 3 K, 0).
y=1 v=1
Letting n — oo we obtain (29). Furthermore we have for arbitrary x in X and E
in #:
lim P (z, B) < Q(x, B).

n—r oo

Since the union of a finite number of iness. sets is iness., it follows that

(31) lim P (x() ) = Q(w,_LjJ Bi) =0.

n—»o0 i=1 =1
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Finally we have

(32) 1= P (x, X) = P (z, C) 4 Pn (x,OEi) + P (2,\_J Ey)
i=1 i=j+1
Hence (30) follows from (29), (31) and (32).

Proposition 51. Let X be arbitrary and ¢ be a g-finite measure on (X, B) such
that if C is cl. then ¢ (C) > 0. Then there exists a set A which is the union of at most
a denumerable number of indecomp. sets and such that A does not contain any
indecomp. set and is imp. ess. Furthermore X — A — A0 does not contain any cl.
set and is not abs. ess.

Proof. Tt is well known that from a o-finite measure one can construct a
finite measure which is co-positive, hence we may suppose @ to be finite. Let the
family of all indecomp. sets be {B,} and let 4, = (B2)0. Each A, is max. inde-
comp. by Proposition 15. Since ¢(44) > 0 for each o and ¢(X) < oo, the family
of distinet 44’s is at most denumerable by Proposition 16. We put

4=J4,.

The set A0 is either cl. or empty, and since it is disjoint from 4 it cannot contain
any indecomp. set by the definition of 4. By Proposition 14, X — 4 — A9 does
not contain any cl. set and is not abs. ess. It remains to prove that 49 is imp. ess.
if not empty.
The following proof, considerably shorter than DoEBrLiN’s (cf. my Columbia
lecture notes), is due to T. E. HARR1s.
Let ¢ (4% = A > 0. For each x in 40 let % (x) be the family of cl. sets containing
x and let
§ (@) = inf @(0).
Ce¥(x)
Observing that any sequence of sets in % (z) has a cl. intersaction since it is
nonempty, we deduce by the usual argument the existence of a set C; in € (x)
such that
§(2) = ¢(Ca) > 0.
For each n =1, let

En:{xeAO:tf)(x) §*£—}

If ye Cy, then ¢ (y) < @ (Cy). It follows that if « € By, then O, c B, so that B, is
cl. for each n = 1. Furthermore A% = E;5 Es> ..., and nEn = 0. For otherwise

n
()£ would be cl. and if y were any point in it, @ (y) would be zero which is impos-
n
sible. We have therefore

(33) A0 = J(40 — By).

n

Suppose A0 — K, were to contain a cl. set, then it would contain a cl. set with
arbitrarily small g-measure since every cl. subset of 49 is decomp. In particular
it would contain a cl. set ¥ with ¢ (F) < A/n. Let y € F, then

G =pF) <2,
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which is impossible since y € A9 — E, implies &(y) > A/n. Hence for each n,
A0 — K, does not contain any cl. set and so is not abs. ess. by Proposition 11.
It follows that 40 is not abs. ess. by (33); but since A0 is cl. it is ess. Thus A°
is imp. ess. as was to be proved.

Proposition 52. Let X be indecomp. and abs. ess. and @ be a o-finite measure on
(X, &) such that if A is perp. then @(A) > 0. Then we have

(34) X=BuUC, BNnC=0;

where B is perp. and imp. ess., C is cl. and every ess. subset B of C is abs. ess. and
satisfies the relation

(35) CcE=.
Proof. As in the proof of Proposition 51 we may suppose that ¢ is a finite
measure. Let .% be the family of perp. and imp. ess. sets and let
o=supgd).
des
We deduce by the usual argument the existence of a set 4 in % such that ¢ (4) =a.
Clearly X — A4 does not contain any set in .%°. Now take

B—(X—A%UA, OC=X—B=A40n(X— 4).

Since X — A% is not abs. ess. by Proposition 18.1 we have Be .%; C is cl. by Pro-
position 1. Since C does not contain any set in &, it does not contain any imp. ess.
set by Proposition 23.1. Hence any ess. subset E of C'is abs. ess. By Proposition 19,
E=is cl. and E® = 0. It follows from Proposition 14.1 that ' — C E* is not abs.
ess. 80 it is iness. by what has just been proved. Thus if x € ¢ — CE*, we have
by Proposition 7 and the inequality (6):

Q. B) = Qz,CE®)=1— Q(x,C — CE®) =1.

On the other hand, @(x, £) =1 if x € E*. Thus @(z, £) =1 for every 2z € C,
and this is equivalent to (35).
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