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Multiple Points for a Process in R 2 

with Stable Components 

W.J. Hendricks* 

Section 1: Introduction 

The object of this paper is to investigate the existence and Hausdorff dimension 
of the set of multiple points of the sample paths of a type of Markov process in R 2 
with stationary independent increments. To define the process, let X~i~ (t)--X~ (t) 
denote a stable process of index ~ in R ~ for i= 1, 2; assume the two processes 
independent and let X ( t ) - ( X I ( O ,  X 2 (t)). We call X(t) a process in R 2 with stable 
components. If the ~i exceed l, each component of X(t) is point recurrent but X(t)  
can be shown (see [6] or [103) to be transient. If ~1 =~2, X(t) is stable. Hence we 
assume that 1 < ~2 < ~ =< 2. The situation for ~z--< 1 or for a process with stable 
components in R 3 is discussed briefly in Section 6. 

Taylor [12] has studied the existence and Hausdorff dimension of multiple 
points for symmetric stable processes of index ~ in R". Our basic argument wilt 
resemble his, although significant modifications are necessary. After stating the 
necessary preliminaries in Section 2 we use some potential theory in Section 3 to 
obtain estimates of various hitting probabilities with respect to X(t) and then 
proceed to obtain conditions on k, al and ~2 for existence (Section 4) of points of 
multiplicity k. In Section 5 we compute the Hausdorff dimension of the multiple 
points. The problem of multiple points for processes with more than 2 stable 
components or for ones with a component in a higher dimension remains open, 
as does the problem for multiple points (or at least double points) for a general 
process with stationary and independent increments. 

Section 2: Preliminaries 

The n-dimensional characteristic function of a stable process X~,.(t) of index 
~ 1 in R" has the form exp [ t~ (y)], where 

t~ (y) = i(a, y) - ~ l y[ ~ S w~ (y, O) t t (d 0), 
S~ 

with a 6 R", 6 > 0, 

w~(y, 0)= [1 --i sgn (y, 0) tan 7r ~/2] [(y/lyl, 0)l ~, 
and p a probability measure on the surface of the unit sphere S n in R" [8]. We 
assume a--0, 6 = 1, and that/~ is not supported by a proper subspace of R ". I fp is 
uniform, the process is said to be symmetric. 
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114 W.J. Hendricks 

When speaking of a stable process X~,, we will always write the two subscripts 
to indicate index ~ and dimension n except when the process is actually a compo- 
nent of a process with stable components. When the latter occurs, we use a single 
subscript i to indicate the i-th component. The symbol X(t) will be understood to 
refer to the process (X1, Xz) as defined in Section 1. We will use the notation and 
methods of [6] to determine various hitting probabilities in Section 3. To do this 
we use the facts that stable densities p,,,  (t) of the type being considered are positive, 
continuous, bounded in x for each fixed t, and satisfy the scaling property 1,11]: 

p~,,(t, x)=r"/~p~,,(rt, rl/~x) for r>0 .  (2.1) 

The density, p (t, x), of X(t) will have the form: 

p(t,x)=p,l,l(t, xl)p~2,1(t, x2), where x=(xl,x2). (2.2) 

It will be assumed that all processes being considered have been defined so as 
to have sample functions X(t, co) which are right continuous and have left limits 
everywhere 1,1]. In addition, we assume that the strong Markov property holds 
and that X(0)--0 with probability one. 

We define the hitting probability 4~(x, E) of a planar Borel set E starting from 
x~R 2 by: 

~(x, E)=Px[X(t)eE for some t>0] .  

Often in writing pO [ ] we simply use P [ ]. The set of points in R 2 that the sample 
path X(t, co) hits in the time interval [a, b] is denoted by L(a,b; co), where 
O<a<b<oe. Likewise, for any positive integer k>2,  we denote by Lk(a,b; co) 
the set of points hit k times in the time interval l-a, b]. Sometimes we use Ek(co ) to 
denote the se t Lk(O, oC; co) of k-multiple points of the path X(t, co). Positive con- 
stants whose values remain fixed throughout the discussion will be introduced in 
order and denoted by q ,  ..., c 3 5. The letter c will be used as a positive constant 
which can vary in size from statement to statement or line to line. 

Section 3: Potential Theory and Hitting Probabilities 

Taylor 1,13] gives a brief background of the potential theory which we will 
need. If we let Pl (t, xl) be the density of X 1 (0 and P2 (t, xz) that of X z (t), the density 
of X(t) is their product and will be denoted by p(t, x), where x=(x l ,  x2). U(y), the 
kernel of the process, is given by 

oo 

U(y)= ~ p(t, y) dt (3.1) 
0 

and converges for all y ~= (0, 0) in R 2. 
If we let # be any measure defined on Borel subsets of compact sets E in the 

plane, the potential at x of the measure # on E is Wu(x)= ~ U(y-x)#(dy). The 

capacity of E is zero iff W, is unbounded for every # for which #(E)>0. If there 
are some # such that W, is bounded, we define the capacity of E with respect to 
X(t) by: 

C(E)= sup{#(E): Wu(x)< 1 for all x}. 
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When E is compact, this supremum is actually attained for a measure v, called the 
capacitory measure on E. 

