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Balayage and Multiplicative Functionals 

R. K. Getoor and M.J. Sharpe* 

1. Introduction 

The original purpose of this paper was to extend the last exit decomposition 
obtained in [5] to general semigroups (Qt) subordinate to (Pt). It is well known 
that such a subordinate semigroup is generated by a multiplicative functional (mr) 
and we regard (mr) rather than (Qt) as the basic datum. The decomposition is 
contained in (6.17). When m t -- 1co, m (t) where D is the hitting time of a finely closed 
nearly Borel set the decomposition (6.17) reduces to the last exit decomposition 
of [5], but we actually have more detailed information about the ingredients of the 
decomposition here than we had in [5]. (Somewhat more generally, if D is the 
debut of a Markov set M as defined in [7], see also Section 3 of this paper, then 
(6.17) reduces to the last exit decomposition given by Meyer in [7].) 

In the course of proving our decomposition theorem it was natural to extend 
the notion of balayage of an additive functional on a set F to balayage on (or via) 
a multiplicative functional m. This seems to be of some interest in its own right 
and we have developed these ideas in Section 3 and 4 in more detail and generality 
than would have been strictly necessary for the proof of (6.17). In this development 
we have been greatly influenced by Meyer's approach in [7] to the basic results 
of our paper [5]. Also Az6ma [11] has studied balayage in a general setting and 
given many applications to Markov processes some of which are related to our 
work. 

In Section 2 we collect some elementary facts about subsets of R + =  [0, oo) 
and certain functions on R § These ideas unify and simplify some of the basic 
properties of random sets. In particular some of the results of Section VI-1 of [3] 
may be given alternate proofs using these ideas. However, we do not pursue this 
point here. Sections 3, 4 and 5 contain the main results of the paper. In Section 6 
these results are applied to prove the decomposition (6.17). Finally there is an 
appendix that contains a useful characterization of the well measurable processes 
over a Markov process that is used in Section 3. Undoubtedly this characterization 
is known to the experts, but we have been unable to find it in the literature and so it 
is, perhaps, worthwhile to set it down explicitly here. 

Throughout  this paper we shall work with a Markov process satisfying the 
"r ight"  hypotheses. In this paper we shall often, but not always, omit the phrase 
"almost surely" when it is obviously required. In particular equality of random 
variables will mean equality almost surely. On the other hand equality of processes 
(or subsets of R + x  (2) will mean pu indistinguishability for all finite initial 
measures #. 

* This research was supported in part by NSF grant GP-30737. 
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2. Preliminaries 

This section contains no probability theory. Rather it contains some elementary 
facts about functions on R § =[0 ,  ~ )  that will be useful in later sections. In 
particular certain notations are established that will be used throughout this 
paper. I f f  is a function on R + or [0, ~ ] ,  we shall sometimes write f for f ( t )  as is 
customary in probability theory. In this section the letters t, s, u, v always stand 
for arbitrary elements of R § unless stated otherwise. 

(2.1) Definition. An increasing function S defined on R § and taking values in 
[0, oo] is called an announcing function provided S t > t  for all t and S is constant 
on every interval of the form It, St). 

It is immediate from the definition (consider the cases u < v and v __< u < Sv) that 

(2.2) u < S o implies S u =< S o 

whenever S is an announcing function. 

Here are two simple examples of announcing functions that motivate the ter- 
minology. Let M be a subset of R § and define 

S~ = i n f { u >  t: u ~ M } ;  S ~ = i n f { u > t :  u E M } .  

(Here and in the sequel we adopt the conventions that the infimum of the empty 
set is infinity and the supremum of the empty set is zero.) 

Given an announcing function S we define two functions D and d on R + as 
follows: 

Dt=St+ = inf S u 
u>t  (2.3) 

d t = S  t _ = s u p S ,  if t > 0 ;  d o = 0 .  
U < t  

We make the convention that if f is a real function defined at 0 then f 0 - = f o .  
Thus do = d o = 0 .  Obviously Dr>t, dr>t, dt<_St<=Dt, and d t=D t except for 
countably many t. Moreover  d t = D  t_ if t > 0  and Dt=dt+ for all t. Clearly D is 
right continuous and d is left continuous, 

(2.4) Proposition. (i) Both D and d are announcing functions. (ii) S t = D  t if S t>t .  
(iii) d (St)-= S t and d (Dr) = D t. (iv) I f  t > O, then either S t = D t or S t = d,. 

Proof  If v < D , ,  then v<S,+~ for all e > 0  and so by (2.2), So<Su+ ~ for all ~>0. 
Hence v <Du implies S o_< Du. As a result S o = D, if u < v < Du. Thus S is constant 
on (u, Du) and therefore D is constant on [u, D,). Since D, > u, D is an announcing 
function. Similarly if du > u (which implies u > 0), then S,_~> u for all sufficiently 
small ~ > 0 and so d is constant on (u - e, S,_ ~) for small e > 0. But this implies that 
d is constant on [u, d,) and hence d is an announcing function. 

It is immediate from (2.2) and the definition of D that Dt=S t if St>t. Also if 
V<Su then SoNS" by (2.2), and so d(S,)= lim S(v)<S~ if S ,>0 .  But dt>t  for all t 

v'~S(u) 

and hence d (S.)=-Su if S . >  O. But do = 0 and thus d(S. )=  S. in all cases. Since D 
also satisfies (2.2) and d t = D t_ if t > 0, exactly the same argument shows d (Dr)= D t . 
Finally if t > 0  and S , > d  t, then S t > t  and so S t = D  t by the first sentence of this 
paragraph. Consequently if t > 0 either S t = d t or S t = Dr, and this completes the 
proof of (2.4). 
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We now define two more increasing functions L and l on R + as follows: 

Lt=inf{u:  Du>t}=sup{u: O,<t} 
(2.5) 

/t=inf{u" Du> t}=sup{u: O, <t}. 

Note 1 o = L  o = 0. It is standard and easy to check that L is right continuous, l is 
left continuous, L t = lt+, and l t = L t_ for t > 0. Moreover it is obvious that 1 t < L t < t. 
In addition, since the intervals {u: D,>t}, {u: S,>t}, and {u: du>t} differ by at 
most a singleton (the same statement holds if " > "  is replaced by " > "  throughout) 
it is immediate that 

Lt=inf{u: d,> t} =inf{u: S ,>  t} 
(2.6) 

It=inf{u: d,>t}=inf{u: S,>__t}, 

and the corresponding statements involving suprema are also valid. 

(2.7) Proposition. (i) Dt>u if and only if l,<t. (ii) Lt>u if and only if d,<t. In 
particular, D is the right continuous inverse of both L and l, while d is the left 
continuous inverse of both L and 1. 

Proof If Dr>u, then / ,=sup{v:  D~<u}<t. Conversely if l ,<t then Dt+~>u 
for all e > 0, and hence D t > u. This proves (i) and a similar argument applied to d 
and L proves (ii). The last sentence in (2.7) is an immediate consequence of (i) and 
(ii) and the definitions. 

Given an announcing function S and with d, D, l, and L as above we define a 
subset M of R + + =(0, oo) as follows: 

(2.8) M = { t > 0 :  L t=t}. 

Since Lt<t and d,>t, it follows from (2.7ii) that 

(2.9) M = {t > 0: d t = t}. 

The right continuity of L and left continuity of d together with (2.8) and (2.9) show 
that M is closed (in R++). It follows from (2.4iii) and dt=D t_ that if t>0 ,  then 

(2.10) Dt~M , SteM, and dt~M provided they are finite. 

But t6M implies dt~M and so 

(2.11) M={dt<oo" t > 0 } =  {Dt<oo'  t > 0 } -  = {St< oo: t > 0 } -  

where the bar denotes closure in R ++. Next observe that for t>0 ,  Mc~ [t, o9)= 
{u>t: du=u } has infimum d t since dt>t and dteM. Hence 

(2.12) 
d,=inf{u>t: u~M}, 

Dt=inf{u>t: u~M}. 

t>O 

The last assertion is a consequence of the first and Dr= dr+ = infd,.  
U > t  

(2.13) Proposition. ( i )L(Lt )=Lt ,  L is constant on [Lt, t], M={Lt: L , > 0  }, and 
Lt=sup{u<t: u6M}. (ii) l t=su p {u<t :  usM} and {lt: lt>0} is dense in M. 
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Proof From (2.6), (2.7ii), and (2.10) we obtain 

L(Lt) = sup {u > 0: d u < Lt} 

=sup {u>0:  d(d,)<t} =sup  {u>0: d,<=t} =Lt. 

Combining this with (2.8) we see that M={Lt:  Lt>0  }. If Lt~u~-t then Lt=  
L(Lt) <= L,<__ L t, and hence L is constant on [Lt, t]. But these facts imply that for 
t>0 ,  sup{u<t :  u ~ M } = s u p { L , < t :  Lu>O}=sup{L,<=Lt; Lu>O}=Lt, while 
Lo=0=sup{u=<0:  u~M}. This establishes (i). Now for t>0 ,  

/t--sup L~=sup{u<t:  u~M} 
U < t  

by (i), and (ii) is now obvious. 

Since M is closed in R + +, M c-- R + + - M  is a countable union of open intervals. 
Following Meyer [7] we let M ~ denote the set of all strictly positive left endpoints 
and M ~ the set of all right endpoints of these contiguous intervals. We emphasize 
that M -~ and M ~ are subsets of R + +. It is immediate from (2.13) and (2.12) that 

M~ = { t > 0 :  dt=t <Ot}= {t >O: L t=t  <Dt} 
(2.14) 

m ~ = { t > 0 : 1  t < t=L , } - - { t>O:  l t < t = d t } .  

