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The General Theory of Markov Processes According to Doeblin* 

By 

KAI LAI CHUNG 

w 0. Introduction 

This paper is based on DOEBLIN'S paper [1] cited in the Bibliography. Although 
this work probably represents his crowning achievement in the theory of Marker  
processes, it is little known and almost never used, even when it is occasionally 
included in the references as a collector's item. (For what is generally known as 
DoE~LI~'S theory see [2] and [3, Chapter 5].) The present author gave a course on 
the material of [1] in the spring of 1951 at  Columbia University and the lecture 
notes were mimeographed for limited circulation. The version presented here is an 
expanded one over these notes, with a number of new results added, but  it t reats 
only tha t  part  of his theory which may  be called the descriptive foundations, 
stopping short of the principal limit theorem. One reason for doing so is that  the 
presentation of the latter hard theorem still leaves much to be desired, while the 
part  given here seems to have reached a stage where it assumes a quite indepen- 
dent place in the general theory. I t  is hoped that  the appearance in print of this 
will encourage further research towards various limit theorems in the general 
context. 

I t  does not seem necessary to detail the differences between this presentation 
and DOV~BLIN'S own, since the latter is easily accessible for the sake of comparison. 
The curious reader may  also consult the notes mentioned above which are closer 
to the original. I shall therefore limit myself to a few remarks. In  w 1--2 my  work 
has been mainly that  of organization and clarification. Proposition 5 is due to 
BLACXW~LL and Proposition 6 to myself, both of which are given new proofs 
here. Propositions 18 and 19 summarize some basic properties of a specially 
important  type of space; the resemblance of Proposition 18 to the classical 
theorem of Cantor 's on nested sequences of closed sets is notable. 66 3- -4  contain 
substantial enlargements. In  particular in 6 3 the arithmetical s tudy in Propo- 
sitions 34 to 37 (ending in Proposition 45 in w 4) is new. In  6 4, Definitions 10 and 11 
as well as Propositions 41 and 43 are new, leading to a more stringent definition of 
our H which resembles DOEBLIN'S D, our D being his @. With the present definition 
the conjecture " D  = H "  was first proved by H. KEST~N (private communcation 
1962) and became Proposition 48. In  w 5, the proofs of Propositions 50 and 51 are 
both simpler than DOEBLIN'S original ones, the first due to T. E. HARRIS (private 
communication 1955). 

In  the remainder of this section we review briefly a constructive definition of 
Markov processes in the general case considered here. The reader is supposed to 
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have some knowledge of these processes at least in a more limited context. Stan- 
dard terminology and notation such as in [3] or [4] will be used wherever not 
specified. The letters i, j ,  It, l, m, n, v are positive integers or zero where not 
specified; the complement of a set is sometimes indicated by the superscript "c". 

Let X be an abstract  space and ~ a Borel field of subsets of X. We are given a 
function P( . ,  .) where x e X, B e ~ with the following properties: 

(i) for each x, P(x , . )  is a probabili ty measure on ~ ;  
(fi) for each B, P (., B) is a d-measurable  function of x. 

Let furthermore an arbi trary probability measure P0 (') on ~ be given. I t  is known 
(see [3; p. 613]) tha t  a probability space (Y2, ~-, P) can be constructed to satisfy 
the following requirements. There exists a sequence of functions {$n, n ~ 0), 
each of which is from (2 into X and is ( ~ ,  ~ )  measurable ; tha t  is, ~-1 (~) c Y .  
The measure P is completely determined by  P (.,-) and P0 (') on the Borel subfield 

m,oo) generated by {~n, n > 0), as follows: for any B m ~  ~ :  

(A) P { ~ m e B m , O ~ m < - - n ) = f P o ( d x o ) f P ( x o , d X l ) " ' f P ( x m - l , d x m ) .  
Bo BI Bm 

The sequence {~n, n ~ 0} is a (discrete parameter) Markov process with the 
stationary transition probabili ty function P (., .) and the initial distribution P0. 

In  the particular case P0 (') = 6 (x, .) where for every B e ~ :  

1 i f x e B ,  
5(x, B) = 0 i f x ~ B ;  

the corresponding P restricted to JE0,~) will be denoted by Px,  and the corres- 
ponding Markov process is said to start  fl'om x. The function P z { A }  where 
x e X, A ~ ~m,~)  is useful since it is a well-defined and convenient version of the 
conditional probabili ty P { A  ]$o = x}.  

More generally, let ~176 be the Borel subfield o f ~  generated by {~m ,m ~ n}, 
then for each n ~ 0 and each A e SEn,~),  we have for every ~o except a set of 
P-measure zero : 

(B) P { A  I ~o (w) . . . . .  ~n ((o)} = P~(~) {A}, 

where P is given by  (A) with an arbi trary P0. The Markov property of the process 
is embodied in the equation (B). 

Several cases of Px(A) for important  sets A will now be given with special 
symbols assigned to them. These will be employed throughout the paper and 
simple intuitive relations connecting them based on the above interpretations of 
conditional probabilities will be passed muster. 

We write B e = X -- B below: 

P(~)(x ,B)  = Px{$n ~ B )  for n > 0 is obtained by putting B0 = {x}, 
B1 . . . . .  Bn-1 = X ,  and Bn = B in formula (A); 

K( n)(x,B) = Px{$m ~ B c, 1 < m <= n -- 1; ~n ~ B )  f o r n >  1 is  obtained by 
putting B0 = {x}, B1 . . . . .  Bn-1 = B c, and Bn = B in formula (A); 

oo  r  

L (x, B) = ~ K( ' ) (x,  B) = P z (  [,.J [~n ~ B]}; 
n = l  n = l  
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Q (X, B) : 1 - -  ~ ~ P(n)(x, dy) [1 - -  L (y, B)] 
n = O B  

---- lira ~ p(n) (x, dy) L (y, B) 
•---> r X 

o o  

Note  tha t  p(o) (x, B) = ~ (x, B) ; and p(i) (x, B) = P (x, B).  

w 1. Closedness and essentialness 

For  an arbi t rary  set E in ~ ,  we define four sets: 

E ~ = { x : L ( x , E ) = O } ,  

E~ = {x:  L(z ,  E)  = 1} ,  

Ef  = { x : Q ( x , E ) = 0 } ,  

E~ : ( z :  Q(x,E)~-- 1}. 

For  each E in ~ ,  the functions L (., E) and Q (', E) are ~ m e a s u r a b l e ;  hence each 
of  the four sets above is in ~ .  The complement  of  E*, where * stands for any  of 
the symbols 0, 1, / or c~, will be denoted by  E *c ra ther  than  (E*) c. 

Definition 1. A nonempty  set E in ~ such tha t  P (x ,E )  ~ 1 for every x e E 
is called stochastically closed (el.). 

Proposition 1. I / x  E E ~ then P (x, E~ E c) ~- 1. The sets E o and E~ E c are either 
both empty or both el. 

Proo/. We have 

0 ~- L (x, E) z .t P (x, dy) ~- ~ L (y, E) P (x, dy) 41 ~ L (y, E) P (x, dy).  
E E ~  e E ~  e 

Since the integrands in the first and third  integrals above are positive, we have 

P(x ,  E W  E~ c) = 0 
o r  

P(x ,  E ~  c) : 1 . 

I t  follows tha t  E ~ as well as EOE c is cl. unless empty,  and tha t  if E o is nonempty  
then so is EOE c. 

Proposition 2. I / x  ~ E i, then P (x, E i w E) ~ 1. I / E  is el., then so is E i. 
Proo/. We have 

1 = L(x,  E) : P(x ,  E 1) ~- P(x ,  EicE)  ~- ] L ( y ,  E) P(x ,  dy).  
E I c E c  

Since the integrand in the last integral is less than  l, we have 

P (x, Eic Ec) ~ 0 

o r  

P(x ,  E i w  E) ---- 1. 

I f  E is cl., then E c E i ; hence the first assertion implies the second. 
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Proposition 3. Ef  is el. or empty. 
Proo/. Suppose EI is nonempty and let x E E/;  then 

0 = Q (x, E) = f Q (y, E) P (x, dy) ~ f Q (y, E) P (x, dy) ~ 0 
X Ere 

Since the integrand in the last integral is positive, we have P ( x , E / c ) z  0 or 
P(x, Ef) : 1. 

Proposition 4. E~ is el. or empty. 
Proo/. Suppose E~ is nonempty and let x e E~;  then 

1 : Q (x, E) : f Q (y, E) P (x, dy) ~- f Q (y, E) P (x, dy).  
E ~ E ~ r  

Since the integrand in the last integral is less than 1, we have P (x, E ~ ~ 0 or 
P(x ,E~)  : ]. 

, ~ E o. Proposition 5. I /  E ~--(,J En then EO ('~ n, where (En} is an arbitrary 
n n 

sequence o/ sets in .~. 
Proo[. Clearly E 0 c En ~ so that E ~ c ('~ En ~ . 0n  the other hand, if x a ('~ E ~ 

n n 

then for every n we have L (x, En) = 0; consequently 

L(x ,E)  : L(x ,~JEn)  ~ ~ L(x, En) = O, 
n 

and so x e E0. Thus ~ E ~ r E0. 