Finally, we denote the hitting probability of a compact set E starting from x by: 

q~(x, E)=P~{X( t )eE  for some t>0}. 

Hitting probabilities are then given in terms of the kernel and the capacitory 
measure: 

(x, E) = ~ U ( y -  x) v (dy). 
E 

Our method will be to obtain bounds on the kernel, the capacity of rectangular 
regions, and thereby upon hitting probabilities of rectangles. Some of the results 
are interesting in themselves, but since they will be used to prove later theorems, 
they will be stated as lemmas. 

Lemma3.1. Let Y=(Yl,Y2) and U(y) be the kernal as defined by (3.1). Then 
positive constants cl, ..., c4, independent of y, can be found such that: 

q < U(y)< c2 
lY21~_~+~/~, = lY21~_~+=~/~, if ly~l~'s == 

C 4 
c3 < iYa i~_.~ +~/~ ~ if [y21~s ='. 

Before proceeding to the proof, observe that once the lemma is established, 
the two inequalities on the right can be made to hold in the entire plane by using 
[Yz] -1  ~ [Yl J -~/~2 in the first inequality and ]yt]-i  < [y2[ -~2/~ in the second. 

Proof The lower bound estimates are derived (p. 265) in [6], and the upper 
bounds are proven (Lemma 3.1) in [7]. 

Lemma 3.2. Let Ra, b be a rectangle centered at (0, O) with sides of length 2 a (2 b) 
parallel to the Yl (Y2) axis. For positive 6 < 1 denote by R (6) the resulting rectangle 
when a=6 ~ and b=6 ~1, and denote by S(6) the square which has a=b=6.  Then 
positive constants c s and c 6 whose values do not depend upon a or b can be found 
such that: 

c s max {a s -~1 +~'/% b ~ -'~ +~/"} < C(Ra, b) ~ C 6 max {a s -~' +~/% b l - ' ~  +~/~'}. 

In particular we have bounds of the form 

6 ~xl +~2--~1~2 and 61 --~2 +~2/~1 

for c (R (6)) and C(S(6)) respectively. 

Proof As in the proofs of Lemmas 3.1 and 3.3 of [6] we have: 

so that 

1 __> C (R a b) min U(y), 
" y c R a , b  

C(Ra,b)<= { min U(y)} -a = max {ci -a b a -~2 +,2/,~, c;-1 a I - ~  +.~/.2} 
y ~ R a ,  b 
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upon application of L e m m a  3.1. To obtain the lower bound,  let #L denote Lebesgue 
measure in R 2 and observe that:  

VCv-x)#L(dy)-<_e2 i i lY2-X21 2-1- 2  ldyldy2 
Ra,b --b - a  

b - x 2  

= 2 a  c 2 I [U]=2-1--az/al du=cab~2-~=/=*, 
- b - x 2  

where c is a positive constant  independent  of a, b and x. The last integration can 
be justified by using the c r inequali ty (p. 155 of [9]) in the cases 0 < - b - x  2 and 
b - x 2 < 0, and the fact that  a, > 1 for the case Ix 21 < b. Now define the measure/~* 
on Borel  subsets E of R~, b by: 

#* (E) = c - 1 a -  1 b-  ~2 + ~2/~. #L (E). 

Then ~ U ( y - x ) # * ( d y ) < l  for all x and: 
Ra,b 

C (Ra,b) > Is* ( R . ,  b) = C-  ~ b* - ~ + ~/~* 

In the same manner  we can use the fact that  a 2 > 1 to show that  

C ( R a , b )  >-- c -  t a 1 - =* + ~,/~2. 

Our next lemma gives estimates on the delayed hitting probabilities of the 
rectangles R~, b. For  rectangles R,, b as defined in L e m m a  3.2, and for T > 0  and 
all x e R  2 let 

Q(x, R,,b, T ) = W [ X ( t ) ~ R , ,  b for some t__> T].  

We can then proceed as in the proof  of L e m m a  3.2 of [6] to establish 

Lemma3.3 .  Let Q(x,R,,b, T) be as given above. Then positive constants c 7 
and Ca, independent of x, a, b, and T, can be found such that: 

(i) Q(x, R., b, T)<=c 7 C(R.,b) T1-1/~-1/% 

(ii) Q(x, R.,b, T)> c 8 C(R.,b) r 1-1/~-1/~ if x~Ra. b and T > m a x  {(2a)% (2b)==}. 

We can now use both  parts of Lemma  3.3 to reason as in the proof  of Lemma  4.2 
of [6] to obtain 

Lemma3.4 .  Choose Tl>max{(2a )%(2b)~q  and xeR . ,  b. Then positive con- 
stants e 9 >1 and c 1 o, independent of a, b and x, can be found such that when T 2 > c 9 T~ : 

px[x( t )eRa,  bfor some te[T1, T2]]->Clo C(Ra,b) gl 1-1/al-1/a2. 