In particular, M-* c~ M~ -- { t > O : lt < dt = t < D t} = { t > O : l, < L, = t < D t}. From 
(2.4iv) and (2.12) it follows that 

(2.15) M~= ~ (t, Dr)-- ~) (t, dr)= U (t, St) , 
~ > 0  t > 0  t > 0  

and in each case the union may be restricted to rational t>0 ,  or to rational t 6 M  ~. 

(2.16) Remark. I fM is a subset of (0, ~ )  which is closed in (0, ~),  and one defines 
S~ and S 2 as in the paragraph following (2.2), it is easy to check that in each case, 
the corresponding functions are given by Dr= S~, dr= S 2, and that M =  {t: Lt= t}. 
That is, one recovers precisely the same set M. 

3. Homogeneous Sets and Measures 

In this paper we shall work with the canonical right continuous realization 
(~, Y, "~t, Xt, Or, W) of a semigroup (Pt) on E that satisfies the hypotheses of the 
right, that is, (HD 1) and (HD 2) of [9]. We assume that E is a Borel subset of a 
compact metric space. As is usual for such processes, the burial point A is adjoined 
to E in such a way that A is an isolated point in E a = E w  {A}. 

Recall from [4] that a process Y= (Yt) is said to be well measurable (previsible) 
if for each initial measure kt there exists a process Y" that is well measurable 
(previsible) over (~2, ~ ,  W) such that Y and Yu are W indistinguishable. A 
process Y=(Ys) is called homogeneous provided Y~oOt= Y~+t for t > 0  and s>0.  
A subset M of R ++ xO is homogeneous provided its indicator function is a 
homogeneous process. This is equivalent to the statement that (t, O~co)eM if and 
only if ( t+s,  co)EM for all t>0 ,  s>0,  and ~oef2. We shall say that a subset M of 
R + + x f2 is a Markov set provided that M is progressively measurable (relative to 
the family (~)), homogeneous, and closed. The statement that M is closed means 
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that for each co, the co-section M(co) of M is closed in R + +. It is well known [3] 
that if M is closed and progressively measurable, then it is well measurable. 

Let M be a homogeneous set. If co~ is the unique element of • such that 
X~(coa)=A for all t>0 ,  then 0tco ~ =0) 4 for all t>0 .  As a result if s>0 ,  t+ssM(co3)  
if and only if sEM(OtcoA)=M(COA) , and so M(coa) is either empty or R ++. Now if 
~(co)< ~ ,  t+~(co)eM(co) if and only iftem(or since 0~(o~)co= co ~ for 
all co. Thus for all co, M(co)n (~(co), ~ ) i s  either empty or all of (~(co), ~ )  according 
a s  M(COA) is empty or R + + 

If M is a Markov set, define for t>O, Dt(co)=inf{u>t: ueM(co)} and set 
D(co)=Do(co ). Then it is easy to check that D is an exact terminal time that is 
perfect in the sense that 

(3.1) t+D(Otco)=D(co ) if t<D(co) 

without any exceptional points. (Note that this usage of "perfect" differs from that 
in [2] where it is only assumed that (3.1) holds for all t=>0 and coef2 0 where 
P~ ((2o) = 1 for all x. Later on when discussing multiplicative or additive functionals 
we shall use "perfect"  in the above sense, that is, the defining relationship holds 
identically in co without exception.) Clearly D t = t -b  D o 0 t and for each co, t ~ D t (co) 
is a right continuous announcing function as defined in Section 2. Moreover for 
each fixed t, D t is a stopping time. If dt(co), /t (co), and Lt(co ) are defined as in Section 2, 
then tbr each co, M(co) is the closed subset of R ++ defined t?om the announcing 
function t ~Dt(co ). See (2.16) especially. 

In dealing with multiplicative functionals it turns out to be necessary to 
proceed slightly more generally. To this end let S be a perfect terminal time that 
is not assumed to be exact. Define, St(co)=t+S(Otco ). Here and in what tbllows t, u, v 
are arbitrary points of R + unless stated otherwise. It is immediate that if t < So 0, 
then t + u + S o 0 t o 0, = u + S o 0, and so S u + t = S, if S, > u + t. Consequently t ~ S t (co) 
is an announcing function tbr each co. Defining for each co the functions O~(co), 
dr(co), Lt(co), and lt(co ) as in Section 2 one easily checks that the tbllowing shift 
properties hold identically in t, u, and co. 

(3.2) (i) u+ St(O, co)=St+,(co); 

(ii) u+Dt(O" co)=D,+,(co); 

(iii) u+d,(O.o~)=dt+,(co), t > 0 ;  

(iv) L t (0, co)-- (Lt+ . (co) - u) + ; 

(v) lt(O, co)=(lt+,(co)-u)+ ; t > 0 .  

Clearly D = D o is a perfect exact terminal time which, in thct, is precisely the exact 
regularization of S. Of course, D(~)=  S (co) if S (co)> 0. Plainly each D t and d t is a 
stopping time. Hence by (2.7), (Lt) and (lt) are adapted processes. Let M(co) be the 
closed subset of R + + defined by the announcing function t--+St(co ) as in (2.8). 
Define M c R + + x (2 by 

(3.3) M =  {(t, co): teM(co)} = {(t, co): t>0 ,  L~(CO)= t}, 

so that tbr each co, M(co) is the co-section of M. Since {Lt} is adapted and right 
continuous, M is well measurable, and using (3.2iv) one readily checks that M 
is homogeneous. Theretore M is a Markov set. 
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Following Meyer [7] we define 

F = { x e E :  pX(D=O)= I} 
(3.4) 

pv=  {(t, co): t>0 ,  X,(co)eF}. 

Thus F is the set of regular points tot D and is a finely closed nearly Borel set. 
Obviously Pv is a well measurable homogeneous set. As usual PF is the subset of 
R + + x O whose co section is the closure of Pv(co) in R + + tor each co. Then fiF is a 
Markov set, and Meyer [7], Proposition 1, shows that t5 F (co)c M'(co) almost surely 
where M'(co) denotes the derived set of M(co) for each co. 

As in Section 2 we let M ~ (co) denote the set of strictly positive leil endpoints 
of the intervals contiguous to M(co). It tbllows at once from (2.14) and (3.2) that 
M ~ is a progressively measurable homogeneous set (not necessarily closed). (The 
fact that M -~ is progressively measurable is also proved in Dellacherie [3].) The 
next result is of basic importance. It is proved in Meyer [7]. 

(3.5) Proposition. One has M - ~ - p F = M - p F ,  and consequently M ~ - p F  is well 
measurable. 

Proof Let qo(x)=E~{e-D}. Then q~ is 1-excessive and hence nearly Borel. 
Obviously E - F =  U {(p< 1 - l/k}. Fix fi with 0 < f i <  1 and let 

k>l  

T = i n f { t > 0 :  (p(Xt)< fi, teM}. 

Then T > D and ~o (Xr) < fi on {T< oo }. Thus it'~o (x) </~, E ~ (e- r)__< E~(e - D) < r, and, 
in particular, by Blumenthal's zero-one law P~(T=0)=0 .  Let T t =  T and T " + t =  
T"+ ToOrn. Then for all x e E  one has 

EX{e -r"+l} =EX{e-r~ T"< oo}<flEX(e r,), 

and so lim T n = oo. But this implies that 

M - {(t, co): q~ (Xt) < fi} = {(t, co): t > 0, t = T" (co) tot some n}, 

and this, in turn, implies that M - P v  is a countable union of graphs of stopping 
times. I fR  is a stopping time such that [R] c M - p v ,  then XRq~F on {R< oo} and 
so for all x 

pX[DoOR=O, R<oo]=EX{pX(m(D=O); R <  co} =0 .  

Hence [-R] c M ~ and as a result M - P v  = M~ - P v ,  completing the proof of (3.5). 

Once again following Meyer [7] we set M~ = M ~ - P v  and M~ = M ~ n  Pv. 
Then M~ is a well measurable homogeneous set which is a countable union of 
graphs of stopping times, while Mg' is a progressively measurable homogeneous 
set all of whose co-sections are countable and such that M;  ~ contains the graph of 
no stopping time. This last assertion is an obvious consequence of the strong Mar- 

kov property. 
We next turn to the study of homogeneous measures. These should be viewed 

as a generalization of additive functionals. 
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(3.6) Definition. A function ~c(B, co) defined for co~f2 and B e N  ++ (the Borel sets 
of R + +) and taking values in R § = [0, oo] is called a homogeneous  measure if 

(i) For  each B ~ ~ + +, co --, K (B, co) is ~ measurable.  

(ii) For  each co, ~c(., co) is a countable  sum of finite measures carried by (0, ~ (co)). 

(iii) ~c (B, 0 t co) = tc (B + t, co) identically in t > 0, B e N + + and co E t2. 

More  explicitly ~c is a homogeneous  measure on R § § but this is the only type 
of homogeneous  measure that we shall consider in this paper. It is convenient  to 
extend ~c(., co) to R + by setting ;c({0}, co)=0. This extension is not homogeneous  
on R +, that is, (iii) does not hold for Borel sets B of R § which contain zero. 

As is s tandard we shall sometimes suppress the co in our nota t ion and write 
~c (B) tbr ~c (B, .). If K ((0, t], co) < ov for all t < ~ (co), co ~ f~, then A t (co) = tc ((0, t], co) is a 
perfect raw additive functional. 