Definition 2. A set E in ~ such that Q(x,E) ~-0 for every x e X  is cal]ed 
inessential (iness.); otherwise it is called essential (ess.). An essential set which 
is the union of denumerably many inessential sets is called improperly essential 
(imp. ess.); otherwise it is called absolutely essential (abs. ess.). 

The next two propositions are basic for the sequel. Proposition 6 was given by 
BLACKWELL [5], and Proposition 7 in the lecture notes mentioned in the Intro- 
duction and essentially reproduced in [4; p. 19]. Both were proved by simple, 
direct arguments. For the sake of completeness but variation we give alternative 
proofs below based on the convergence of martingales. 

For any E in ~ ,  let 

A (E) ---- lira sup (~n e E}, 
n 

and for any E and F in ~ ,  let 

Q(x,E,F)  = Px{A(E)  n A(F)}.  

Proposition 6. I /  
sup Q (x, F) < 1, 
x e E  

then/or every x ~ X we have 
Q(x,E,F)  ~- 0 

Proo/. Fix an x as the initial point of the process {~n, n ~ 0}. Since A (E) and 
A (F) are invariant sets we have with probability one: 

Pz{A  (E) c~ A (F)] ~o . . . . .  ~_n} ~-- Px{A (E) n A (F)] ~n} ~-- Q (~n, E, F) .  
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This shows tha t  {Q (~.~, E, F),  n ~ O} is a mar t ingale  and PAUL L~vY's  zero-or-one 
law asserts t h a t  for a lmost  every co: 

(1) lim Q (~n (~0), E~ F) ---- ~A(E)~ A(P) 
~ - - >  o o  

where ~ denotes the indicator  funct ion of A. Now ff co ~ A s ,  then ~n (co) ~ E for 
infinitely m a n y  values of n, and consequently for these values of n we have  

(2) Q(tn(co), E, F) <__ Q($n(W), F) <~ sup Q(x, F) < 1. 
2 c s E  

I t  follows f rom (1) and  (2) t h a t  Px(A(E) ~ A(F))  = O. 

Proposition 7. I/ 

then/or every x ~ X we have 

Proo/. Let  

i n fL(x ,  F)  > O, 
x e E  

Q(x,E) = Q(x ,E,F) .  

oo  

n = k  

so that ha the previous notation we have 

oo 

CI M~ = A (F). 
k = l  

We have  if n --> ]c: 

Px{AF ]~o,..., ~n} g Px{Mn+l I ~o . . . . .  in} • ez{Mk ]to,. . . ,  ~n} 

with probabi l i ty  one. Let t ing  n -~ 0% then  k -~ co, we obtain  

~A(F) <~ lira Px(Mn+I[ ~o, ..., ~n} ~ lira ~Mk = ~A(F)" 
~ --~- or ]c - +  oo 

Since 
i ( t n ,  F) = Px(Mn+l I~n} = Px{ in+l  [ t 0 , - . - ,  ~n} 

with probabi l i ty  one, we conclude t h a t  

(3) li--___m L(tn,  F) = ~A(F). 
~ - - > ~  

I f  co ~ A (E), then  ~n (co) ~ E for infinitely m a n y  values of n and  consequently 
for these values of n we have  

(4) L(tn(co), F) >= i n fL(x ,  F)  > 0.  
g ~ E  

I t  follows f rom (3) and (4) t ha t  Px(A(E))  ---- P x ( A ( E )  (n A(F)) .  

Proposition 8. I / E  is ess., and inf L (x, F)  > 0, then F is ess. 

Proo/. Since E is ess. there exists an x for which Q (x, E) > 0. B y  Proposi t ion 7, 

Q (x, F) __> Q (x, E, F) = Q (x, E) > 0. 
Hence F is ess. 
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Proposition 9. I] E is abs. ess, and inf L (x, F) > O, then F is abs. ess. 
x e E  

Proof. I t  is sufficient to prove tha t  for any  sequence of  sets F~ in ~2 such tha t  
CI n. 

F = F~, there exists an no such tha t  (..J F~ is ess. We note the simple relation : 
I :=1 k = l  

L(x, F) =,~lim L (x, QJlFe ) . 

Let  x ~ E, then L (x, F)  = ~ > 0; hence there exists a finite m0 (x) such tha t  

m0(z) 
Ct 

L(x, UFk)>~->~ 
k = l  

Let En = {x z E : mo (x) = n}, then E = ~.J En. Since E is abs. ess. there exists 
n = l  

an n0 such tha t  E ,  0 is ess. By  the definition of  Eno we have 

n0 

inf L(x,  U Fe) > ~- .  
x e E n o  k = 1 

~o 

Hence by Proposit ion 8, [ J  Fe  is ess. 
k ~ l  

Proposition 10. For any E in ~ ,  if there exists an F in ~ such that 

sup Q ( x , F ) < I ,  i n f L ( x , F ) > 0 ,  
x e E  x ~ E  

then E is iness. 
Proof. For  every x we have by  Proposit ions 6 and 7: 

Q (x, E) = Q (x, E, f )  = 0 

Hence E is iness, by  definition. 

Proposition 11. I / X  -- E o is abs. ess., then E is abs. ess. 
Proof. Let  

E n =  x : L ( x , E ) >  ; 

then we have 
oo 

X = E o u ~ J E n .  
n = l  

I f  X - -  E ~ is abs. ess., then En is abs. ess. for some n, and so E is abs. ess. by  
Proposit ion 9. 

Proposition 11.1. I f  X is abs. ess. and EO ~ O, then E is abs. ess. 

Proposition 12. For any E in ~ ,  X -- (EO ~9 E~) is not abs. ess. 
Proof. Let  

E ~ = { x :  Q(x,E) < I - - I , L ( x , E )  > I }  ; 

then 
oo 

X ~- E ~ 1 7 6 1 7 6  
n ~ l  
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Each  En is iness, by  Proposit ion 10, hence their union X - -  (E ~ u Eoo) is not  abs. 
CSS. 

Proposition 12.1. I] E is abs. ess., then ]or any F in ~ the set E ( F o w  F o~) is 
abs. ess., hence nonempty. 

Proposition 13. I] E is abs. ess., then E E  o~ is abs. ess., in particular E o~ ~ O. 
Proo]. Applying Proposit ion 12.1 with F : E we see tha t  E E O w  EEo  o is 

abs. ess. Bu t  EEO is clearly iness., hence E E  ~176 is abs. ess. 

Proposition 14. I] C is el., then X - -  (C ~) C ~ does not contain any el. set and 
is not abs. ess. 

Proof. Any el. set contained in X --  C must  be contained in C 0, hence 
E ~- X - -  (C w C ~ does not  contain any  el. set. Since Cw C o is el., any  point in E l 
mus t  belong to E ;  in part icular  E o~ c E 1 c E. But  E~  is el. if not  empty,  hence 
E ~176 : 0 by  the first assertion. I t  follows from Proposit ion 13 tha t  E is not  abs. ess. 

Proposition 14.1. I[  C and D are el. sets such that D c C and C --  D does not 
contain any el. set, then C --  D is not abs. ess. I n  particular, C - -  C (D w Do) is 
not abs. ess. 

w 2. Decomposability 

Definition 3. A cl. set which does not  contain two disjoint cl. sets is called 
indecomposable ( indecomp.);  otherwise it is called decomposable (decomp.).  An 
indecomposable set which is not  properly contained in any  indecomposable set is 
called maximal  indecomposable (max.  indecomp.) 

Proposition 15. I] E is indecomp., then (E0) o is max. indecomp. 
Proof. Suppose (E0) ~ is decomp. ; let C and D be two disjoint el. sets contained 

in it. For  any  x e C we have x ~ E ~ since E0 (E0)o ~ 0; hence L (x, E) ~ 0. Since 
C is el. this implies t ha t  C E  ~= O. Similarly D E  ~= O. Thus C E  and D E  are disjoint 
el. sets contained in E and E is decomp. We have thus proved tha t  if E is indecomp., 
then so is (EO) ~ Now suppose tha t  F is el. and contains (E0) 0 properly. Let  
x e F - -  (E0)o, then  L (x, E ~ ~ O. Thus E ~ is nonempty  and hence el. by  Propo- 
sition 1, and FEO is also nonempty  and hence el. The set F contains the disjoint 
el. sets E and F E  ~ and so is decomp. We have therefore proved tha t  any  el. set 
properly containing (E0) 0 is decomp. Hence (E~ 0 is max.  indecomp. 

Proposition 16. Two max. indecomp, sets are either identical or disjoint. 
Proof. Let  E and F be two distinct max.  indecomp, sets. Then E w F is el. and 

contains either of them properly. Hence it is decomp, and contains two disjoint el. 
sets C and D. Since E is indecomp, at  least one of  E C and E D  is empty.  Suppose 
E C  is empty ;  then F ~  C and since F also contains E_F which is either el. or 
empty  we must  have E F  ~ 0 since F is indecomp. 