Various estimates of hitting probabilities of rectangles can be developed 
depending upon  the location of the rectangle and starting point, but  we only 
require 

Lemma 3.5. Suppose that t(ER., b and that [x] + d< 1, where d is the length of the 
diagonal of Ra, b. Then positive constants cll , c a 2 and c, 3 (independent of a, b and x) 
can be found such that: 

(i) P~ [X(t)~R~, b for some t > 0 ]  > ca1 C(R~,b). (Ix[ + d) "~-* -~:/~, 

(ii) px [X (t) ERa, b for some t in [0, T]  ] >= c 12 C (R,, b)" (I X l + d) ~2-1 - ~2/~ whenever 
T>=qa(]x[+d)~'~. 
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Proof From Lemma 3.1 we obtain the estimate U(y)> q t Y ]~-a-  =2/,, if [y]< 1. 
If v is the capacitory measure on Ra, b, (i) is a consequence of: 

q~(x,R,,b)= ~ U(y-x)v(dy)>_c, ~ ([x[+d)==-a-~2/~'v(dy). 
Ra, b Ra, b 

To prove (ii) we take the difference of the estimates (i) in Lemmas 3.5 and 3.3 and 
choose q3  appropriately. 

Section 4: Existence Theorems 

We now determine conditions for the existence of k-multiple points for X(t). 
For any positive integer k a point x in R 2 is said to be a k-multiple point of the sam- 
ple path X(t, ~o) if there are k distinct times 0 <  t 1 < . . .  < t k such thatX(t i, o3) = x for 
i=  1, 2, ..., k. In [123, Taylor showed that symmetric stable processes X~,~(t) of 
index 0{< n have (with probability one) k-multiple points if k(n-0{)<n and that 
(with probability one) such points do not exist if k (n-0{)> n. In Theorems 1 and 2 
below we shall see fairly direct proofs for existence and nonexistence, respectively, 
of k-multiple points except for the critical case k(0{ 1 -{-0{2--0{1 0{2)=0{1 +0{2; we 
conclude with a remark as to how the critical case could be handled. 

Theorem 1. X (t) has (with probability one) k-multiple points/fk(0{ 1 + 0{2 -0{1 0{2) 
< 0{I q- 0{2. 

Proof We could follow Taylor's (Section 4 of [12]) argument to prove existence, 
but we postpone the elaborate argument required and state that existence of 
k-multiple points is assured under our hypothesis once we show that this same 
hypothesis implies that the set of k-multiple points has positive Hausdorff dimen- 
sion. This is done in Theorem 4 of the next section. 

Theorem 2. With probability one, k-multiple points do not exist ifk (0{1 + 0{2 - -  0{1 0{2) 
>0{i + 0{2. 

Proof Cover R 2 with abutting rectangles Ri, i = 1, 2, 3 . . . .  , congruent to R (6) 
of Lemma 3.2 and whose long sides are parallel to the horizontal axis. We shall 
estimate how many of these rectangles are hit by time t = 2, and then show that the 
probability of ( k -  1) delayed returns to at least one such rectangle approaches zero 
as 5 --+ 0. 

The first step is to let T(5, s) denote the amount  of time the process spends in the 
rectangle R(6) up to time s. T(6, s) is a random variable whose expectation we 
estimate by the methods of Pruitt  and Taylor [10] (p. 278). Let s > 5 =' ~2. Then: 

s 

E [T(6, s) =- ~ P IX(t) eR (6)] dt 
0 

s 

=IP[]Xl(1)l<=6~2t-1/"]n[rx2(1)l<b~t-1/~2]dt (4.1) 
0 

b~l ~2 

>->- 5 P[IXi(1)I<-IJP[IX2(1)I<I]dt=q* a~''2. 
o 

If we apply the same reasoning of Pruitt  and Taylor [10] in their Lemma 6.1 
we can estimate E[M(6, s)], where M (6, s) denotes the number of rectangles from 

9 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 28 
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{Ri}~~ that the process enters by time s. Their methods, along with (4.1) above, 
give (for 6__<1 and s__>6~'~2): 

E [ M  (6, s)] __< 2 q 5 s {E [ T(6/3, s)] } - 1 _< q 6 s fi- ~1 ~2 (4.2) 

Define events A i and B i (independen0 by: Ai= IX(t) enters R i at some time 
t e [1, 2]], B i= [X(t) enters R i at ( k -  1) times: t 1 < . . .  < t k_l], where tie [2j + 1, 
2j + 2], j = 1, 2, ..., k -  !- Let I~ be the indicator function of event A r Then: P [ k -  1 
returns (during the specified time intervals) to at least one of the Ri] 

= Y, e Ca, , Bi]= Z P [A,] P EB,] 
i i 

< c ~(~' + ~2- ~, ~=t (k- 1) ~ E [Ii] by Lemmas 3.2 and 3.3 
i 

-< c 6 (=1 +=2- =,=2)(k- 1/E [M(6, 2)1 

< c 6  {~* § 1)-=* ~2 by (4.2). 