(3.7) Definition. A homogeneous  measure, to, is called well measurable if there 
exists a sequence {K~'} of increasing right cont inuous processes, adapted to (4) ,  
with EX(K~)<oo for all x~E,  n > l ,  and tc(dt, co)=}~dKt(co ) for all co~f2. 

If A t (co)= ~c ((0, t], co) is finite, then it is clear that  ~c is well measurable according 
to (3.7) if and only if the right cont inuous process A is adapted.  

It is immediate  that if tc is a well measurable homogeneous  measure and Z is 
a positive measurable process with well measurable project ion Z ~, then 

co  co  

(3.8) S zt K. Zr'  (dt) 
0 o 

for all initial measures #. 

It is a s tandard argument  to show that if;c is a homogeneous  measure, and if 
there exists a sequence {Z ~} of positive well measurable processes such that 

oo 

(0, ~(co))c U {t: z~'(co)>0} for each co and such that for each n, ~ Z~ ~c(du)< ov 
n 0 

and ~ Z~ tc (du) is ~ measurable  for all t__> 0, then ~c is well measurable. In fact, 
(0, t l  

there exists, under these hypotheses,  a strictly positive well measurable process Z 
oo 

such that ~ Z ,  K(du)< 1, and such that t ~ ~ Z ,  ;c(du) is adapted. 
o (0, t] 

We come now to the main result of this section. For  its statement we fix a 
perfect terminal time S, not  necessarily exact, which satisfies S <  ~. Then  Dr, dr, 
Lt, lt, and M are defined as above. Note  that S__<~ implies S(co~)=0 and con- 
sequently St(co~)=dt(co~)=t. Hence by (2.9), M(co~)=(0, oo), and thus by the 
discussion in the third paragraph of this section (~(co), oo)cM(co) for all co. Since 
M is closed this implies that [~(co), oo)cM(co)  if ~(co)>0, that  is, if co~coA" Con- 
sequently M ~ (co) c (0, ~(co)) for all co, M ~ (coA) being empty. Also M~(co) = R + + - 

M(co) (0, r 

(3.9) P r o p o s i t i o n .  Let A be a perfect raw (that is, not necessarily adapted) additive 
functional of (X ,S)  such that At(co)<c�9 /f t<S(co). Then there exists a unique 
homogeneous measure ~c which is carried by M ~ and such that ~c(dt)=dA t on [0, S). 
Moreover ~c is well measurable if and only if A is adapted. We say that ~c extends A. 
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P r o o f  Recall that a raw additive functional A of (X, S) is an increasing right 
continuous process (At) with A o = 0 satisfying A t = A s_ if t > S  and 

At+ u = At  + 1[o, s)(t) A .  o 0 t. 

Let ~ o ( d t ) = d A t .  Then tco is carried by (0, S). If t + u < S ( c o ) ,  then 

Ico ((u, t + u], co) = A t +u (co)-  A ,  (co) = A t (0, co) = tco ((0, t], 0 u co). 

Hence, for u<S(co) and B e ~ ( u ,  S(co))-the Borel subsets of (u, S(co))-one has 

(3.1o) t% (B, co) = tco (B - u, 0, co). 

For each t > 0  define tq(.,co) on (t, oe) by setting ~t(B, c o ) = ~ o ( B - t ,  Otco) for 
B e N ( t ,  oe). This definition is consistent when t = 0 .  Since ~c o is carried by (0, S) it 
is clear that ~c t is carried by (t, St). Moreover for each t>__0 and B e N ( t ,  oe), 
co --+ ~c t (B, co) is ~ measurable. Suppose that  t, u, and co satisfy t + u < S, (co). Then 
Su(co)=St+,(co), and so if B e J 3 ( t + u ,  S~+~(co)) one has B - u e ~ ( t ,  S(O~co)). Con- 
sequently, using (3.10) in the second step one obtains for B e N ( t  + u, St+, (co)) 

~c.(B, co)= ~Co (B-u,  Ouco)=~o(B-u-t, OtO.co)=~c~+.(B, co). 

Hence ~c,(., co)and ~c,+,(., co) agree on (u ,S , (co) )c~( t+u ,S ,+ , (co) )=( t+u ,S , (co) ) .  
But Me(co)= U (r, St(co)) where the union is over all strictly positive rationals 
(see (2.15)), and so there exists a unique measure ~c(., co) carried by M c (co) such that 
for each t, tc (., co) and ~t ( ' ,  co) agree on (t, S, (co)) and such that  co -~ ~c (B, co) is 
measurable for all B e ~ ( 0 ,  Go). Next observe that if B e Y J ( t + u ,  St+,(co)) , then 
B -  t e ~ ( u ,  Su(O t co)) and therefore 

tC (B - t, 0 t co) = tc u (B - t, 0 t co) = tco (B - t - u, 0 t + u co) = tot + u (B, co) = tr (B, co). 

Since tc(.,co) is carried by Me(co) and Me(co) is a countable union of intervals 
(r, St(co)) it follows that K satisfies (3.6iii), and we have already observed that 
satisfies (3.6 i). 

Finally let 
W~ (co) = e-  A,(,o) 1 [0, S (o,)) (t). 

Then W is right continuous and W t (co) > 0 if t < S (co). Clearly W is adapted if A is 
adapted. If (r,) is the right continuous inverse of (At), then since A (zt) > t if "c t < oe 

(3.11) ~ W t d A t =  ~ W ( z t ) d t < - _ ~ e - t d t = l .  
(O,As) 

Let {r,: n >  1} be an enumerat ion of the strictly positive rationals. Let Z ~ (co)= 
lu ( t  , co) and for n >  1 

Z~' (co) = 1 Mo (r,, co) ltd., s~.(,o)) (t) W t_ ~. (Or. co). 
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It is easy to see that each Z n, n > 0  is a positive measurable process which is well 
measurable if A, and hence W,, is adapted. Moreover 

U {t: Z~'(co)>0} = M w  U (r,, Sr . (co))=MuMC=R ++, 
n>O n > l  

and so to complete the proof that ~c is a homogeneous measure it suffices to show 
that S Z~, •(du) is finite for n>0.  If, in addition, A is adapted, then ~: will be well 
measurable provided that ~ Z", K(du) is ~ measurable for all n > 0  and t>0 .  

(0, tl 
See the remarks following (3.8). But ~c is carried by M c and so the assertions are 
clear if n = 0. Fix n > 1 and write r for r n and Z for Z". Then if r e M ~ (co) and t > r, we 
have 

Z,  tc(du)= ~ W._r(O~) l(~,s~)(u)~c(du ) 
(0, t] (r, t] 

= ~ W,(Or) l(o.s(o~))(u )K(du+r) 
(0, t - r ]  

=(  Y W~l(o,s)(U)K(du))~ 
(O, t -  r] 

=(  5 e-A~l(o,s)(u)dA.)~ 
(0, t - r ]  

Combining this with (3.11) yields the desired conclusions. This establishes the 
existence of K in (3.9) and that K is well measurable if A is adapted. Clearly A is 
adapted if K is well measurable. 

For the uniqueness, suppose that v is any homogeneous measure that agrees 
with ~c on [0, S) and which is carried by M C. If BeN(t ,  St(co)), then B - teN(O, S(Otco)) 
and so 

v(B, co) = v (B - t ,  0t co) = tr (B - t ,  Otco)=~c(B, co). 

Therefore v and ~c agree on (t, St(co)) for each t, and hence they agree on M ~. Con- 
sequently v = ~c and the proof of (3.9) is complete. 

Suppose that A is a raw additive functional of (X, S) with EX(At)< cc for all x 
and t. It is known, see [1], [5], or [7], that there exists a unique adapted additive 
functional ~] of (X, S) which is the dual well measurable projection of A relative to 
(Y", ~ " ,  P") for all initial measures #. These authors only consider the case of 
additive functionals of X, but the extension to additive functionals of (X, S) is 
straightforward. If A has a finite a-potential for some e => 0, then A is the unique 
adapted additive functional of (X, S) with the same e-potential operator as A. 
See (A-4). 

(3.12) Proposition. Let A be a raw additive functional of (X, S) with EX(At)< oo 
for all x and t. Let 71 be its dual well measurable projection and let ~c and fc be the 
unique homogeneous measures extending A and 7t. Then fc is the dual well measurable 
projection of  tc in the sense that 

(3.13) E" ~ Z t ~c(dt)=E u ~ Z t fc(dt) 

for all positive well measurable Z and all initial measures #. 