Proposition 17. I] X is indecomp, and E is abs. ess., then E o -~ O. 
Proo]. By Proposit ion 13 we have E o~ ~ 0, hence E o~ is el. by  Proposi t ion 4. 

By  Proposit ion 1, E ~ is el. if not  empty.  Since E o E  o~ ~ 0 and X is indeeomp., we 
must  have E 0 ~ 0. 
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Proposition 18. I f  X is abs. ess. and indeeomp., then every sequence of cl. sets 

has a cl. intersection whose complement is not abs. ess. n 

Proof. Let  {C~} be a finite or infinite sequence of el. sets. Then Dn = ('~ C~ is 
not  empty  since X is indecomp. We have ~ = 1 . , 

X = U D ~ n u ( ( ' ~ D n ) .  
n 

Each  Dn is cl. and D~ does not  contain any  cl. set by  the indecomposabil i ty of  X. 
Hence D~ is not  abs. ess. by  Proposit ion 14.1. with C = X;  and so U p c  is not  

~t 

abs. ess. Since X is abs. ess. it follows tha t  ( '~ Dn is abs. ess., hence it is noncmpty ,  
hence it is el. n 

Proposition 18,1, I n  an indecomp, space the complement o / any  el. set .is not abs. 

e s 8 ,  

Proposition 19. I n  an abs. ess. and indecomp, space X ,  an abs. ess. set E is 

characterized by any one o / the  following three properties: 

Eo = O, E~ . 0, E f  = O. 

Proof. The first characterization follows from Proposit ions 11.1 and 17. Next,  
each of the three sets E ~ E ~176 and E f  is either el. or empty ,  by  Proposit ions 1, 4 and 
3. Now at  least one of  the two sets E 0 and E~  is nonempty  by  Proposit ion 12.1. 
Hence exactly one of  them is nonempty  since EOE ~176 = 0 and X is indeeomp. Thus 
E ~176 4= 0 is equivalent to E0 = 0 and we have proved the second characterization.  
Finally, since E 0 c El ,  E f  = 0 implies E 0 = 0; on the other  hand  since E r E  c~ = O, 

E f  * 0 implies E ~176 = 0 because of indecomposabili ty.  Hence the third characteri- 
zation is a consequence of  the first two. 

_Remark: Let  "E ~ ~r s tand for the proposition "E is abs. ess.", " = > "  for 
"implies" and "4:>" for "does not  imply".  The following table shows the 
various relations under  different hypotheses regarding the space X;  where "4:>" 

stands the required example is trivial front the theory  of Markov chains. 

Table 

Abs. ess. and 
Arbi t rary  X Abs. ess. X Indecomp. X indecomp. X 

E ~.~=> E~ ~ 0 
E c .~c 4= > Eo = O 
E + d  .> Ef = 0 

E ~ 4= 04=>E ~ d  
Eo=O=> E ~ d  
E f = O = > E  ~ 

E + d = >  E ~ = 0 
E + d = >  Ef =O 

E+ :~ O#>E + d  
E~  E + d  
E f = O 4 > E  ~ d  

E~ . O - > E c d  

Proposition 20. I / X  is indecomp, and E is abs. ess., then the series 

(5) ~ p(n) (x, E) 
n = O  

diverges/or every x ~ X .  I / X  is abs. ess. and the series in (5) has a positive sum 
for every x ~ X ,  then E is abs. ess. 

Proof. Suppose tha t  the series in (5) converges for some x, then by the Borel- 
Cantelli lemma : Q (x, E) = 0 so tha t  E f  4= 0. I f  X is indecomp, a glance at  the 
preceding table shows tha t  E is not  abs. ess. Next  suppose tha t  the series in (5) 

Z. Wahrscheinlichkeitstheorie, Bd. 2 17 
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has a positive sum for every x, then E o = 0. I f  X is abs. ess., a glance at  the 
preceding table shows tha t  E is abs. ess. 

Remark.  The converse to  the first assertion in Proposit ion 20 is false. More 
precisely, it is possible in an indeeomp. X tha t  the series in (5) diverges for every 
x bu t  E is iness. Consider the following example from Markov chains. The space X 
consists of {Yn, n >__ 1} and {Xng, 1 <-- k <-- n, n ~ 1}. 

I t  is clear t ha t  X forms 

We have 

1 
P (Yl, Y2) - -  ~ ; 

1 
P(Yn,  yn+l) ~ 1 --  n~ ; 

3 
P (Yl, xnl) = Pn --  ~2 n2 ' 

P (Xn~, xn, ~+1) ~ 1, 

P(xn ,n ,  Yl) = 1. 

one nonrecurrent  class. Let  

1 
7'"'r~Yn, YI) --  ne ' n = > 2 ;  

n ~ l ;  

l ~ k _ < n - - 1 ;  

E = {xn~, 1 --< k --<u,n >= 1}. 

p(n) (yl , E) >= ~ p~ = ~ -  
k = n  k = n  

so tha t  the series in (5) diverges for x ---- Yl- Since L (x, yl) > 0 for every x it 
follows easily t ha t  it diverges for every x. To see tha t  E is incss., we verify tha t  

in f  L(x ,  x11) ~ L ( y l ,  x 1 1 ) z  Pt  > O, 
x e E  

supQ(x ,  x11) = Q(y~ ,x l l )  < L ( y l , x l ~ )  < 1 - - ~  ~ 1 < 1. 
XEE ~ 

Nencc E is iness, by  Proposi t ion 10. 

Definition 4. A set E in ~ such tha t  Q (x, E c) < 1 for some x E X is called 
perpetuable (perp.).  Equivalent ly ,  E in N is perpetuable ff there exists an x in E 
such tha t  L (x, Ec) < 1 (see Proposit ion 24 below). I n  the l i terature a perp. set 
has been called a "sojourn se t" ;  of. [4; p. 110]. 

Proposition 21. I] E is perp. then it is ess. 
Proo/. We have for every E in ~ :  

(6) Q (x, E) § Q (x, E c) >= 1, 

hence Q (x, E c) < 1 implies Q (x, E) > 0. 
Remark.  A set E for which there is equali ty in (6) for every x e X has been 

called "almost  closed"; cf. [4; p. 108]. 

Proposition 22. I] C is cl. and C c is ess., then C c is perp. 
Proo/. Since C c is ess. there exists an x for which Q (x, C c) > 0. Since C is cl. 

this implies t ha t  
Q (x, c)  = L(x, O) < 1. 

Hence C c is perp. 



The General Theory of Markov Processes According to Doeblin 239 

Proposition 23. A n y  imp. ess. set is contained in an imp. ess. and perp. set. 
Proo/. I f  X is imp. ess. the proposition is trivial. Now suppose tha t  X is abs. 

ess. and E is imp. ess. Then E ~ :~ 0 by  Proposit ion l l.1, and EOE c is el. by  
Proposit ion 1. Since E is not  abs. ess., EOc is not  abs. ess. by  Proposi t ion 11. 
~Ience 

E~ E = (E~ 

is not  abs. ess. I t  contains E and is perp. by  Proposi t ion 22 since it is ess. and its 
complement  is closed. 

Proposition 23.1. I / E  c C where E is imp. ess. and C is cl., then there exists an 
imp. ess. and perp. F such that E c F c C and C -- F is el. 

Proposition 24. I] E is perp. then 

in fL(x ,  E c) = O. 
x e E  

Proo/. We have for any  x in X and E in ~ ,  as a completion of  (6): 

(6*) 1 = Q(x, E u  Ec) = Q ( x , E )  + Q ( x , E  c) -- Q(x ,E ,  Ec).  

I f  inf L (x, E c) ~ 0 then by  Proposi t ion 7 we have 
x e E  

Q (x, E)  = Q (x, E, E c) 

so tha t  the equation (6*) implies Q (x, E c) ~ 1 for every x ~ X. Thus E is not  perp. 

w 3. Cycles 

The properties of a set ~ such as "closed" and "essential" were defined with 
reference to the basic transit ion probabil i ty function P(- , . ) .  I f  the latter is 
replaced by  its /ctn iterate P(~)(.,.) then the corresponding proper ty  will be 
prefixed by  ,,p(k) _,,. Thus the previously defined concepts are the P(1)-versions, 
with the prefix ,,p(1)_,, omit ted from the terminology. The results we have 
proved so far have their P(k)-versions which need no new proofs. I n  terms of the 
process, we shall be considering {$nk~ r, n ~ 0} tbr a fixed k and some r in lieu of 
{ ~ n , ~  => 0}. 

Proposition 25. A set is P(lc)-iness., P(k)-imp. ess., or P(~)-abs. ess. according 
as it is iness., imp. ess., or abs. ess. 