The hypothesis k(e l+e2-mle2)>e l+c~2  guarantees that this final quantity 
approaches zero as 6 --+ 0. Consequently, the event 

[X(tj)=X(t)  for some t s [1 ,2]  and t y e [2 j+ l ,2 j+2] ,  j = l , 2 , . . . , k - 1 ]  

has probability zero. Now apply the same reasoning to any sequence 

O<rl <r2 <. . .<r2k < l 

of 2k distinct rational numbers rj in [0, 1], to conclude that for such a sequence 
with probability one there are not k time instants t, <- . .  < t k for which 

tje[r2i_~,rEj], l <J<-k 
and: 

X (t~, o ) =  X (t2, co) . . . . .  x (t~, co). 

Since the rationals in [0, 1] are countable, so is the collection {K~} of all sets of 2 k 
distinct rationals taken from [0, 1]. Thus the K's can be indexed {K~} = {Ki}~~ 
Define the event C~, i=1,  2, 3, ... by: 

C,= Ix( t , )  . . . . .  X (tk); tym[r2 j_1, rey]; K i =  {r,, ..., r=k}]. 

Then (~ C~= [X(tl) . . . . .  X(tk) for k distinct times in [0, 1]] has probability zero 
i=1 

since P[C~]---0 for each i. Apply the same reasoning to any finite time interval 
[0, t] to complete the nonexistence proof. 

Remark. Our theorems have not taken care of the criterical case 

k(~ 1 +c~ 2 -cq  "2) = ~1 +c~=. 

It is possible to show non-existence in this case too, but the details are tedious. 
The methods used by Taylor [12] to settle the critical case for a stable process 
need to be modified by considering a new type of Hausdorff measure in which 
only coverings by long thin rectangles of the form used in the proof of Theorem 2 
are allowed. 
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Section 5: Dimension Theorems 

In this section we establish bounds for the Hausdorff dimension of the set of 
multiple points. We use the terminology L(a,b;  co), L~(a,b;co) and Ek(co ) of 
Section 2 and assume throughout this section that k(~ 1 + , 2 -  ~a a 2 ) < ~  +"2 .  In 
Theorem 3 we use methods similar to those of Theorem 2 to establish upper 
bounds for dim E k, the Hausdorff dimension of Ek, and in Theorem 4 we follow 
Taylor's [,,123 argument for the lower bound. 

Theorem 3. Under the above terminology and hypotheses, with probability one 
dim E k (co) satisfies: 

{21 -- k(~l + ~2 - al 0r162 1 (=2) 
dim Ek(co)< rain + cq/a2 -k(71 +~2 -TJ  72)/a2 (= r/). 

Proof  We first show that dim E k <= r I by showing that dim E k < 0 whenever 0 > r/. 
Let such a 0 be chosen and cover R 2 with abutting rectangles {Ri}~~ congruent 
to R(6) as in the proof of Theorem 2. d~,6, the diagonal of any such rectangle R~, 
is less than 3 6 "~ for all i. Define events Az and B~ as before, so that 

k 

Q~ (co)=- 0 L(2 j -  I, 2 j; co)~ (._)* R,, 
j = l  i 

where the union is taken over those indices i for which the event A~ c~ B~ occurs. 

We now obtain an estimate of E d~ (co) , the summation extending over the 
i =  

indices in the above union�9 Let ~ denote the a-field of the process up to time t = 2 
and reason exactly as in Theorem 2" 

E *d~ -~ ~ E [ , d ~ 1 7 6  
i-- 1 ' -J i = 1  ' i = 1  

< c 6 ~=~ +~ . . . .  *-). E [M(a, 2)] < c,~ ~(~ 

This final quantity approaches zero as 6--* 0 whenever 0 >q. Consequently, with 

�9 ec ~ 0 probability one there is a sequence of integers {j, (co)},= 1 such that ~ di, l/j,, ~ 0 as 
i = i  

n--, oo. Hence (with probability one) the 0-Hausdorff measure of Qk(co) is zero. 
k 

Similarly, the set ('] L(r2j_l ,  r2j; co) has zero 0-Hausdorffmeasure for any sequence 
j = l  

of 2k distinct rational r~, 0 < q < t h < . . . < r 2 k < l .  Any point x in Lk(o, 1;co) is 
contained in a set of this form. Since the number of such sets is countable, Lk(0, 1 ; co) 
has zero 0-Hausdorff measure with probability one. The same proof applies for 
any finite time interval [-0, t]. Consequently dim E k < r I. 

The proof that dim E k < 2 is very similar to the above proof, so we only outline 
it. This time we c o v e r  R 2 with abutting squares {Ri}~=x of side 6<  1. Define A i 
and B~ in analogous fashion. The corollary to Lemma 6.1 of Pruitt and Taylor [,10] 
9* 
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tells us that E [M (6, 2)] < c 6 -", where p = 1 + ct 2 - ct2/a i . We then obtain (for 0 > 2): 

0 )1 )// E d~,~(o~ <c6~  k - l E [ M ( & 2 ) ] < c 6  ~  
t - i=  1 -I 

Reason as before to show that dim E k_<_ 2. 