Proof Fix 0 < r < q  and let g=g,  be the indicator of {x: EX(Aq)<n}. Let 
- -  n ,  r ,  q _ 

F t - F  t -g,(X~) l(~,s~)(t ) l(o,q)(t ). Then (Ft) is a well measurable process. Let f 
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be a bounded  positive Borel function. Using the nota t ion  of the p roof  of  (3.9) we 
have 

E~ ~ f (Xt) F~ ~c(dt)< E ~ 

= E x 

_~ E x 

= E x 

{g(X~)!f(Xt)l(~,s~)(t)~c(dt)} 

g (X~) j f(Xt) 1(~. s~)(t) ~c o (dt - r, 0~) 

g(Xr) ~ f(Xt) dAt o O r 
0 

g (X~) E x(~) Xt) dA t . 
0 

First of  all the last line of the above  display is unchanged if we replace A by ~] and 
secondly it is bounded  by n II f [] because E y (Aq_ r)<-- Ey (Aq) for all y. Since the same 
calculation is valid starting with ~ we see that  

B.= ~ f(Xt)Ft~c(dt); B,,= ~ f(Xt)Ftfc(dt ) 
(0, u] (0, u] 

define right cont inuous  increasing process with E~(Boo)= x - E (B~)<n ]If I[ for all x. 
We next claim that  for all 0_< v___ u and x one has 

E {Bu--B~I~}=E { B ~ - B ~ ] ~ } .  (3.14) ~ ~ " - 

Clearly it suffices to prove  (3.14) when u =< q. Suppose first that  v < r. Then as in the 
previous calculat ion 

EX{B,-B~Io~}--E~'{ ~ f(Xt)Ft~c(dt)]~} 
(v, u] 

=E x g(Xr) ~ f (Xt)dA t o0,[J~ 
0 

=E g(X~)E x(~) ~ f (Xt )dA t 
0 

since v < r. But this calculat ion is valid with B replaced b y / ) ,  and, since the last 
line is unchanged if one replaces A by A, it follows that  (3.14) holds if v<=r. If  
v > r, (v, u] c~ (r, S~) = (v, u] c~ (v, S~) if v < S~ and is empty  if v > S~. Thus if v > r 

EX{B,,-B,],~I=EX{g(X~) ~ f(Xt) l(v.s.)(t)~c(dt); S , > v t ~ }  
(v, u] 

=g(X,)l ls .>~E ~ ~ f (Xt )dA t O~l~ 
0 

u - t ~  

=g(Xr )  l~sr>~l Ex(~) f f(Xt)dAt 
0 

which establishes (3.14). 
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It follows from (3.14) and Meyer's integration lemma (VII-T 17) of [6] that 

0o co 

EX ~ YtdBt=E~'  S Ytd[~ t 
0 0 

for all previsible bounded processes Y Combining this with Proposition (A.1) of 
the Appendix and the definitions of B and / )  we find 

co co 

(3.15) E ~ ~ Z t F t t c (d t )=E x ~ Z t F t ~c(dl) 
0 0 

for all bounded well measurable processes Z and that the expressions in (3.15) are 
bounded in x by njIZll. For fixed n, 0 < r < q ,  define stopping times R , , r = r  if 
g, (X~) = 1, R,, r = oo if g, (X,) = 0, and S .... q = min (R,, ~ + S o OR, , ~, q). Recalling the 
definition of F we see that F .... q is the indicator of the stochastic interval 
((R .. . .  S .... q)). For fixed x define measures on the well measurable subsets ofR + x s 
by 

v ~ ( Z ) = E ~ Z t t c ( d t ) ;  ~ x ( Z ) = E x ~ Z t f c ( d t ) .  

Then v ~ and ~ are carried by M r and (3.15) states their restrictions to ((R ..... S .... q)) 
are equal and finite. But M ~ is the union of the stochastic intervals ((R .... S .... q)) 
over n => 1 and over rationals r, q with 0 < r < q. Consequently C =  ~x and since x 
is arbitrary this establishes (3.12). 

(3.16) Remark.  A similar, but simpler, argument establishes the following 

previsible analogue of (3.12). Let A be as in the statement of (3.12) and let ~ be 
its dual previsible projection. Let ~c and ~c be the unique homogeneous measures 

extending A and ~. Then ~ is the dual previsible projection of tc in the sense that 

EU ~ Yt ~c(dt) =Eu  ~ Yt fc(dt) 

for all positive previsible Y and all initial measures/~. 

4. Multiplicative Functionals and Balayage 
Let m = (rot) be an exact multiplicative functional of X with 0 < mt(~o)< 1 for 

all t > 0 and co e (2. We assume that t -+ m t (cO) is right continuous and decreasing on 
[0, o0) for each meg2. In view of the recent work of Walsh [10], we may also 
assume without loss of generality that 

(4.1) mt+s(co)=mt(o,))ms(Otco) for all t, s>0 ,  cosf2; 

(4.2) s---, m,_ s(0~ co) is right continuous and increasing on [0, t) for all t > 0, coEO; 

since any exact right continuous multiplicative functional is equivalent to one 
satisfying (4.1) and (4.2). In addition we assume that m,(e))=0 for all t>~(co). 
Again this is no loss of generality since (mr) is equivalent to (mt l[0,~)(t)). We fix 
once and for all a multiplicative functional m satisfying these properties. We 
define S(co)=inf{t: mr(m)=0 }. Then S is a perfect terminal time with S<~. How- 
ever, S need not be exact. Let E,, = {x: W ( m  o = 1)= 1}. Since m is exact E m is finely 
open and nearly Borel. Finally we let (Qt)t_>0 and (V~)~ao be the semigroup and 

11 Z. Wahrschein  ichkeitstheorie verw. Geb., Bd. 28 
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resolvent generated by m, that is 
oo 

(4.3) Qtf(x) = EX(f(Xt) mr); V=f(x) = E ~ ~ e-~tf(Xt) m, dt 
0 

provided f is nonnegative or bounded (V ~ may not exist for bounded f) .  

The function appearing in (4.2) will play an important role in our development 
and so we introduce a special notation. We define 

m(t,s, co)=ms_t(Otco) if O < t < s  
(4.4) 

m(t,s, co)=l if O<s<_t. 

Thus for each s>0  and coe~, t---,m(t, s, co) is an increasing right continuous 
function defined on R + = [0, oo) which is identically one on Is, oo). Also for each 
t > 0  and cocO, s ~ m ( t ,  s, co) is decreasing and right continuous on (t, ~).  The 
following identities are immediate consequences of (4.1) 

(4.5) m(r,t, co)m(t,s, co)=m(r,s, co) if O<_r<t<_s, 

( 4 . 6 )  m(t,s,O~co)=m(t+r,s+r, co) if O<t<_s and r > 0 .  

We shall sometimes suppress the co and write re(t, s)=m(t, s, co). 
It will also be convenient to define 

m*(t,s, co)=l~mm(t,r, co)=m(t,s- ,co) if O<t <s 
(4.7) 

m*(t,s, co)=l if O<s<t .  

One easily verifies that for each s>0  and co~O, t ---, m* (t, s, co) is an increasing right 
continuous function defined on R + which is identically one on Is, oo). Also for 
each t > 0  and cocO, s--,m*(t, s, co) is decreasing and left continuous on (t, oo). 
Clearly m* satisfies (4.6) and 

(4.8) m(r,t, co)m*(t,s, co)=m*(r,s, co) if O<r<_t<s. 

For each cosO and s > 0  we define measures ?(. ,s ,  co) and 7*(',s, co) on 
N+ = ~ ( R  +) by 

(4.9) 7(dt, s, co)=dtm(t,s, co); 7*(dt, s, co)=dtm*(t,s, co). 

Clearly 7(', s, co) and 7* (', s, co) are carried by (0, s] and have total mass 1 -m~(co) 
and 1 -  m s_ (co) respectively. Moreover 7 and 7* are kernels in the sense that for 
each Be.~ +, (s, co) ~ 7(B, s, co) and (s, co)~7*(B, s, co) are N + + |  measurable. 
Also note that for fixed B and s, co --, 7 (B, s, co) is ~ measurable and 

co ~ 7*(B, s, co) 

is ~ _  measurable. It follows from (4.6) that for u >_ 0 

(4.10) 7(B, s, Ouco)=7(B+u , s+u, co); 7*(B, s, Ouco)=7*(B+u , s+u, co). 

As usual we shall sometimes write ? (d t, s) for 7 (d t, s, co) and similarly for 7*. 
We now define starting from the perfect terminal time S the processes St, Dr, 

d r, L~, and lt, and the Markov set M as in Section 3. 
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(4.11) Lemma.  (i) For each s > 0  and co~f2, 7( ' ,  s, co) is carried by [-Ls(co), s] and 
7*( ' ,  s, co) is carried by [ls(co), s]. (ii) For each co6(2, 7"( ' ,  s, co)=7( ' ,  s, co) for all 
but countably many s. 

Proof For  (i) it suffices to prove that re(t, s, co)=0 if t<Ls(co ) and that 
m* (t, s, co)= 0 if t < ls(co ). By (2.13)if t < L~(co), then t < sup {u < s:u~ M(co)} and so 
by (2.12), Dt(co)<s. Since St<D t this implies that S(Otco)<s-t and so re(t, s, co)= 
m s_ ~(0 t co)= 0. On the other  hand if t < ls(co ) then t < L s_ ~(co) for sufficiently small 
e>0 .  Therefore  m(t, s -e ,  co)=0 and hence m*(t, s, co)=0. 

For  (ii) we fix co and suppress it in our  notation.  We emphasize, however, that 
the sets C t and C defined below depend on co. Let C t=  {s: s>t, re(t, s)+m*(t, s)}. 
Clearly C t is a countable  subset of (t, oo). It follows from (4.5) and (4.8) that if 
t<r, Cec~(r, ~ ) ~  C~. Let C =  ~ C~ where the union is over all positive rationals r. 
Then  C is countable.  If sE C v then s > t and so there exists a rat ional r with t < r < s. 
Hence s~C~ and so Ct~C for all t. Consequent ly  if s(~C, re(t, s)=m*(t, s) for all 
t < s, and since m (s, s) = m* (s, s) = 1 this establishes (ii). 