Proo/. I f  a set is iness., it is clearly P(k)-iness. I f  E is ess. there exists an 
x e X such tha t  Q (x, E) > 0. Then for each k there exists an r, 1 <~ r <~ lc, such 
tha t  

P{$n~+r ~ E for infinitely m a n y  values of n I ~0 = x} > 0. 

Hence there exists a y c E and an integer no such tha t  

P{~nk+r ~ E for infinitely m a n y  values of n I ~no~+r = y} > O. 

This shows tha t  E is P(k)-ess. The other assertions follow easily. 

Definition 5. For  an arbi t rary  set E in ~ we set 

(E) = {x : P (x, E)  = 1 }. 

17" 
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Let 20 (E) z E, 21 (E) = 9A (E) and define 2J (E) for each j ~ 1 by 

~lJ (E) = 9J (0~/-1 (E)).  

~J (E) is called the jth antecedent of E. 
We have 9 ~ ( E ) e ~  for any E E l ,  since P( . ,  E) is ~-measurable  for each 

Proposition 26. I /  p(k) (x, E) = 1 then we have 

P(~-~) (x, ~J (E)) = 1, 1 ~ j ~ k. 
Proo/. We have 

l = p ( k ) ( x , E ) = [  ~ + ~ ]P(y ,E)  P(k-1)(x, dy), 
9.I(E) ~[(E)c 

where in the second integra] the integrand is less than one. Hence the assertion 
follows for j = 1, and the general case then follows from this by induction on j .  

Proposition 27. We have/or each j ~ O, 

9AJ(E) = {x: P<i)(x, E) = 1}. 

Proo/. The assertion is true for j ~ 1 by definition. Assume for the sake of 
induction tha t  it is true for a certain j ,  then if x ~ 2j+l (E) ----- ~ (gAJ (E)) we have 
P (x, 9AJ (E)) = 1 and consequently 

p(j+l) (x, E) ~-- f P(J) (y, E) P (x, dy) = ~ 1 P (x, dy) = 1 
~ai(E) 2i(E) 

by the induction hypothesis. Hence 9gJ+l (E) c {x : p(I+1)(x, E) = 1} by induction. 
Conversely, if p(j+l) (x, E) = 1 then by Proposition 26 we have p(1) (x, 9Ai (E)) ~- 1, 
and so by definition x ~ 9/(gAJ(E)) = ~ + I (E ) .  

Definition 6. A sequence of k sets {Ej, 1 ~ j  ~ k} in ~ is said to form a 
k-cycle if 

Ejc~(E i+I ) ,  1 ~ j  ~ k - - 1 ,  
and 

E~ c ~/(E~). 
k 

The union ~ J  Ej will also be called the cycle when no confusion is likely and each 
j= l  

Ej, 1 ~ j ~ k, a member of the cycle. The cycle is called clean if the E1's are 
disjoint. Note that  in general the members of a cycle need not be distinct. 

Proposition 28. Each member o/ a k-cycle is P(~)-cl. and the cycle itsel/ is 
P(1)-cl. I] E is P(~)-cl., then the sequence ~k-J(E), 1 ~ j ~ k,/orms a cycle. 

Proo/, I t  follows from Proposition 27 tha t  E c 9A ~ (E) if and only if E is 
P(~)-cl. Now if E c F then 9~ (E) c ~ (F). Hence by the definition of a cycle we have 

Et c ~ (Ej+l) c . . .  c 9A g-J (E~) c ?1~-/+~ (E~) c . ' -  c 2~ (El). 

Thus each E~ is P(k)-cl. Furthermore we have 
k k--1 k 

] = 1  i = 0  j = l  

hence the cycle is P(1)-cl. 
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I f  E is P(k)-cl., then 

~10 (E) = E c 9~k (E) = ~1 (9~k-1 (E)), 
and 

~I~-J(E) = ~(91k-J-l(E)), 1 < j  < k; 

and consequently {9~k-j (E), 1 g j =< k} forms a cycle. 

Definition 7. The cycle in the second part of Proposition 28 is said to be 
generated by E. 

Proposition 29. I /  E is P(~)-cl. or P(k)-indeeomp. or P(k)-max. indeeomp., 
then so is 921t (E) /or each j >= O. 

Proo]. I t  is sufficient to prove the assertion for j = l, since the general case 
then follows by iteration. Let F = ~ (E). I f  E is P(k)-cl., then F is P(k)-cl. by the 
second part of Proposition 28. Next, suppose that E is P(~)-cl. and F is p(k). 
decomp; we are going to show that E is P(k)-decomp. There exist disjoint P(k)-el. 
subsets F1 and F2 of F. Define 

En = 92[ k-1 (Fn), n z 1, 2. 

Then E1 and E2 are disjoint P(k)-cl. sets. I f  x ~ Fn,  we have 

1 = P(~) (x, Fn) = f p(k-1) (y, Fn) P (x, dy) 
E 

since P(x, E) = 1 by the definition of F. Hence there exists a y e E with 
p(~-l) (y, Fn) --~ 1 and consequently y e En by definition. Thus E n En =~ 0 for 
n = 1, 2. Each E (3 En is P(~)-cl. and so E is P(k)-decomp. as was to be shown. 

Finally, suppose that E is P(k)-max. indecomp. Then F is P(~)-indecomp. as 

just proved. Le t /~be  P(k)-cl. and contain F properly. Define E = 9~-1 (/~). Then 

~ E. I f  x E F then P (x, E) = 1 by Proposition 26. I f  x q~ F then P (x, E) < 1 

by the definition of F. Since F -- F is nonempty we see by choosing an x in this 

difference that E contains E properly. Hence/~ is P(k)-decomp. and so must be 
by what has been proved. Therefore F is P(~)-max. indecomp. 

Notation. I f  kl and k2 are two positive integers, we write kllk 2 if kl is a 
divisor of k2. 

Proposition 30. Let d ] k. A p(a)_el, set is p(k)_cl. A p(k)_cl, and P(~)-indecomp. 
set is P(d)-indecomp. A P(~t)-max. indecomp, and P(k)-indecomp. set is P(k)-max. 
indecomp. A P(~)-cl. and P(k)-max. indecomp, set is P(ct)-max. indeeomp. 

Proo[. Without loss of generality we may suppose d = 1, since we may consider 
P(a) (., .) in lieu of P (., .) as the basic transition probability function. The first two 
assertions are trivial. 

Let E be  P(1)-max. decomp, and P(~)-indecomp. and let F be a P(k)-cl. set 
which contains E properly. We are going to show that  F is P(k)-decomp. Let G 
be the k-cycle generated by F. Then G is P(1)-cl. and contain E properly. Hence G 
contains two disjoint P(1)-cl. sets A and B. I f  x ~ A then by the defining property 
of a cycle we have P(J) (x, F) = 1 for some j ,  1 <= j <= k. Since A is pO).cl, this 
implies A (~ F ~: 0. By the same token B (5 F ~ 0. The two sets A (~ F and 
B (~ F are disjoint and P(k)-cl. Hence F is P(k)-decomp. as was to be shown. 
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To prove the last assertion in Proposition 30, let E be PO)-cl. and P(k)-max. 
indecomp. Then E is P(1)-indecomp. by the second assertion in Proposition 30. 
Let F be P(1)-cl. and contain E properly; we are going to show tha t  F is po) .  
deeomp. Since F is P(k)-cl. it must  be P(~)-deeomp. Let A and B be disjoint, 
P(~)-cl. sets contained in F. Since E is P(k)-indecomp. at least one of A c~ E and 
B c~ E is empty.  Suppose A (7 E = 0 and let C be the k-cycle generated by A. 
Then C c~ E = 0 by the property of a cycle. Hence C and E are disjoint, P(1)-cl. 
sets contained in F and F is P(1)-decomp. as was to be shown. 

In  Propositions 31 to 37 the state space X is assemed to be P(1)-indecomp. 

Proposition 31. There are at most k disjoint P(k)-cl. sets. 
Proo/. Let Bin, 1 <= m <= n, be disjoint, P(~)-el. sets. By Proposition 28, each 

of them generates a k-cycle Cm which is P(1)-cl. Since X is P(1)-indecomp. 

C = ( ~  Crn is nonempty. Let x e C, then by the property of a Z-cycle for each 
m ~ l  

m, 1 < m < n, there exists an integer jm, 1 < jm <= k, such tha t  P(J~) (Em) = 1. 
Since the Em's are disjoint the jm's must be distinct. Therefore n G k. 

Proposition 32. Each P(~)-cl. set contains a P(k)-indecomp. set and intersects a 
P(~)-max. indecomp, set. The number o/ distinct P(~)-max. indecomp, sets is the 
maximum number o] disjoint P(k)-cl. sets. 