We conclude this section with an outline of the modifications of Taylor's [12] 
argument to establish 

Theorem 4. Under the same hypotheses as in Theorem 3, with probability one 
dimEk(O) ) satisfies: 

~2 - k (~i + a2 - al ~2)/al 
dim E k (f.o) >-- min (1 + ~1/0~2 - -  k ((~1 "[- 0{2 - -  ~1 (Z2)/Ct2 " 

Proof. For ease of reference we formulate and prove a sequence of lemmas and 
indicate the correspondence of our lemmas with those of [12]. With the exception 
of the upper bound estimate of Taylor's Lemma 1 we now have (through our 
Lemmas 3.3-3.5) the counterparts of his Lemmas 1-5. We now handle this ex- 
ception with 

Lemma 5.1. Let  R 1 and R 2 be two rectangles (with diagonal d<  �89 which have 
the same orientation and shape as Ra, b, and whose respective centers ei=(ci,  di), 
i = 1 and 2, are distinct. I f c  1 ~ c 2 (d i ~= d2) assume that [c i - c21 ~ 10a (1 d i - d E [  ~ 10 b). 
Let  y e R  2. Then: 

P Y [ X ( t ) ~ R  1 for  some t > 0 ]  <c17 U(e 1 - e 2 ) .  C(Ra, b) 

for some ca7 > 0  which is independent of  a, b, e i and e 2 . 

Proof. Let v be a capacitory measure on R 1 . Then: 

~(y, R1)= ~ U ( x - y )  v (dx )<  C(R1) max U(p 1 -Pz) .  
R1 pieRi 

Now for any p ieR i ,  i=  1 and 2, we can use the bounds for the kernel (Lemma 3.1) 
to conclude that: 

U(Pl - P2) < min {c 2 U((0, ~ [d i - dzl)), c 4 U((-~ Ic I - c 2 I, 0))} < c 17 U(e, - e2). 

Since the Pi are selected arbitrarily in the R i, the proof is complete. �9 (y, R2), y~R1 ,  
can be given the same bound as above once we observe (by Lemma 3.1) that 
U(e 2 -e l )~C U(e 1 -e2) for some finite and positive c independent of the e i. This 
symmetrizing property of the kernel will be used as necessary without further 
comment. 

Our next lemma corresponds to Taylor's Lemma 8. Put M ---max {c9, c,3 } > 1 
(see Lemmas 3.4 and 3.5). This means that if Ixl + d <  1, the estimates of Lemma 
3.5 (ii) for entry in [0, M] and Lemma 3.4 for reentry in [1, M] are valid in our 
next proof. 

Lemma 5.2. Let  k be a positive integer, and R~ and R e a pair of  rectangles which 
satisfy the hypotheses of  Lemma 5.1. Also ' 1 let ~ < leil ~ ~, i= 1 and 2, and assume that 
10d< min lei]. Denote by R* (i= 1 and 2) the event that there are k time instants 

i = 1 , 2  
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t l , . . . , t  k with 0<t l=<M; l <=tj-tj_l <=M,j=2,3 . . . .  ,k  such that: 

X( t )eR , ,  j =  1, 2 . . . . .  k. 

Then positive constants Q 8 and Q 9, independent of the Ri, exist such that: 

(i) P[R*]>=qs[C(RI)] k, i=1 ,2 ,  

(ii) P [R~" ~ R*] =< q9 [C (Ri)] 2k [U(e 1 - e2)] k. 

We remark at this stage that our proof of this lemma is close to Taylor's, 
although we correct a misprint in a combinatorial argument in the proof of (ii). 
In addition, we shall need to examine carefully the estimate given by #2 in several 
places later in our argument, so we provide the details of the proof. 

Proof A lower bound for the probability that X(t) will hit R i in [0, M] is given 
by (ii) of Lemma 3.5. If the process hits Ri in [0, M] let t~ be the first entry time; t 1 
is a stopping time. Restart the process at X(q )  and use the strong Markov property. 
The conditional probability of reentry into R~ in [1, M] can be estimated by Lem- 
ma 3.4. Repeat the argument ( k -  1) times to obtain (i). 

To prove (ii) we define some probabilities and give estimates on them: 

#1 = ~ ( 0 ,  R 1 w R2) 

# / = m a x  {sup 4~(y, R2); sup 4~(y, R0} 
y~Rt y~R2 

# 3 = s u p P Y [ X ( t ) e R I u R 2  for some t>�89 
all y 

Pl is estimated by means of the bounds on U(y), P2 is estimated by Lemma 5.1, 
and P3 by 3.3(i): 

2 2 

#1<= ~ ~ U(y-O)v(dy)<-_ 2 C(Ri)max U(Y)<=cC(Ri), i=1 ,2 .  
i=1 Ri i=1 yERi 

#2=C17 U(el--e2).  C(RI) , i=1 ,2 .  