(4.12) Example. Let T be a perfect exact terminal time with T <  ~; for example, 
the hitting time of a nearly Borel subset of E. Then m~ = ito ' r)(t) is a multiplicative 
functional satisfying our  hypotheses.  In this impor tant  situation the various 
objects introduced above may be expressed in a more  explicit form. Thus S = D = T 
and D~ = S t = t+ To Or, while if t < s  

m( t, s )=  1[o ' ToOt) (S - -  t) = l[t, Dt) (S). 

Using (2.5), (2.12), and the fact that  M is closed it is easy to check that if t<s, 
then s<D, if and only ifLs<t. Hence  for t<s, m(t, s)= ltL (s), s) (t ). It follows from 
this and re(s, s )=  1, that  

7(dt, s)=eL(s)(dt ) l~L(s)> 0~ 

where e, is unit mass at u. Similarly if t<s, m*(t, s)=l(t,o(ol(s)=l[l(s),s)(t ) and 
7*(d t, s )=  et (s)(d t)l~t (s)> o~. We shall return to this example later. 

We shall now investigate the kernels 7 and 7" in more  detail. If t, s, and c~ 
satisfy 0 < t < S ( c o )  and t<s, then 

m(t, s, co)=ms(co)/mt(co)=ms(co) [~o!od ( m ~ )  + 1] 

(4.13) 
-dmu(co) 4-1] 

=m~(co)[(o!t3mu(co)m,_(co ) �9 

But A t = -  S (m,-)- ldm, defines an (adapted) additive functional of (X,S) 
(o, t] 

that is finite on E0, S) and so by (3.9) there exists a unique well measurable homo-  
geneous measure tc carried by M c which extends A. Consequent ly  from (4.13) we 
find that  i f 0 < s < S ( c o ) ,  then on [0, s] 

(4.14) 
7(at, s, ~ ) =  [mA~)/mAco)] K(dt) 

=re(t,  s, ~ )  ~ (dt). 
11" 
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Also from (4.13) we find that  ifO<s<__S(co), then on [0, s) 

(4.15) 
7* (dr, s, co)= Ires_ (co)/m,(co)] ~(dt) 

=m* (t, s, co) tc(dt). 

Note,  however,  that  if m s_ (co)> 0, in particular,  if s < S (co), then 

lim,,~ m* (t, s, co)= lira [-rn s_ (co)fin, (co)] = 1 

and so 7" ( ' ,  s, co) does not  charge {s}. 

(4.16) Proposition. For each s > 0  and co~f2, 7(dt, s, co)=m(t,s, co)~(dt) on 
(L~(co), s] and 7" (dt, s, co)=m*(t,  s, co) ~c(dt) on (ls(co), s). Moreover, if Is(co)<s then 
either 7* (', s, co) does not charge {s} or ?* (-, s, co)=es. In particular the first alter- 
native holds if seMi(co). 

Proof Fix s > 0 and co e (2. We shall first establish the assertion about  7. If 
sEM(co), then L~(co)=s and the assertion is obvious in this case. If s~M~(co), then 
s < ~(co). In this case the interval (Ls(co), s ] ~  Me(co) and it can be covered by 
countably many  intervals of the form (u, S. (co)) with u < s < S, (co). Thus it suffices 
to show that the measures ? (dt, s, co) and re(t, s, co) tc(dt, co) agree on (u, s] whenever 
u<s<S,(co). Suppose B ~ ( u ,  s]. Then B - u e ~ ( O ,  s - u ]  and since s - u < S ( O ,  co) 
we see from (4.14) that  

(4.17) 7 ( B - u , s - u , O ,  co)= ~ m( t , s -u ,O,  co)~c(dt, O, co). 

Now ?(B-u ,  s - u ,  0uco)-?(B,  s, co) by (4.10), while by (4.6) and the homogenei ty  
of ~ the right side of (4.17) reduces to ~rn(t,s,o)~(dt, co). This establishes the 
desired conclusion about  7. 

We turn next to ?*. If ls(co)=s there is nothing to prove. If l~(co)<s then the 
interval (l s (co), s ) c  M c (co) and it can be covered by countably many intervals of the 
form (u, S,(co)) with u < s < Su(co). Thus  to establish the first assertion about  7* it suf- 
fices to show that  7* (d t, s, co) and m* (t, s, co) ~ (d t) agree on any interval (u, s) with 
u < s < S, (co). This follows from (4.15) by the above argument.  Finally fix s and co 
with ls (co) < s. If l~ (co) < r < t < s, then S, (co) > s or S (0~ co) > s -  r > t -  r. Consequently 
m(r,t, co)=m,_~(O~co)>O, and so from (4.8), m*(t,s, co)=m*(r,s, co)/m(r,t, co). 
Letting t T s we see that  m* (s - ,  s, co) is either one or zero according as m* (r, s, co) > 0 
or m* (r, s, co) = 0. In the first case 7* ( ' ,  s, co) does not  charge {s} and in the second 
it is es. If, in addition, s ~ M c (co), then s - r < S (0, co) and so m* (r, s, co) > rn s _, (0, co) > 0 
and the first alternative holds. This completes the proof  of (4.16). 

Let v( ' ,  co) be the a-finite measure on R ++ that puts mass one at each point  
o f M  ~ (co). Since M ~ is homogeneous  it is evident that v is a homegeneous measure. 
However,  in general v is not  well measurable in the sense of (3.7). F rom (4.11), 
(4.16), and the fact that m (t, s)--0 if t < L s we obtain the following decomposi t ion 
ofT: 

(4.18) 7(dt)=m(t, s)(~c(dt)+v(dt)) l~Ls<sl+es(dt) l{zs=s) on l-0, S]. 
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Similarly on [0, sJ 

(4.19) 
~* (dt, s) = lv,,+)(t) m* (t, s)(~c(dt) + v(dt)) 

+ [1 {is < ~} (1 -- m* (s --, s)) + l~t ~- s}] g~ (dt). 

We are now going to define two "transport" operations associated with the 
multiplicative functional m. These operations amount to mapping the measure es 
onto the measures 7 (', s) and 7* (', s) respectively. More explicitly let 2 (B, co) be a 
kernel defined for B e ~  + and coe~2 such that for each B e N  +, co--+2(B, co) is 
measurable and for each co e Q, 2(-, co) is a positive measure carried by (0, ((co)). 
We then define its transport via m, 2 (B, co) and its *-transport via m, 2*(B, co) by 
the formulas 

)7(B, co)= ~ ? (B, s, co) 2(ds, co) 
(4.20) 

2" (B, co) = ~ 7* (B, s, co) 2(ds, co). 

Clearly 2 and 2" are again kernels. Since the integration in (4.20) extends only 
over the interval (0, ((co)), and since Y(', s) and 7*(', s) are carried by [0, s] it 
follows that ,~(., co) and 2* (', co) are carried by (0, ~(co)). More generally for any 
a > 0 define the kernels 7 ~ and ?*'~ by 

(4.21) 
?~(dt, s, co)=e -~('- ~ 7(dt, s, co) 

7 *'~ (dt, s, co) = e-  ~(s- t) 7* (dt, s, co). 

Obviously 7 ~ and 7 *'~ also satisfy (4.10), and 7~( �9 , s, co) is carried by (0, S] c~ [-Ls, s] 
while 7"~( ., s, co) is carried by (0, s] c~ [,Is, s]. The c~-transport via m, 2 ~ and the 
e-*-transport via m, 2"~ of a kernel 2 are defined by 

(4.22) 
)~' (B, co)=j" 7~(B, s, co) 2(ds, co) 

~,*'~ (B, co) = J" 7*'~(B, s, o)) 2(ds, co). 

It follows from (4.11) that if 2 (., co) is diffuse, then 2~( �9 , co)= 2",~(., co). 

It is helpful to examine these operations in the special situation of Example 
(4.12). In that situation we find 

2(B, s)=~ eL(,)(B) I{L(~)> o} 2(ds) 

~,* (B, s) = ~ e z(,) (B) 1 {;(,) > o} 2 (d s). 

Therefore it is the ,-transport operation that corresponds to the transport operation 
used in our paper [-5] and by Meyer [-7]. The difference between these two oper- 
ations in the situation of Example (4.12) is that the mass at a right endpoint of a 
contiguous interval is moved to the left endpoint by the *-transport operation, 
whereas it is left unmoved by the transport operation. 

We return now to the general situation. 

(4.23) Proposition. I f 2  is a homogeneous measure, then 2~ and 2 "~ are homogeneous 
measures for  each ct >-_ O. 
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Proof. If BEN(0,  oe) and u > 0 ,  we have 

)Z(B, 0,co)= ~ ?a(B,s,O, co)2(ds, O, co) 
(o, oo) 

= ~ 7a(B+u,s+u,  co)~(ds+u, co) 
( 0 ,  oo) 

because of the homogenei ty  of 2 and the fact that 7 a also satisfies (4.10). Therefore  

).~(B, 0,co)= ~ y~(B+u,s, co))~(ds, co) 
(u, oo) 

=~ 7a(B + u, s, co) 2 (ds, co)= 2a(B + u, co), 

where the second equality results from the facts that  B + u c ( u ,  oo) if B c R  ++ 
and that 7a( �9 , s, co) is carried by (0, s]. Since 7(R +, s, co)< 1 it is immediate  that 2~ 
is a countable  sum of finite measures whenever 2 is such a sum. Hence 2 a is a 
homogeneous  measure. The argument  for ,~.,a is exactly the same. 