Proo/. I f  there were a P(~)-cl. set which does not contain any P(~)-indecomp. 
subset then the set itself is P(~)-decomp. and hence contains two disjoint P(k)-el. 
sets each of which is P(~)-decomp. Hence by induction there would be an infinite 
number of disjoint P(~)-cl. sets, contradicting Proposition 31. Now by the p(k). 
version of Proposition 15, each P(~)-indecomp. set is contained in a P(~)-max. 
indecomp, set; hence each P(k)-cl. set intersects a P(k)-max. indecomp, set. 
Two disjoint P(k)-c]. sets cannot intersect the same P(~)-max. indecomp, set, 
proving the last assertion. 

Proposition 33. For each k let ~ (k) be the number o/ distinct P(~)-max. indecomp. 
sets contained in X;  then ~ ( k ) ] k. These ~ ( k ) sets/orm a clean cycle {Ii,  1 --< i ~< (3 (k)}. 

X -- ~J Ii does not contain any P(~)-cl. sets and is not abs. ess. 
i ~ 1  

Proo/. By Proposition 32, there exists a P(~)-max. indecomp, set I .  Set 

I~ = ~ ( I ) ,  i =>0. 

By Proposition 28, {I~-i ,  1 _< i ~< k} is the Z-cycle generated by I .  We have 
I = I0 c I~. But  by Proposition 29, each I~ is P(~)-max. indecomp. Hence by the 
P(~)-version of Proposition 16, Io ~ I~ and consequently I i  = I j  if i ~ j (mod k). 
Let d be the least positive integer such that  I0 --~ In. Then I~ =~ 13. for 0 < i < j < 
=< d --  1, for otherwise one would have 

I0 = I~ = 9J~-i (I~) = ~k-r (Ij) = 9~k+J-i (I0) = Ik+j-i = Ij_/ ,  

contradicting the definition of d. By the P(~)-version of Proposition 16, the sets Ir 
1 ~< i _< d, are disjoint and so form a clean cycle. We have now Ii  = I~ ff and 
only if i ~ j (rood d), hence d I k. 
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This d is the ~ (k) asserted in the  proposit ion,  t ha t  is, any  P(~)-max. indecomp. 
set is one of the I i ' s .  To see this let J be such a set. As before, there is an integer e 

such t h a t  e[ k and {gXJ (J), 1 _<_ j __< e} is a cycle. Le t  D = 0 9A~ (J). Since X is 
j = l  

indeeomp.,  C (~ D . 0 and consequently Ni( I )  c~ ~1(J)  + 0 for some i and j .  
Bu t  then  ~1 l (I)  = ~[J (J) because bo th  sets are P(~)-max. indeeomp, and it follows 
t h a t  

J = ~ (J) = 9Xk+i-J(I). 

Thus J is one of the I i ' s  and therefore d = ~ (k). 
By  Proposi t ion 32, any  P(~)-cl. set mus t  intersect  one of the  I i '  s. Hence  X --  C 

does not  contain any  P(~)-cl. set. Then X - -  C is not  abs. css. by  the P(~)-version 
of Proposi t ion 14 and Proposi t ion 25. 

Definition 8. d (k) is called the cyclic index belonging to k and the  (~ (/Q-cycle 
described in Proposi t ion 33 is called the cycle belonging to It. I t  is uniquely defined 
for each/c.  

Notat ion.  For  two posit ive integers /r and k' we denote their  least common 
mult iple  b y / c  V/c '  and their  greatest  common divisor b y / c  A k'. 

Proposition 34. For arbitrary k and k', we have 

(7) ~ (,~ V ,~') = ~ (,~) V ~ (k') 

(8) ~ (k A ~') = a (~) A ~ (~').  

Pro@ Let  {Di, 1 _< i ~< ~ (/c)} and {Ei, 1 ~< i ~< d (k')} be the cycles belonging 
to k and k' respectively.  

We first show tha t  

(9) d (k) ~ / c  A d (/c'). 

Wri t ing d = k A a (k') and a (k') = qd, we set 
q-- ]  

f i r  ~-- U Emd+ r" 
~ 0 

The sets {Fr, 1 <-- r <_ d}, are clearly disjoint and P(a)-cl., hence P(k)-cl. I t  follows 
f rom Proposi t ion 32 t ha t  there are a t  least d distinct P(k)-max. indecomp, sets; 
hence d (/c) => d, which is (9). 

Next ,  we show tha t  

(lO) if/cl/c '  then  (~(k)ld(k') .  

~(k) ~(k') 

Since X is indecomp.,  and  U Di and U E~ are both  P(1)-cl., we have  D~ n El :~ 0 
i = 1  i = l  

for some i and j .  B y  relabelling we m a y  suppose t h a t  D1 (5 E1 4: 0. Define Di and 
E~ for all i >_ 1 by  sett ing D~ = Dj if i - j (mod c~(k)) and  E~ = Ej if i ~ j 
(mod 5 (/c')). Then it  follows f rom the propert ies  of  cycles t ha t  the sets Di (~ E~, 
1 _< i ~< d (/c) V d (]c'), are disjoint and P(~v~')-cl . ,  hence P(e')-cl. if/~1/~'' t Icnce  

(k) V ~ (~') < a (~') 

by  Proposi t ion 32 and consequent ly  (10) is true. 
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We can now prove  t h a t  

(11) i f k ] k '  then  f i ( k ) = k  A 8 ( k ' ) .  

For  d (k) Ik by  Proposi t ion 33; together  with (10) this implies 

(k)  ____</c A ~ (/c') . 

Together  with (9) this implies (11). 
Le t  k V k' = l, then  we have  by  ( l l ) :  

(12) a(k) = k A a(1), a(k ' )  = k' A a(1). 

Since ~ ( l ) ] / i t  is a simple ar i thmet ica l  fact  t h a t  

(13) (/c A c~ (l)) V (k' A a (l))  = (k V/,: ' )  A ~ (1) = l A d (1) = a (1). 

Subst i tu t ing f rom (12) into (13) we obtain  (7). 
Finally,  let k A k' = d; then  it follows f rom (12) t h a t  

(14) ~(d) = d A (d(k) A d(k ' ) ) .  

Since d(k) lk and d(k')lk '  by Proposi t ion 33, (14) reduces to (8). 

Proposition 35. We have [or an arbitrary k, 

(15) c~(a(k)) = d(k);  

and the cycle belonging to ~ (k) coincides, member/or member, with that belonging to k. 
Pro@ Writ ing d = d (k), we observe t ha t  each I ,  in Proposi t ion 33 is P(a)-el. 

and  P(~)-max. indecomp. Hence  it is P(a)-max.  indecomp, by  the  last  assertion 
in Proposi t ion 30. Thus  ~ (d) >= d and since b (d) [ d we have  ~ (d) = d. The rest  
follows. 

The  equat ion (15) also follows f rom (8) if we subst i tu te  b(k) for k' there and 
use the fact that ~(k) lk. 

Proposition 36. To each prime number p there corresponds an e~ which is either 
a nonnegative integer or ,,infinite", such that 

(p n) = pmin(n, ep) 

/or each n >= 1. 
Pro@ For  each pr ime p define e = ep to be the least  nonnegat ive  integer  such 

t ha t  $(pe+l) 4= pc+l, or oo if such an integer does not  exist. Then (5(p n) = pn for 
0 --<_ n < e + 1. I f  e = c~ there is nothing more to prove.  Suppose now 0 ~ e < 0% 
then  b y  (10): 

p c =  a (Pgla(P~+I) < p~+l, 

so t h a t  d(pe+l) ~ pc. Hence for each n >_ e + 1 we have  by  (11): 

pe = ~ (pc+l) = pe+l A ~ (p~). 

I t  follows t h a t  d (pn) = pe since (~ (pn) I pn.  
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Proposition 37. Let k = I ~  P/~ 
p 

be the prime-/actorization o] k, then 

p 

where ep is as given in Proposition 36. 
Proo/. This is an immediate  consequence of Proposit ion 36 and equation (7). 

w 4. Consequent sets 

Definition 9. The set C in ~ is called a ]~th consequent o] x if  p(k) (x, C) = 1. 
The sequence {C~, k > 1} is called a consequent sequence o / x  ff for each k > 1, C~ 
is a k th consequent of x. 

Proposition 38. Given a consequent {Ck, k > l} o/ x, there exists a consequent 
sequence {D~, k > 1} o] x such that Dk c Ck and Dk c 2(D~+I). 

Proo/. Let  

D~ : ~ 9XJ(C~+j). 
j = 0  

Then Dz c 9/~ : Ck; and 

j=0  j = l  

Since p(k+r C~+S) = 1 for each j > 0, we have by  Proposit ion 26, 

p(k) (x, ~i  (Ck+r = 1 ; 
and consequently 

o o  

P(~) (x, . ~  ~lJ (Ck+j)) = 1. 
J=0 

This proves tha t  D~ is a k TM consequent of  x for each k > 1. 

Definition 10. For  each x we define a probabil i ty measure ~x (') as follows: 
for each E e ~ ,  

~, P<~) (x, E) .  1 
~ ( E )  = ~ -  

n = l  

I t  is clear t ha t  7~x(') is a probabil i ty measure, and tha t  xcx(E) = 0 if and only if 
L (x, E) = O, or equivalently if and only if x ~ E ~ 

Definition 11. A kth consequent C of x is called minimal if C is minimal with 
respect to the measure ~x, namely  if there does not  exist a k th consequent D 
with ~x (D) < 7~x (C). A minimal consequent sequence is one in which each member  
is minimal. 