#3<4c7 C(RI), i=1 ,2 .  

Now let coeR~' c~ R*, and N k denote the number of ways of selecting k integers 
out of 2 k. There must be at least 2 k distinct times t~ < . . .  < t2k for which X(tj, co) 
R~ w R z . We may assume that the times corresponding to any two hits of a given 
rectangle differ by at least one time unit. Thus, for j =  2, 3, ..., 2 k -  1 we must have 
tj+ 1 - t j > � 8 9  or t j - t j _  1 >=�89 This implies that there must be at least ( k - l )  (Taylor 
writes k here instead o f ( k -  1), though he later corrects himself) integersj for which 
tj-t _  >�89 

The t~ are stopping times; hence the product of probabilities for any one of 
the N k sequences of times must contain at least (k - 1) factors of 2 #a (the 2 accounts 
for the fact that each factor may be inserted in two different ways); the first factor 
is always #~ ; for each of the k remaining t~- ti_ a there is a factor of at most #2 +#a- 
Therefore: 

P JR* ~ R*] < hr k #i  (2fl3) k-1 (f12 -t- f13) k, (5.1) 

from which (ii) follows by use of the estimates upon the #'s and the fact that 
#2 -~- #3 ~ C C ( R I )  U ( e  I - e2)  for i = 1, 2. 
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Before stating the next lemma, we introduce some terminology. We will be 
using rectangular grids of r~ r 2 points formed by the points of intersection of r~ 
equally spaced horizontal lines and r 2 equally spaced vertical lines. The points {x~} 
of such a grid will be said to be numbered by columns starting from the lower left 
if starting with the left-hand column we number consecutively upward from the 
bottom and proceed column by column to the right. Thus, the lower left grid 
point is x 1 and the upper right is xrl r2. For convenience of notation in the discussion 
which follows, we regard, for ~ > 0 and integral r, r ~ as [re], where [ ] denotes the 
greatest integer function, whenever such an expression must be integral valued. 

Next, let r be a positive integer. Choose a positive number L < 1 so that a rec- 
tangle R with sides/g~ parallel to the Yz axis and of length/g~ parallel to yx can be 
placed somewhere in the annulus A =  {y: �88 lYl<�89 Form the grid G of r ~' r ~2 
points by locating r ~J equally spaced points along the sides of R which are of length 
/gJ, j = 1 and 2, and connecting pairs of opposite points by horizontal or vertical 
lines. Number the points of G =  {x~: 1 _<v_<r ~ r ~} by columns starting from the 
lower left and let rectangles R, congruent to R(6) have their centers at x~, 
1 < v < r ~ r ~. Assume that the rectangles satisfy the spacing requirements: 

lO6~'<(L/r) ~', i=1 ,2 .  

Thus, the sides of the rectangles are smaller by a factor of at least 5 than the 
horizontal and vertical spacing between their centers. Such a grid of rectangles 
will be said to be spaced according to el and e2. Observe that any pair of rectangles 
from such a grid satisfy the conditions of Lemma 5.2 for all large r. 

Our technique for finding a lower bound for dim E k will involve finding those 7 
for which an independent symmetric stable process Xr,z(t) of index 7 in R z hits 
the set E k and then using the following result of Taylor [12] : 

Proposition 5.1. Let A be an analytic set in R 2. Then for any point x, 

dim A = 2 - i n f  {7:~1)~,2 (X, A)>0} 

where ~ ,  2 (X, A) denotes the probability that a symmetric stable process of index 7 in 
R 2 starting at x will hit A. 

For processes of the type given in this proposition we can use the results of 
[13] (pp. 1235 and 1237) and of our own Lemma 3.2 (when e1=~2 = 7 > 1 )  to esti- 
mate the kernel, U~(), and capacity, C~(Ra, b), for various R,, b with respect to X~, 2: 

c5(~2(2-~)~C~(R((~))~c6(~ ~2(2-~') when 3~>1, 

6~(S(6))=C2o 62-r and Ur(x)=c211xl 7-2, 

for positive constants C2o and c21 independent of x and 6. 

Our final two Lemmas, 5.3 and 5.4, are the counterparts of Taylor's Lemma 15 
in the respective cases when k(cq + ~ 2 -  cq ~2) lies in the interval [cq, ~1 + c~2) and 
when it is in the interval (0, ~1). Once these lemmas are established the proof of 
our Theorem 4 can be completed according to the methods of Taylor's paper and 
we shall know the value of dim E k. 
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Lemma 5.3. Let r be a large positive integer, assume that k (~1 + a 2 -  ~a ~2) lies 
in the interval [~1, ~1 +~2) and suppose that for some e:>O: (e quite small) 

2 - 7 =  1 -~ ~1/~2 --k(CX 1 -t-~ 2 --(X 1 Cg2)/0~ 2 - -~ ( <  1). 