If A is a raw additive functional with finite e-potential,  we define its e- t ransport  
via m, ~a, as follows. Let 2(dt)=dA~ and then put  .4~=J,a((0, t]). Similarly, the 
e - , - t ranspor t  via rn of A is defined by .A *'a =,~*'a((0, t]). It follows from_ (4.11) that 
~ a =  A,,a if A is continuous.  In view of (4.23) it is evident that/~a and A *'a are raw 
additive functionals. 

Recall that with a multiplicative functional m one associates the operators  P~ 
defined by 

P,~ f (x )=-EX~e-a t f (X t )dmt  if x~E,, 
(4.24) 

= f ( x )  if x~E,~. 

In particular, if m t = 1~o ' T)(t) where T is a terminal time, then P~ = Pr a. If A is a raw 
additive functional with a finite e-potential  we define an opera tor  V,~ as follows: 

(4.25) Vj f (x )  = E ~ ~ e-atf(X,) m t dA t. 

As usual we write " -  a v a -  V] 1. The results contained in the next proposi t ion are 
rout ine calculations whose verification we leave to the reader. 

(4.26) Proposition. Let A be a raw additive functional with a finite e-potential. 
I f  f > O, then V2 f is e - ( X ,  m) excessive, that is, a-excessive for the semigroup (Qt) 
defined in (4.3). I f  U~f  is finite, then 

(4.27) P~ U~ f (x) = E ~ ~ e- at (1 - rn t_) f (Xt) dAt, 

and both P~ U~f and U ~ f -  V~f  are e-excessive. In particular, if A is continuous 
U~ f -- Vj f = P2 U~ f 

(4.28) Proposition. Let A be a raw additive functional with finite e-potential u~a. 
Then ~{~ and ~{.,a are raw additive functionals with finite e-potentials given by 

a respectively. a a and P~u A u A - -  v A 

Proof. Because the total  mass of y (., s) is 1 - rn~ we have 

E~ I e-at dA~ =E~' ~ e-at f 7a(dt' sldA~ 

= E ' ~  e-a~(1-m~)dA~ 

= u~, ( x ) -  v~ (x). 
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Similarly since the total mass of 7* (', s) is 1 - m s_ we have 

E ~ ~ e -~" dA*'~ ~ e-~S(1 - m , _ )  dA s 

u~(x) 
by (4.27). 

It is clear from (4.28) and the discussion following (4.22) that the .-transport 
operation corresponds to the ordinary balayage operation. In spite of this the 
transport operation seems to be somewhat simpler and to arise more naturally 
in our applications. Therefore, in the remainder of this paper we shall treat only 
the transport operation and leave it to the interested reader to write down the 
analogous results for the ,-transport operation. We plan to discuss these operations 
more systematically in a future publication. Of course, when applied to continuous 
raw additive functionals the two operations are the same. 

The decomposition (4.18) of 7 leads to a useful decomposition of A~. We fix a 
raw additive functional A with a finite a-potential and define 

(4.29) Ha =H~'A= t e-~t mt dAt= ~ e ~ '  rnt dAt. 
(o , s )  

Then E ~ (H ~) = v~ (x). 

(4.30) Proposition. Using the above notation we have 

& =  f dAs+ I AAstc(ds)+ ~ n~~ �9 
M n  (0, t ]  (O,t] (0 , t ]  

Proof We write 

(4.31) .4~= ~ 7~((0, t3, s) dA~ + .[ 7~((0, t], s) dA~. 
M M c 

If s6M, then 7~(dt, s)=e -~(s-~ 7(dt, s)=e~(dt) by (4.18) and (4.21). Consequently 
the first term on the right side of (4.31) is 

~s((O,t])dAs= ~ dA s. 
M M n ( O , t ]  

IfseM~,thenT(dt, s)=mt, s) 1LO,sl(t)(~c(dt) + v(dt)) by (4.18), and hence 

7 ~ (d t, s) = e-'{s- ,) m (t, s) 1/o ' sj (t) (to (d t) + v (d t)). 
Therefore 

~7~((O,t],s)dAs = ~ ~ 7~(du, s)dAs 
M e M c (0 ,Q 

= j" j" e- ~(*- ") m (u, s) lto,s ~ (u)(~c (du) + v (du)) dA, 
M c (O,t] 

= ~ f 1~,, ~)(s) m (u, s) e- ~ ~- ") dA s (~c (d u) + v (d u)). 
( 0 ,  t] M c 

But the integral over s equals 

I~tc(u) AA,+ ~ e-~(s-")m(u,s)dA~. 
M e n ( u ,  oo) 
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Since s e M  ~ (co) and s > u if and only if s - u e  M ~ (O.co), the second term in the last 
display is equal to 

e-~Sm(u,u+s)dA~+s = ~ e-~m~(O,)dA~(O,) 
M"(O,~) M~ (Ou) 

= S �9 

(O,SoO~) 

Combining these results with the fact that v is carried by M ~ = M  yields (4.30). 

5. Dual Well Measurable Projections 
The assumptions and basic data are the same as in Section 4. In particular we 

fix a raw additive functional A with a finite a-potential and let A ~ denote its 
a-transport via m. We are going to calculate the dual well measurable projection 
of .4~ which we shall denote by A~. As a first step we shall show that we may pass 
to the dual well measurable projection of A which for notational convenience we 
shall denote by B. Thus B is an (adapted) additive functional such that each x 

Ex~Z,  dA ,=Ex~Z ,  dB, 

for all positive well measurable Z. L e t / ~  denote the ~-transport via m of B and let 
/~ denote the dual well measurable projection of B~. 

(5.1) Proposition. A~ =/)'. 

Proof If Z is a positive well measurable process, then using (4.22) 

Ex ~ Z, dAt=Ex~ Z,~ 7"(dt, s)dAs 

=E ~ ~ 7~(Z, s)dAs 

where 7 ~ (Z, s)-= ~ Z t 7 (d t, s). Since we also have 

Ex ~ Z, dB~=E~ ~ 7~(Z,s) dB~, 

Proposition (5.1) is an immediate consequence of the following lemma which is of 
some interest in its own right. 

(5.2) Lemma. I f  Z is a bounded (or positive) well measurable process, then 
s ~ 7 (Z, s) is well measurable. 

Proof Since stochastic intervals of the form [[0, R)) with R a bounded stopping 
time form a ~-system generating the well measurable sets, it suffices to show that 
7([[0, R)), s ) = m ( R - ,  s) is well measurable whenever R is a bounded stopping 
time. Since 7( ' ,  s) does not charge {0} we may also assume that R is strictly positive. 
One checks easily that for each fixed t, s ~ m ( t - ,  s) is right continuous on R + 
and identically equal to one on [0, t). Thus s ~ m(R - ,  s) is right continuous and 
(5.2) will follow provided this process is adapted. However, it is a routine matter 
to show that I{R > e} m ( R -  ~, s) is ~ +e measurable for each fixed s and e > 0. Letting 
e l 0  and using the right continuity of the family (o~t) shows that r e ( R - ,  s) is 
measurable for each s completing the proof of Lemma 5.2. 

(5.3) Remark. A similar, but simpler, argument shows that s-+ 7* (Z, s) is pre- 
visible whenever Z is a bounded previsible process. 
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As a result of Proposition 5.2, in computing .4" we may assume that A itself 
is adapted. Consequently in the remainder of this section we suppose that A is an 
(adapted) additive functional with finite a-potential. Our starting point is the 
decomposition (4.30) of A'. We first decompose the measure v appearing in (4.30) 
as V=Vw+V . where Vw(., co) puts unit mass at each point ofMw( @ and v~(', co) 
puts unit mass at each point of M ;  fin). Since M 7 and M ;  are homogeneous sets, 
v~ and v~ are homogeneous measures. Moreover, it is easy to check using the fact 
that M~ is a countable union of graphs of stopping times that v~ is well measurable 
in the sense of (3.7). We now write (4.30) as follows: 

A~= S dAs+ ~ AAs~(ds) 
(5.4) (o , t ]~u  (o,q 

+ f H~~162 f H~~ 
(0,t] (o,t] 

Since A is adapted and ~c is well measurable the first two terms on the right side of 
(5.4) are right continuous and adapted. On the other hand the well measurable 
projection of the process (H~o 0~) is obviously (v~ (X~)) where the notation is that 
of Section 4. But K + v w is well measurable and so the dual well measurable of the 
third term on the right side of(5.4)is ~ V~A(Xs)(tc(ds)+vw(ds)). Let 

(0, t] 

(5.5) J r =  ~ H~oO s v~(ds)= ~, H ~o0 s 
(0,t] s<-_t, seM~'(~) 

and let J~ denote the dual well measurable projection of J. Then 

(5.6) Ar= S dAs+ ~ A&,~(ds)+ ~ v~,(X0(~(ds)+v~(ds))+J2, 
(0,t]nM (O,t] (0,t] 

and it remains to find an explicit expression for J% Since M~ contains the graph 
of no stopping time, it is clear that J~ is continuous. 

The dual well measurable projections of functionals of the form (5.5) have 
been calculated by Meyer [7]. However, his results are somewhat complicated to 
describe as they involve an auxiliary measure on function space, and, since we do 
not need the general results in this paper, we shall merely refer the reader to [7]. 
However, in this connection note that H" is o~_ measurable and consequently 
H~o kD=H ~ where (kt) are the "killing" operators on s In the next section we 

t 
shall need an explicit form for J~ in the special case At= ~ h(X~)ds and shall give a 
direct argument for such functionals, o 

Finally it is also of interest to consider the dual previsible projection of A~. 
Since J~ is continuous this amounts to taking the dual previsible projections of 
the first three terms on the right side of (5.6). We shall not enter into this here. 
The interested reader should consult [5]. 