Proposition 39. For each x and each consequent sequence {Ck, k > 1} o/ x, there 
exists a minimal consequent sequence {Dk, k > 1 } such that Dk c Ck /or each k > 1. 

Proo]. There always exists a consequent sequence of x, namely  the sequence 
all members  of  which are X. Writ ing for a momen t  C ~ ~k (x) if C is a k TM con- 
sequent of x we set 

a ~ =  inf ~r~(C). 
C~r 
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oo 

l Le t  De C e ~ ( ~  Ce,n; Then there  exists  a Ce,n in ~ e  (x) wi th  ~x (Ce,n) < ae ~- -~.  

then  De is a/c th consequent  o f x  and ~rx (Ce) = ae. Clearly {De, lc ~ 1} is a min imal  
consequent  sequence and De c Ce tbr  each/c  ~ 1. 

Proposi t ion 40. I n  an indecomp, space X two minimal  k th consequents o] a given 
x diHer by a set which is not abs. ess. 

Let  C~ and  De be two min imal  k TM consequents  of x, then  ~z (Ce A De) = 0 
and so by  a previous  r e m a r k  (C~ A De) ~ �9 0. Consequent ly  Ce A D~ is no t  abs. 
ess. b y  Propos i t ion  17. 

Proposit ion 41. Let X be indecomp., x an arbitrary point o / X ,  and {Cn, n >= l} 
an arbitrary consequent sequence o/ x. There exists a not abs. ess. set F (depending 
on x) and [or each y ~ X -- F there exists a positive integer re(y) such that {Cm(y)+n, 
n ~ 1} is a consequent sequence o / y .  

Proo[. We have  for each pair  of  integers  m and  n wi th  m < n: 

1 = P(~)(x, Cn) = ]p(~-m)(y,  Cn) p(m)(x, dy). 
X 

t t ence  there  is a set Fm,n in ~ wi th  p(m) (x, Fro,n) = 0 and  such t h a t  if  y ~ X - -  

--  Fm,n then  
p(~-m) (y, Cn) = 1. 

Let  Fm ----- U Fm, n. Then p(m) (x, Fro) z 0 ; and  i f  y E X -- .Fro, the  above  equat ion  

holds for every  n ~ m ~- 1. Le t  F ('~ Fro, then  F e ~ and  p(m) (x, F )  = 0 for 
m ~ l  

every  m =~ 1. Consequent ly  F 0 :~ 0 and  F is no t  abs. ess. b y  Propos i t ion  17. I f  
y e X - -  F ,  then  there  exists  a posi t ive  integer  m = m (y) such t h a t  y ~ X -- Fm and 
p(e) (y, Cm+e) = 1 for every  /c ~ 1. This proves the  proposi t ion.  

I n  propositions ~2 to 48 the space X is assumed to be abs. ess. and indecomp. 

Proposi t ion 42. Let X be abs. ess. and indeeomp. For each x there exists a finite 
positive integer Ic (x) such that i / {C~ ,  lc ~= l}  is any consequent sequence o / x  then 
there exist m and n both less than Ic (x) ~- 1 such that Cm (~ Cn is abs. ess. 

I t  is sufficient to prove  this  for a fixed min ima l  consequence {C~, lc ~= 1}. F o r  
then  the  conclusion will r ema in  va l id  wi th  the  same m and  n for a n y  consequent  
sequence of x b y  Propos i t ion  40. F u r t h e r m o r e  we m a y  suppose on account  of 

Propos i t ions  39 and  38 t h a t  Ce c ~ (Ce+l) Hence  C = ~ J  Ce is el. and  consequent ly  
abs. ess. b y  Propos i t ion  18. Set  k = l  

oo 

D e  = Ce - -  I , . J (Ck n C~+j) .  
j = l  

I f  y e D~ then  P(J) (y, Ce+3) = 1 and  hence P(J') (y, De) 0 for  each j ~ 1, since 
De ~ C~+~ = 0. Thus  L (y, D~) = 0 and  De c DOe. Such a De is c lear ly iness, and  

consequen t ly  D ~- ~_J Dk is no t  abs. ess. B u t  
k = l  

k = l  ] = 1  

I t  follows t h a t  a t  least  one Ce n C~+j is abs. ess., as was to be proved.  
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For  each x let {C~(x), k ~ 1} be a minimal consequent sequence of x and let 

h(x) = m i n {  [m --  h i :  Cm(x) ~ Cn(x) is abs. ess.}, 

h'(x) = g. e. d. {Ira - -  h i :  Cm(x) n Cn(x) is abe. ess.}, 

where "g. c. d ."  stands for " the  greatest  common divisor". According to Propo- 
sition 42, h' (x) ~ h (x) ~ k (x) < 0% and both  h (x) and h'  (x) are independent  of 
the choice of  the minimal consequent sequence. 

Proposition 43. There exist an integer H and a set FH which is in ~ and not 
abs. ess. such that h (x) is equal to H /or all x ~ X --  FH, and h (x) ~ H /or all 
x c X .  

Pro@ Let  x be an arb i t rary  point  and let {Cn, n ~= 1} be a minimal consequent 
sequence of  x such tha t  Cn c ~[~ (Cn+~) for each n ~ 1 and k ~ 1. Such a choice is 
possible by  Proposit ion 38. Let  h (x) = l, then by  definition there exists an integer 
j such tha t  

Cj n C]+l is abs. ess. 

For  every y in this intersection: we have by  the choice of  {Cn, n ~ 1}, for each 
k ~ l ,  

p(k) (y, Cj+~ n Cj+k+l) ---- 1. 
Hence by  Proposit ion 9, 

C]+,~ n Cj+k+l is abs. ess., for each k ~ 0, 
o r  

(16) Cn n Cn+l is abs. ess., for each n ~ j .  

According to Proposit ion 41, there exists a set F in ~ which is not  abs. ess. such 
tha t  if y ~ X - -  F,  then {C~(v)+n , n ~ 1} is a consequent sequence (but not  
necessarily minimal) of  y for some m (y) ~ 1. Hence we have h (y) =~ 1 by  the 
definition of  h (.). 

We now prove tha t  the funct ion h(.) is bounded on X. For  otherwise let 
{Xn, n ~= l} be points of X such tha t  lim h(Xn) ---- oo. By what  we have proved, 

n ~ a o  

for each xn there exists a set F z ,  in ~ which is not  abs. ess. and such tha t  

h(y)>=h(xn)  if y e X - - F z . .  
oo 

Since X is abs. ess., X - -  U Fx~ is not  empty ;  and if y is in this set, h (y) would 
n = l  

be oo which is impossible. Hence we m a y  set 

max  h (x) = g < oo. 
xeX 

By the a rgument  above, there exists a not  abs. ess. set FH such tha t  h (x) ~ H, 
hence h(x) = H on X - -  FH,  as was to be proved. 

Remark. I t  has not  been shown tha t  the funct ion h is ~-measurable ,  but  this 
information wilt not  be needed below. 

Definition 12. The integer H is called the overlapping index, and the set 
X - -  F H ( i n  ~ )  the overlapping core of the abs. ess. and indceomp, space X. 

Proposition 43.1. For each x in X --  FH there exists an integer v (x) such that 
/or an arbitrary consequent sequence { Cn , n ~ 1} o /x ,  

Cn ('~ Cn+ H i8 abs. ess. /or n ~ v (x) . 
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Proo/. This is merely a restatement of (16). 

Proposition 44. For each k, ~ (k) ] H .  
Proo/. Consider the cycle {Ii, 1 ~< i<_ ~ (k)) belonging to k and set I~ = Ij  

if i -: j (rood ~ (k)). Then C = U Ii is abs. ess. by Proposition 33, since X is 

abs. ess. and X -- C is not. I f x  ~ C ~ (X -- FH), then {I~, i ~ 1) is a consequent 
sequence of x, and we have by Proposition 43, 

Ii  r3 I~+H :# 0 

for some i. But  the cycle is clean according to Proposition 33, hence d (k) ] H. 

Definition 13, Let D = max 8 (k); D is called the maximum cyclic index and 
k > l  

the cycle belonging to D is called the maximum cycle. 

Proposition 45. In  the notation o/Proposition 36, we have 

P 

where 0 <= e~) < oo /or each prime p and also e v > 0 /or  only a finite number o/ 
values o /p .  Furthermore, we have/or each k > 1, 

(17) ~(k) = k A D.  

Proo]. This is immediate from Propositions 36, 37 and 44, the last implying 
that  ev < co for each p. A more direct proof of (17) is as follows. Let 5 ( k ' ) = D ,  
then by (9), 

(18) 
On the other hand, by (7), 

(k) > k A D.  