Form a grid of r ~1 r ~2 rectangles congruent to R(6) spaced according to cq and ct 2. 
Let 6 =c22 r-U, where 

,=(~1+~2)/ [k%+~2-~c~)+~2(2-  ~)3 (>1) 

and c22 > 0  will be chosen later. 
Let E~, l<_v<_r~lr ~2 be the event that there are time instants O<t~ <N, 

1 < tj - t~_ 1 < N (2 <j < k), and 0 < t k + 1 < N such that: 

X~,2(tk+l,co)eR ~ and X(tj, o))eR~ (l~<j=<k). 

Then c22 and c23 , positive and independent of r, can be chosen such that 

P [  ~=~=1E~] >c23 for all large r. 

(In the above, X~, 2 and X are assumed independent and defined on the same basic 
probability space, and N is chosen large enough to ensure that the required estimates 
are valid for each process.) 

Proof We first make four observations: 

(i) p > 1, so that the R (6) satisfy the spacing requirements: 

106~=lO(c~2r-~)~<=(L/r)~, i=1  and 2. 

(ii) The estimates for the capacity C (R (6)) of the R~ for the (X1, X2) process and 
C,(R(~)) for the X,, 2 process give: 

{C(R(6/)) 
(iii) If0 < 1 and r is a large positive integer, a positive constant cz4 (independent 

of r) exists such that: 
~, (1/j)O <=c2,~ r 1 -o. 

j=~ 
r ~  r~2 

(iv) P [ ~ I  E~] >r '~+'~P[E1]-~*  P[E~c~E~']-~** P [ E ~ E ~ J ' w h e r e ~ * *  

is taken over distinct v and v' for which the corresponding grid points x~ and x~, lie 
on the same vertical line, and X* is taken over all remaining pairs of distinct v and 
v'. Denote these sums by S** and S* respectively. 

Since the rectangles R~ satisfy the conditions of Lemma 5.2 we can use both 
parts of that lemma and (ii) above to write: 

r~+~PEE~q-s*>=c~-c~6r-~+~Z*{u(x~-~,,,)}~u~(x~-~,) (5.2) 

where the summation is over the pairs of distinct x~ and x~, which are not on the 
same vertical line. Moreover, 

S** _< c27 [C (R (6))] ~ C, (R (6)) E** { g ( x ~ -  x~,)}~ (5.3) 
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where the summation is over the x~ and xv, which lie on the same vertical line. Thus, 
in (5.3) we are bounding/*2 (of Lemma 5.2) above by 1 so that the estimate of (5.1) 
for Xy, 2 to hit R~ and R 2 each once is simply c C~ (R @5)). Failure to do this can result 
in a #2 estimate (for the X~, 2 process) which exceeds one. Our objective now is 
twofold: 

(a) To show that the summation (with we henceforth denote by 2*) in (5.2) is 
bounded above by c28 r 2(~1 +~2) for some c28> 0 which does not depend upon r and 
to then select c22 (in the formation of 6 =Czz r -u) so that the desired constant %3 
can be shown to exist. 

(b) To show that the bound upon S** goes to zero as r--+ + o0. 

Objective (b) is more easily accomplished than (a), so we do (b) first when 
k( ) ~ k ( ~  1 - ~ 2 - ~ 1  ~2)~(~1, (%1-~2) and then state how the case k( )=e l  can be 
handled. Under the first hypothesis we have: 

r~_l r~X_j 

E 2 
j= l  i=1 

r ~ 1 - 1  r ~ l - j  

<=cr-(~+~2)r(1-u)k()r ~2 ~ ~ i -a)/~ 
j= l  i=l 

<cr(~-~)k()--*O as r ~  since /~>1. 

When k( )=~1 the summation on i diverges (as r ~ )  to give a ~ ( r  ~ - j )  term 
and Stirling's formula can be used on the resulting f . ( r  ~ -  1)! factor to complete 
the proof of (b). 

We now consider the 2 "  factor of (5.2): 

E *<2r=*+~ E {U(x~--xO}kU,(x~--xO �9 
v > r ~ l  

Hence we can regard the grid G as being repositioned with its sides along the 
coordinate axes, x 1 at (0, 0) and x~, + ~2 at (/~2,/~,), and that we are required to sum 
{U(zv)} k U~(zv) over those v such that Z v -  x ~ - x  1 does not lie on the vertical (Y2) 
coordinate axis. In the first quadrant of the (Ya, Y2) plane the line Y2 =/~'  -'2 Yl and 
the curve Y2 --Yl intersect at (0, O) and (/~,/~) and divide the rectangle which 
forms the repositioned grid into three regions which we number (from bottom to 
top) by I, III and II respectively. Our sums over these regions will be denoted by 
S~, Sin, Sn and we will be finished once we show each sum bounded above by 
c r " + %  We now do this. 