6. The Decomposition Theorem 

In this section we shall obtain a decomposition of the semigroup (P0 in terms 
of the semigroup (Qt) generated by (mr) that is analogous to the last exit decom- 
position obtained in [5]. The notation and assumptions are as in the previous 
sections. 
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We need some preliminary discussion of the relationship between the sets F 
and E,,. Let F m = E -  E,, = {x: W (m o = 0)= 1 }. Then F and F m are the sets of points 
regular for D and S respectively. Thus F and Fm are both finely closed nearly 
Borel sets, and since S < D, F c F m. 

(6.1) Proposition. Fm- F is semipolar. 

Proof  Let q~(x)=EX(e -D) and ~(x)---V 1 l(x)=EX~ e - tm ,  dt. Then q) is 1-ex- 
cessive and ~ is nearly Borel and finely continuous because m is exact. Also 
F =  {(p= 1} and F~= {~=0}.  If 0 < f i <  1 the argument used in the proof of Pro- 
position 3.5 shows that {x: q~ (x)< fi, ~ (x)= 0} is (totally) thin establishing (6.1). 

It follows from (6.1) that F and F,, have the same finely perfect kernel. (See [7] 
for a discussion of the finely perfect kernel without assuming the existence of a 
reference measure.) Actually all that we need is the much more elementary fact 
that any continuous additive functional that is carried by F,, is also carried by F. 
Also observe that since M(co)--pF(o) ) is countable the symmetric difference of 
M(~o) and pFm(co) is countable (almost surely). 

If h is a bounded positive Borel function we define 
t 

(6.2) At=At (h )= ~ h(Xs) ds. 
0 

Since M(co)-pv(~o) is countable we obtain the following expression for Aa(h), the 
e-transport via m of A (h), from (5.4) 

(6.3) dA~ (h) = lv(Xt) h(Xt) dt + Ha o Ot(2 (dt ) + v,~(dt)) 

where we have put 2(dt)= rc(dt)+ vw(dt ) and 
S oo 

(6.4) Ha= S e-at mt h(Xt) dt = ~ e -at m r h(Xt) dt. 
0 0 

Clearly 2 is a well measurable homogeneous measure that is carried by M c u M~ c p} 
while v~ is a homogeneous measure carried by M ;  cO v. In the present case 
v~(x) = V a h(x) where (V a) is the resolvent defined in (4.3). Therefore (5.6) becomes 

(6.5) dd~(h) = 1F(Xt) h(Xt) dt + V a h(Xt) 2(dt)+ dJt (h ) 

where Ja(h) is the (continuous) well measurable projection of 

(6.6) Jt~(h)= ~ Ha oO~ v~(ds)= ~ Ha oO~. 
(0,tl s<t,sEM~ 

Since v~ is carried by pe, it is clear that Ja(h) is a continuous additive functional 
that is carried by F. Of course, in light of (6.1), we may replace F by F,, in (6.3) and 
(6.5). Moreover by (4.28) the c~-potential of Aa(h) and hence also Aa(h) is given by 
p ,~Uah=U~h-Vah .  

(6.7) Lemma. For all ~, f i>0  and bounded positive Borel h, 
(i) .~a (h) - ft ~ (h) = (fl - ~) 171 a (V ~ h) and 

(ii) ja  (h)-  J~ (h) = ( f l -  cQ ja (V ~ h). 

Proof It is evident that the first two terms on the right side of (6.5) satisfy this 
relation and so (i) will follow from (ii). However, both sides of (ii) are continuous 
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additive functionals and so to prove (ii) it suffices to show that both sides of (ii) 
have the same (finite) c~ +fl-potential. But using (6.5) again this will follow if we 
show that/1~ (h) - / IP  (h) and (fi - c~) A= (V p h) have the same c~ + fl-potential. From 
the definitions of the various quantities we have 

EX S e-('+P)' dA~(Vt~h) =Ex ~ e-P' ~ 7(dt, s) e -~S V e h(Xs)ds 

= EX 5 [5 e-et  7 (dt, s)] e - ~  V ~ h(X~) ds. 

The process in square brackets is adapted (actually well measurable by (5.3)), 
and so by VII-T-15 of [6] the last displayed expression becomes 

ao 

EX ~ [5 e-~t 7 (dr, s)] e (~- ~)s 5 e-  r m (s, u) h (Xu) d u d s  
S 

U 

= E~ 5 e -  ~" h (X.) I etp- ~)~ m (s, u) [5 e -  ~t 7 (dt, s)] ds du. 
o 

It is immediate from (4.5) that if t_< s_< u, then m(s, u) 7 (dt, s) = 1(0,~ l(t) 7 (dt, u). 
Since 7 (', s) is carried by (0, s] the double integral over s and t becomes 

i e  (p-=)~ ~ e-~tT(dt ,  u)ds 
0 (0, s] 

= i 5 e(P-~)Sdse-~tT(dt, u) 
0 [t, u) 

u 

= (~ _ ~ ) -  15 [ e(~- ~)~ - e (e -  ~)'] e -  e' ~ (at ,  u). 
0 

Combining these calculations we find 

( f i -a )  E x ~ e -(=+p" d ~ ( V e h )  

= E ~ ~ e - ~  h(Xu) 5 e-Pt 7(dt, u ) d u - E  ~ 5 e - ~  h(X~) 5 e-=t 7( dt, u)du 

=EX ~ e-(~+P)t d'4,(h) -E~' 5 e (~+~)t d~t(h) ,  

which establishes (6.7). 

We may now apply the results (not the techniques but the results) of [-5] or [-7] 
to obtain the following description of J=(h). For example, the relevant facts in [7] 
are Theorem 2 and Proposition 4. Note that the particular form of the resolvent 
(V ~) and semigroup (Qt) entering in these statements plays no role. We begin by 
fixing a continuous additive functional K with a bounded one-potential that is 
carried by F and such that J= (h) is absolutely continuous with respect to K for all 
c~>0 and h. For example, we may take K=JI (1) .  Then for each e > 0  and x e F  
there exists a finite measure P=(x, .) carried by E~ such that for each B e g ,  
x --+ 12 ~ (x, B) is universally measurable and satisfying for x e F, c~, fi > 0, and all h 

(i) ~'= (x,.) - P'e (x,.)-- ( f i -  c~) ~'~ V p (x,.) 
t 

(6.8) (ii) j,~(h)= 5 p= h(Xs) dK, .  
0 
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Moreover f'~ l ( x ) ~  0 as c~--,oo for each x in F, and so by Theorem 6.9 of 1-4] 
there exists for each x in F an entrance law (0t (x,'))t > o for the semigroup (Qt) such 
that 

(6.9) ~ f(x) = ~ e -~' O, f(x) d t 

for each bounded universally measurable f. It follows from standard Laplace 
inversion formulas that (t, x) --* 0t(x, B) is N+ + @d o* measurable for each B~do* - 
here do* is the a-algebra of universally measurable subsets of E and do* is the trace 
of do* on E If K = j1 (1), then e V~ 1 (x) __< (1 v ~) for all x in F, and this in turn implies 
that (~t l ( x ) < ( 1 - e - t )  -1 for t > 0  and x in E We emphasize that the kernels I ?~ 
and Qt depend on the choice of the continuous additive functional K. Following 
Meyer it is convenient to extend Qt (x,-) and V~ (x, ') by setting 

(6.10) O,(x, ")= Q&,  "); P~(x, . )=  V~(x, ") 

if x(~E Note that Ot(x,')=Q,(x,')=O if xeFm-F and that for each x~E and 
t>O, O~t(x, ")is a finite measure carried by E m such that (2~+s= Ot0s for t, s>0.  
A similar statement holds for ~'~. 

One may now combine (6.5) and (6.8 ii). Let k(dt)=2(dt)+dK r Then k is a 
(22 c well measurable homogeneous measure. Since 2 is carried by Mew M~ PF, the 

purely discontinuous part of k is carried by p~. But K is carried by F and so one 
obtains from (6.5) and (6.8) 

(6.11) dd~(h)= l r  (X,) h(Xt) dt + V~ h(Xt) k(dt), 

and we may replace F by Fm in (6.11) whenever it is convenient. 
Let Z = (Z~) be a bounded positive well measurable process and let y (Z, s)= 

SZt~(dt, S). Let hebdo +. Then on the one hand 

E~ ~ Z,e-~t dd~(h)= E~ ~ Zte-~t ~ y~(dt, s) h(Xs) ds 

= ~ e- ~ E  ~ [7 (Z, s) h(X,)] ds, 

while on the other hand by (6.11) 

E ~  Zte-~t dA~(h)= I e-~tEx[ZtlF(Xt) h(Xt)] dt + E ~  e-~tZ, V~h(Xt) k(dt ). 