(k V k') = ~(k) V D;  

hence 8 (k)[D for otherwise one would have ~ (k V k') > D which is impossible 
by the definition of D. Since ~ (k) ] k it follows that  8 (k) ] (k s D) and so there must 
be equality in (18). 

E x a m p l e  1. X = {1, 2, 3, 4, 5}. 

P ( n , n - [ - 1 ) = l  for n = 1 , 2 , 3 ;  

P(4, 1 ) =  1; P ( 5 , 1 ) = P ( 5 , 2 ) = � 8 9  

Each {n}, n = 1, 2, 3, 4, is P(4)-max. indecomp.; {1, 3} and {2, 4} are p(2). 
indecomp., but  {2, 4} is not P(Z)-max. indeeomp, since {2, 4, 5} is. This example 
shows that  the cycle belonging to a divisor of k is not necessarily obtained by the 
obvious grouping from the cycle belonging to k. 

E x a m p l e  2. X = {1, 2, 3, 4, 5, 6, 7, 8}. 

P(1, 5) = P(1, 6) = �89 

P(2, 5) = P(2, 6) = P(2, 7) = P(2, 8) ---- 1 ; 

P(3, 7) = P(4, 8) = P(5, 3) = P(6, 4) = P(7, 1) = P(8, 2) = 1. 

Here the maximum index D = 2 and the maximum cycle is composed of 
{1, 2, 3, 4} and {5, 6, 7, 8}. I t  is easily verified that  H = 2 and FH = O. 
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The minimal  consequent  sequence for {6} is 

{6}, {4}, {s}, {2}, {5, 6, 7, s}, {1, 2, a, 4}, {5, 6, 7, s} . . . . .  

I f  we denote this sequence of sets by  {Cn, n >= 0}, it is to be noted  t h a t  C1 (~ Cn = 0 

for n = 2 , 3 , 4 b u t  C 2 n C 4  =~ 0. 

E x a m p l e  3. X = {1, 2, 3, 4, 5, 6, 7, 8}. 

P(1 ,  2) = P(1 ,  4) = P(3,  4) = P(3 ,  6) = �89 ; 

P(2,  3) = P(4,  5) = P(5,  6) = P(6,  7) = P(7 ,  8) = P(8,  1) = 1. 

The minimal  consequent  sequence for {1} is: 

{1}, {2, 4}, {a, 5}, {< 6}, {5, :}, {6, s}, {7, 1}, 
{2, 4, 8}, {1, 3, 5}, {2, 4, 6}, {3, 5, 7}, {4, 6, 8}, {5, 7, 1}, 

{2, 4, 6, s}, {1, a, ~, 7}, {~, 4, 6, s} . . . . .  

Here  in nota t ion  similar to the above : C1 (~ Ca =~ 0, Ca ~ C5 4- 0, bu t  C1 (~ C5 = 0. 

Proposition 46. There exist an integer H'  and a set F~ ,  which is in ~ and not 
i 

abs. ess. such that h' (x) is equal to H'  /or all x ~ X --  2'•, , and h' (x) ~ H'  ]or all 

x e X .  
Proo]. Let  

H '  = m a x  h' (x); 
z ~ X  

since h' (x) ~ h (x) for every  x, we have  H '  ~ H < ~ .  The rest of  the proof  is 
exac t ly  the  same as the  first pa r t  of the  proof  of Proposi t ion 43. 

Remark. I n  Proposi t ions 43 and 46, we m a y  replace the sets X --  FH and 
/ 

X --  F ~ ,  by  cl. subsets. For  if  we set 

(19) G = (X --  -FH) (~ (X  --  FH) o , 

(s0) o' = (x  - y~,)  n ( z  - Fw)0,  

then  G and G' are el. by  Proposi t ion 1, and X - -  G and X - -  G' are not  abs. ess. 
by  Proposi t ion 18.1. 

The  nex t  proposi t ion is due to S. T. C. MoY. 

Propos i t ion  47.  D = H' .  

Proo/. Choose any  x in K ~ G' where K is the m a x i m u m  cycle and  G' is given 
in (20), K n G '  being cl. by  Proposi t ion 18. Le t  {Cs(x), j ~ 1} be a minimal  conse- 
quent  sequence of x. Then Cm (x) n Cn (x) r 0 implies D [ (m - -  n) ; hence D I H ' .  
On the  other  hand,  let us set for such an x: 

Er ~- ~.J CnH'+r (x), 0 <-- r ~ H'  --  1 
n = O  

where the  Ct's have  been chosen to satisfy 

(21) C] (x) c 2 (C]+1 (x)) 

b y  Proposi t ion 38. Then  each Er is P(W)-el. and  the  H '  sets (Er,  0 ~ r ~ H'  --  1} 
form a H' -cycle .  I f  F denotes the  union of the  pairwise intersections of the  E~s, 
F is not  abs. ess. b y  the  definition of H '  = h'  (x). Hence  F ~ n F c is cl. by  Propo-  
sitions 19 and  1. The H '  sets F ~ n F c (~ Er are disjoint;  their  union is n o n e m p t y  
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since the union of the E:s is el. and X is indecomp., hence each FO n F c n Er is 
nonempty and so P(~')-cl. by  properties of a cycle. Thus we have by Propositions 
32 and 33 : 

D ~ ~ (H') = H ' .  
Hence D = H ' .  

The next proposition, conjectured by the author, was first proved by H. 
K]~ST]~N. The version given below, using an essential idea of his, is simpler. 

Proposition 48. H'  ----- H.  

Lemma 1. Let x be arbitrary and {Cn, n ~ l} a minimal consequent sequence 
o /x .  Suppose that n @ m and 

(22) Cm n Cn is abs. ess., 

then 

(23) P(~) (x, Cm) > O . 

Pro@ By Proposition 19, (22) implies that  (Cm n Cn) o = 0. I t  follows that  

~x(Cm n Cn) > 0, 
and consequently 

~x(Cn \ c~) < ~x(Cn). 

Since Cn is a minimal n th consequent set of x, Cn \ Cm cannot be likewise. Thus 

p(n) (x, Ca \ Cm) < 1 
which implies (23). 

Lemma 2. Let the hypotheses in Lemma 1 hold ]or an x in g where G is given by 
(19). Then there exists an l ~ 1 such that 

(24) Cn+H+t n Cm+~ is abs. ess. 

Pro@ We may choose the Cj's to satisfy (21) and furthermore Cj c G for every 
j >--_ 1. Let y ~ C n  and {Dj(y) , j  >--_ 1} be a minimal consequent sequence of y. 
Owing to (21) we may  suppose tha t  for every y in Cn we have Dj(y) c Cj+n for 
every j ~ 1. Since h (y) - -  H, there exists a j = j (y) such tha t  

D l (y) n DH+i (y) is abs. ess. 

I t  follows from Lemma 1 tha t  

(25) P(J) (y, C•+HTj) ~ P(~) (y, DH+i (y) ) > O . 

I f j  < k, we have by (21) 

P(~) (y, Cn+H+]) ~ p(k) (y, Cn+U+k) . 

Consequently if we set 

Cnjc= {y~Cn : P(~)(y, Cn+H+~) ~ ~.} , 
o o  

then Cn = U cn,~ and in particular 
k z l  

Cm n Cn = U [Cm n C'n,~]. 
7~=1 
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The  hypothes is  (22) then  implies  the  exis tence of an  l such t h a t  

E : Cm ('~ Cn,l  is abs. ess. 
Let  us wri te  also 

F Cm+l ~ Cn+H+l. 

F o r  each y ~ E, i t  follows f rom (21) and  the  defini t ion of Cn+z t h a t  

1 
p(z) (y, F) = p(1)(y, Cn+H+l ) ~ 1-" 

Therefore  
1 

inf  L (x, F )  _> ~- > 0.  
XEE 

Since E is abs. ess., this  implies  F is abs. ess. b y  Propos i t ion  9. 

L e m m a  3. Under the same hypotheses as in Lemma 2, we have H I (m -- n). 
Pro@ We m a y  suppose t h a t  n < m and 

m - - n = q H + r ,  O<=q, l <_r<_H.  

Apply ing  L e m m a  2 successively q t imes,  we infer t h a t  there  exists  an  l ~ 1 such 
t h a t  

Cn+qH+l {'~ Cm+ l is abs. ess. 

B y  the  defini t ion of  H = h (x), th is  implies 

H ~ (m + l ) - -  (n + q H  + l ) = r  <=H 

Hence r = H and  H ] ( m  -- n). 

Proo/o~ Proposition 48. Choose any  x in G (3 G' (see (19) and  (20)) which is 
n o n e m p t y  since the  space is indeeomp.  Then h(x) = H, h ' ( x ) =  H' .  By the  
definit ions,  we have  h' (x)_< H.  F u r t h e r m o r e  i t  follows from L e m m a  3 t h a t  
H I h' (x). Hence H '  = h' (x) ---- H.  

Proposition 48.1. For every x + G n G', we have 

h(x) = h'(x) = H = H'  = D .  

w 5. Decomposit ion theorems 

Proposition 49. Suppose that X is indecomp, and abs. ess. For each x in X 
there exists a cl. set C such that: i] E c C then either E is abs. ess. or Q (x, E) = O. 

Proo/. Let  ~ be the  fami ly  of  cl. sets in X, and  set 

(26) ~ = ~ (x) = inf  L (x, C) .  
Ce~ 

F o r  each n, there  exists  a cl. set  Cn such t h a t  

1 
L(x ,  Cn) < ~  § n '  

Let  C = C (x) = (-~ Cn. W e  have  
n = l  

L(x ,  C) <= lira L(x ,  Cn) <= ~ ; 

hence 
L (x, C) = ~. 

b y  the  defini t ion of ~. F u r t h e r m o r e  ~ > 0 since C o = 0. 
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I f  E c C and E is not  abs. ess., then either E is iness, and so Q(y, E) =- 0 for 
every y e X ;  or E is imp. ess. I n  the latter case E ~ ~: 0 by  Proposit ion 19, and 
E ~ (~ C is cl. by  indecomposabili ty.  Start ing from x, ff the process {~n, n ~ 0} is in 
E infinitely often, then it mus t  be in C infinitely often and never in E 0 (~ C; it 
follows tha t  

Q (x, E) ~ L (x, O) - -  L (x, E ~ (~ C). 

Both  terms on the right side are equal to ~ by  the definition of g and C, hence 
Q(x, E) = 0 as was to be proved. 

Let  us write, for any  x in X and E in ~ :  

(27) M (x, E) ---- 1 --  Q (x, Ec). 

Thus M (x, E) is the probabil i ty tha t  the process start ing from x ul t imately s tays 
in E. I n  this notat ion the set E is perp. (Definition 4) if and only ff M (x, E) ~ 0 
for some x in X. 

Proposition 49.1. Let ~V be the /amily o/ all sets which are not abs. ess., and 
(x) be defined as in (26), then/or each x: 

sup M (x, E) ~- 1 - - ~ ( x ) .  
E~ JV" 

Proposition 50. Let X be arbitrary, C a el. subset such that X -- C does no t 
contain any el. set. Then there exists a sequence o/disjoint iness. (possibly empty) sets 
{Ei, i ~ 1} such that 

r  

X --  C = ~.JE~; 
~=~ 

lim p(n)(x, C) = L(x, C) 

(28) 

(29) 

/or each x; and 

(3o) 

/or each j ~ O. 
Proo/. Let  

oo  

lim P(~)(x, ( ,J  Ei) = 1 - -  L(x, C) 
n - ~ o e  i =  j + l  

l 1} 
1 < L ( x , C ) < ~ _  1 E t =  x e X - - C : T =  

for i ~ 1. Since X - -  C does not  contain any  cl. set, C o =- 0 and consequently (28) 
holds. The set E1 is clearly iness., and each E~, i ~ 2, is iness, by  Proposit ion 10. 
Since C is el., we have 

n oo  

K< ~) (x, C) __< p(n) (x, C) =< ~ K (~) (x, C). 

Lett ing n -+ r we obtain (29). Fur thermore  we have for arbi t rary  x in X and E 
i n ~ :  

lira P(n) (x, E) <-- Q (x, E).  
n - ~ o o  

Since the union of a finite number  of iness, sets is iness., it follows tha t  

J i 
(31) lim P(n) (x, ~ J  El) ~ Q (x, ( J  E~) = 0. 

n - ~ o o  i ~ 1  i = l  
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Finally we have 
i 

(32) 1 ---- P(n)(x, X )  = P(~)(x, C) -k P(~) (x ,~ .JEd  ~- P(~)(x, O E d  
i = l  i = j @ l  

Hence (30) follows from (29), (31) and (32). 

Proposition 51. Let X be arbitrary and ~o be a (l-finite measure on (X,  ~ )  such 
that i] C is cl. then q)(C) > O. Then there exists a set A which is the union o /a t  most 
a denumerable number o/ indecomp, sets and such that A ~ does not contain any 
indecomp, set and is imp. ess. Furthermore X -- A -- A ~ does not contain any cl. 
set and is not abs. ess. 

Pro@ I t  is well known tha t  from a a-finite measure one can construct  a 
finite measure which is co-positive, hence we m a y  suppose ~v to be finite. Let  the 
family of all indecomp, sets be {B~} and let As  = (B~ ~ Each  As is max.  inde- 
comp. by  Proposit ion 15. Since ~0(Ae) > 0 for each ~ and ~(X)  < ~ ,  the family 
of  distinct Aa 's  is at  most  denumerable by  Proposit ion 16. We put  

A = ~ J A ~ .  
c( 

The set A ~ is either el. or empty,  and since it is disjoint f rom A it cannot  contain 
any  indecomp, set by  the definition of  A. By  Proposit ion 14, X - -  A - -  A 0 does 
not  contain any el. set and is not  abs. ess. I t  remains to prove tha t  A 0 is imp. ess. 
if not  empty.  

The following proof, considerably shorter than  DOESLI~'S (ef. m y  Columbia 
lecture notes), is due to T. E. I-IaRR~S. 

Let  ~ (A ~ = )~ > 0. For  each x in A ~ let ~ (x) be the family of  el. sets containing 
x and let 

(x) = inf ~v(C). 
Ce~(x) 

Observing tha t  any  sequence of sets in ~(x)  has a cl. intersection since it is 
nonempty ,  we deduce by  the usual a rgument  the existence of a set Cx in c# (x) 
such tha t  

~(x) = ~(C~) > 0.  
For  each n __> 1, let 

I f  y ~ Cx, then ~ (y) =< iv (Cx). I t  follows tha t  if x e En, then Cx c En so tha t  En is 
cl. for each n _--> 1. Fur thermore  A ~ = E i  ~ E2 ~ . . . ,  and ~'~En = 0. For  otherwise 

n 

( '~En  would be cl. and if y were any  point  in it, ~ (y) would be zero which is impos- 
n 

sible. We have therefore 

(33) A ~ = L.J(A ~ - En) .  
n 

Suppose A o -- En were to conta in  a cl. set, then it would contain a cl. set with 
arbi trar i ly small ~0-measure since every cl. subset of  A ~ is decomp. I n  part icular  
it would contain a cl. set F with ~ (F) =< )~/n. Let  y ~ F,  then 

~ n ~ 

Z.  W a h r s c h e i n l i c h k e i t s t h e o r i e ,  B d .  2 1 8  
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which is impossible  since y e A ~ - - E n  implies  ~ ( y ) >  ~/n. Hence  for each n, 
A ~ - -  E~ does not  conta in  any  el. set and  so is not  abs. ess. by  Propos i t ion  11. 
I t  follows t h a t  A 0 is not  abs. ess. by  (33); bu t  since A 0 is el. i t  is ess. Thus  A 0 
is imp. ess. as was to be proved.  

Proposition 52. Let X be indecomp, and abs. ess. and q) be a a-finite measure on 
(X,  ~ )  such that i / A  is perp. then q~(A) > O. Then we have 

(34) X =  B u C ,  B ( ~ C ~ - - O ;  

where B is perp. and imp.  ess., C is el. and every ess. subset E o] C is abs. ess. and 

satisfies the relation 

(35) C c E ~~ . 

Proo/. As in the  proof  of Propos i t ion  51 we m a y  suppose t h a t  ~ is a finite 
measure.  Le t  5 z be the  fami ly  of perp.  and  imp. ess. sets and  let  

---- sup ~ (A) .  
A e ~  

We deduce  b y  the  usual  a rgumen t  the  existence of a set A in 5 f such t h a t  ~ (A) --~ ~. 
Clearly X - -  A does no t  conta in  any  set in 5 f .  Now t ake  

B = ( X - - A  0) w A ,  C ~ - - X - - B ~ - - A  0 n ( X - A ) .  

Since X - -  A ~ is not  abs. ess. b y  Propos i t ion  18.1 we have  B ~ ;  C is cl. b y  Pro-  
posi t ion 1. Since C does no t  conta in  any  set in ~f, i t  does no t  conta in  any  imp.  ess. 
set  b y  Propos i t ion  23.1. Hence any  ess. subset  E of C is abs. ess. B y  Propos i t ion  19, 
E ~176 is el. and  E0 _~ 0. I t  follows f rom Propos i t ion  14.1 t h a t  C --  C E  ~176 is no t  abs. 
ess. so i t  is iness, b y  wha t  has jus t  been proved.  Thus if  x ~ C --  C E  ~176 we have  
by  Propos i t ion  7 and  the  inequa l i ty  (6): 

Q ( x , E )  ~ Q(x, C'E ~176 ~ 1 - -  Q(x, C - -  O E  ~)  = 1. 

On the  o ther  hand,  Q(x, E) = ] if  x E E ~176 Thus Q(x, E) = 1 for every  x e C, 
and  this  is equiva len t  to  (35). 
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