Expressing ~'~ in terms of 0~ the last displayed integral becomes 

oo 

E ~ f e - ~ Z  fe-~SQ~h(Xt)dsk(dt)=E~Zt~ e-~O~ th(Xt)dsk(dt) 3 t 3  
t 

=E'S e-~" S ZtO.,-th(X,) k(dt)ds" 
(0, s) 

Combining these formulas and inverting the Laplace transform we find that for 
each x 

(6.12) E~1-7(Z,t)h(Xt)]=E~[ZtlF(Xt)h(Xt)]+E ~ ~ Z~Qt_~h(Xs)k(ds) 
(0, t) 

almost everywhere (Lebesgue) in t. As usual we may replace F by Fm (or 1F(Xt) 
by 1M(t)) in (6.12) whenever it is convenient to do so. 
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We next claim that if r>0 ,  Z a positive well measurable process, and h a 
positive function vanishing on F, then 

(6.131 Ex{ ~ Zt?(dt, s)h(X~)} =Ex ~ ZeO~_th(Xt)k(dt) 
(o, r) (0, r) 

for all s > r. To this end suppose that h is the restriction to E - F  of a bounded 
positive continuous function and that Z is a bounded positive well measurable 
process. Applying (6.12) to l(o,r)(t)Z t we see that (6.131 holds almost everywhere 
in s on (r, ~) .  We shall now show that the left side of (6.13) is right continuous 
in s on (r ,~).  Since 7( ' ,  s) is carried by [Ls, s] the left side of (6.131 reduces to 

(6.14) EX{ ~ Z~7(dt, s)h(X~);L~<r; X~q~F}. 
(0, r) 

Fix s>r  with Ls<r and X~q~E Then Ls<s and so s(~M. Since M is closed there 
exists an e > 0 such that [s, s + ~] c~ M is empty. Then if u e [s, s + ~), X,  C F and so 
h(X , )~h(X , )  as u+s. Also for such a u, L , = L ,  and it follows from (4.5) that 
7 (dr, u) = m (s, u) 7 (dt, s) on (0, r). Therefore 

ZtT(dt, u)=m(s,u) ~ Zt?(dt, s). 
(0, r) (0, r) 

But m(s,u)~mOoO ~ as uSs and since sCM, So 0 ,>0  or m0o0s=l.  Hence 

ZtT(dt , u) 
(0, r) 

approaches ~ Zt7(dt, s ) as uSs. It is now clear that (6.14) and hence the left 
(O,r) 

side of (6.13) is right continuous in s on (r, or) for such h and Z. This point being 
established one may now repeat the argument following (3.18) of [5] to obtain 
(6.13). Consequently (6.13) holds for each r > 0  and all s>r. Now fix s > 0  and let 
r T s in (6.13) to obtain 

(6.15) EX{ ~ Z,7(dt, s)h(Xs)}=E x ~ Zt~,_,h(Xt)k(dt)  
(0, s) (0, s) 

identically in s provided h vanishes on F. 

We come now to the main result of this section. Recall that if xCF, then 
Qt(x, . )=Qt(x,  .) and so we define Qo(x, " ) = Q o ( x , - ) =  l~m(X)e x for x(iE Recall 
also that if k(dt) charges {s}, then X,r 

(6.16) Proposition. Let h be a positive function and Z a positive well measurable 
process. Then 

Ex{y(Z, s)h(X~)}=EX{7(Z, s)h(X,); X,~Fm} +E x ~ ZtQs_th(X ,) k(dt), 
(0, s] 

for all x and s > 0  where F m = E - E  m as before. 

An immediate corollary of (6.16) is the following decomposition of the semi- 
group (P0. 

(6.17) Peh(x)=Qth(x)+EX{h(Xt);Xt~Fm}+E~' ~ Qt_sh(Xs)k(ds). 
(0, t] 
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To see this write 
Pt h (x) = Qt h (x) + E x {(1 - mr) h (X~)} 

and since 1 -mt=7(1 ,  t) we may apply (6.16) with Z =  1 to obtain (6.17) because 
mt=O if Xt+F m. 

We turn now to the proof of (6.16). Suppose first that h vanishes on F m ~ F  so 
that (20 h = h. From (6.15) we obtain for s > 0 

(6.18) Ex{7(Z, s)h(Xs)} =Ex{Zs7({s}, s)h(X~)} +E ~ ~ ZtQ~_th(Xt)k(dt ). 
(0, s) 

Now from (4.18), 1M(s)7({s},s)=lu(s) because L ~ = s > 0  if and only if s~M. 
Since ~ is carried by M c, 1M(s)k({s})=vw({s})= 1M_pp(s) by the definition of v w 
and (3.5). But h=Qoh vanishes on Fm~F and so combining the above obser- 
vations yields 

(6.19) E~{ZsT({s}, s)h(X~) lu(s)}=Ex{Z~Qoh(Xs) 1M(s)k({s}) } . 

Again from (4.18), 1Mo(s ) 7({s}, s)--lu~(s ) ~c({s}) since m(s, s)= 1 and v is carried 
by M. But l~tc(s ) t~({s})= 1Mo(s ) k({s}) and so 

(6.20) Ex{Zsy({s}, s)h(X~); s~MC}=Ex{Z~Q.o h(X~)k({s}); s~MC}. 

Combining (6.18), (6.19), and (6.20) we obtain (6.16) in the special case in which h 
vanishes on F m. Writing h=hlv,+hlE," in the general case and noting that 
0.t (h 1Era) = (2t h completes the proof of (6.16). 

It is possible to draw a number of interesting corollaries from (6.16) as in [5] 
or [7]. However, we shall not pursue this here. We hope to return to this question 
in a subsequent publication. 

Appendix 
In this appendix we shall prove that in the framework of Markov processes 

the well measurable processes are generated by the previsible processes and 
processes of the form (t, ~o) ~ f o  Xt (co). Without doubt this is known to experts 
in the field and is quite close in spirit to the fact that ~-r=Wr_ v a(Xr) for all 
stopping times. However, we have been unable to find the result in the literature 
and since it is quite useful, we shall record it here. 

As in the previous sections X is a Markov process satisfying the hypotheses 
of the right and we adopt the usual notations and conventions. Several authors 
have recently established the following result. If Z = (Zt) is a bounded measurable 
(with respect to N ( R + ) |  process, then there exists a bounded measurable 
process w (Z)= (ZT) which is the well measurable projection of Z for the family 
(o~t") for each P". See, for example, [1] or [7]. Let d u  be the a-algebra on R + x f2 
generated by processes of the form (t, ~)~Yt(co)fo Xt(co ) where Y is (o~t) adapted 
and continuous and f is a bounded nearly Borel measurable function, and also 
all processes that are pu indistinguishable from zero. Clearly d u is the same if 
we require that f be Borel (or even continuous) rather than nearly Borel. Here is 
our result. 

(A.1) Proposition. Let Z be a bounded ~(R+) |  ~u measurable process and w(Z) 
be its well measurable projection on the family (~,~) relative to pu. Then w(Z) is d ~ 
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measurable. In particular if Z is well measurable over (FL J~", P"), then Z is d u 
measurable. 

Proof L e t a f  be the collection of all bounded N (R §174 measurable processes 
Z such that w (Z) is d u measurable. Then j/a is a vector space containing the con- 
stants and closed under uniform limits and also increasing uniformly bounded 
limits. See [3], p. 98. Hence it suffices to show that W contains all processes of 
the form Zt(co)=lta,bl(t)g(o) where g ~ b f f  u and 0 < a < b < o o .  In this case 
Z7 = lla ' bl (t) Gt where G t is a right continuous version of the martingale E"(g] fftu). 
Suppose first that 

oo 

(1.2) g= [I  f e-~'t f i(Xt)dt  
i=1o 

where e~>0 and f iEbg  for l<_i<_n. Then the computation on p. 113 of [85 shows 
that G = (Gt) is d ~ measurable (actually a finite sum of products of the generators). 
Hence w (Z)= ZWe ag" in this case. But finite linear combinations of elements of 
the form (A.2) are dense in L2(Q, J ~" ,  W ) - s e e  [8]. Thus if g e b ( ~  ~) there exists 
a sequence {gn} with each g, a finite linear combination of elements of the form 
(A.2) and such that g,-* g in L 2 (W). If G~ and G t are right continuous versions 
of the martingales EU(g,[~ u) and E"(g[~,~ ~) respectively, then it follows from 
standard martingale estimates that there exists a subsequence {n k} such that 
almost surely pu, G~__+ Gt uniformly in t. This implies that G is ag u measurable 
and completes the proof. 

(A.3) Corollary. Let A and B be raw additive functionals with finite potentials 
and such that U A f = U ~ f  for all bounded Borel f - b o u n d e d  continuous f would 
suffice. 7hen A and B have the same dual well measurable projections. 

oo 

Proof Recall that U A f ( x ) =  E~ y f (X t )dA  t. Suppose f > 0  and bounded Borel. 
0 

The hypotheses imply that dA* = f ( X t ) d A  t and dB* =f(Xt )dB t are raw additive 
functionals with the same finite potentials. It is well known and an easy conse- 
quence of Meyer's integration lemma ([6], VII-T 17) that 

oo oo 

E" ~ Yt f (Xt)  dAt = Eu ~ Yt f (Xt)  dBt 
0 0 

whenever Y=(Yt) is a bounded adapted (left) continuous process. Combining 
this with (A.1) yields Corollary A.3. 

(A.4) Remark. The reader should have no difficulty in extending the corollary 
as follows: Let S be an exact terminal time and let A and B be raw additive func- 
tionals of (X, S). If for some fixed c~> 0, A and B have finite c~-potentials and 
U~f=  U~f  for all bounded Borel f then A and B have same dual well measurable 
projections. 

Note Added in Proof K.L. Chung has pointed out that Dynkin in "On extensions of Markov 
processes" Theory of Prob. and Appl. 13, 672-676 (1968), has obtained a decomposition of the resolvent 
using essentially the same technique as that used in [5]. We take this opportunity to acknowledge 
Dynkin's priority. 
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