Region I contains the yl coordinate axis, and along the vertical line through 
(j(L/r)'L 0) there are at most (j~/~2 + 1) grid points which lie in I, j --  1, 2 . . . . .  r% If 
we estimate U~(yl, Yz) by U~(y~, 0) in I we then have (we suppress the argument of 
U~ when it is the same as that of U): 

r~2 

SI~2 Z j  ='/=2 {U(j(L/r) ~2, 0)} k U,( , ) 
j= l  

re2 

< c  ?~)+,~(2-~) ~ (1/j)k~)/~+~2-~)-~/~<c r~ +~2 
j = l  

by using the defining relationship for (2 - 7) to justify use of observation (iii). 
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Region II contains the Y2 axis, and along the horizontal line through (0, j(L/r) ~') 
there are at most j  r ~2- ,1 grid points which lie in II, r ~1 - ~2 < j  < r% To see this, deter- 
mine the points of intersection of the grid lines with the line Y2 =/~-~2 Yl. If we 
estimate UT(yl, Y2) by UT(0, Y2) in II we then have: 

r~l 

SII'~ 2 J r~2-~ {U(O,j(L/r)~t)} g U,( , ) 

< c r "~- ~' + k~ )+ ~(2 - ~) ~ (1/j)k()/~1 + ~2 - 7)- 1 < C r "~ + ~ 
j= l  

by reasoning as before and using the fact that k( )> 71 . 

Region III is slightly more complicated. Along horizontal lines in III we 
estimate U(y I , Y2) by U(0, Y2) and U 7 (Yl, Yz) by U~ (Yl, 0). Hence 

rel ja2/~l 

SIII~- 2 2 {U(i(L/r)~,J(L/r)~)ff UT( , ) 
j = l  i=1 r-1 ja21eel 

<rk()+'z(2-" 2 (l/J) k()/~' 2 (1/i) 2-7<cr~'+~ 
j = l  i=1 

by noting that (2 - 7) < 1 and applying observation (iii) to both summations. 

Finally, note that a positive power of the constant c22 used to define ~ enters as 
a factor of the c25 in (5.2) and as a squared factor in c26. Hence the derived Cz3 can 
be found and Lemma 5.3 is proven. The conclusion of Theorem 4 when k( )~ 
[~1, cq + %) can now be established by using Taylor's argument (Section 7 of [12]) 
and noting the relationship between the two functions f ~ ( x ) = 2 - x / e  1 and 
f2(x)=l-bO~l/O~2--X/O~2 0 < X < ~  1 "/-~ 2 on the interval [~1, el-[-~2)" We now com- 
plete the proof of Theorem 4 by handling the case k ( )E (0, ~1) in our final lemma. 

Lemma 5.4. Let r be a large positive integer, assume that k( ) lies in the interval 
(0, %) and suppose that for some e >0: (e quite small) 

2 -  7 = 2 - k (  )/~1 - g  (>1). 

Form a grid of  r 2 squares of side 6 centered at the points of intersection of r equally 
spaced vertical lines along the I~ ~ side and r equally spaced horizontal lines along the 
IY* side of a rectangle of the type used in Lemma 5.3. Number the centers of the squares 
by columns starting from the lower left and let a=c29 r -v, where 

#=2cq/ [k(  )+e l  (2-7)  ] (>1) 

and C 2 9 > 0  will be chosen later. 

Let  Ev, 1 <-v<-r 2 be the event that there are time instants 0 < t  1 =<N, 

l < t j - t j _ l < N  (2< j<k) ,  

and 0<tk+ 1 < N such that 

XT(tk+l,co)eR ~ and X(tj ,(o)eR~ ( l < j < k ) .  

Then c29 and Cao, positive and independent of r, can be chosen such that 

r2 

for all large r. 
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Proof We again make some observations: 

(i ~ # > 1, so that the squares satisfy the requirements 

106 = 10(c29 r-~*)~Iffl/r,  i---= 1 and 2. 

(ii ~ [C(S(a))] k C~(S(6))~a k( )/~* + ( 2 - - y ,  

(iii ~ If 0 > 1 and r is a large positive integer, a positive constant c 31 (independent 
of r) exists such that: 

(1/j)o< ca 1 r 1-o. 
j = r  

y2 

ti ot whor  is 

taken over distinct v and v' for which the corresponding grid points x~ and x~, lie 
on the same horizontal line, and ~o is taken over all remaining pairs of distinct v 
and v'. Denote these sums by S ~176 and S ~ respectively. 

Now argue as in (5.2) to establish 

r2 p[E1] > ca2_caa r- 2 ~o { U(x _ x~,)}k U~(x,-  x,,) (5.2 ~ 

where the summation is over distinct x~ and x,, which are not on the same horizon- 
tal line. Moreover, 

s ~176 =< c3, [ c (s (a))] k [ G (s (a))] 2 Z ~ G (x~ - x~,) (5.3 o) 

where the summation is over distinct x~ and x~, on the same horizontal line. This 
time we are bounding #2 above by 1 so that the estimate of (5.1) for X(t) to hit R 1 
and R 2 k times apiece is simply c [C(S(6))] k. Again we have a twofold objective: 

(a ~ Show the summation (denoted by ~o) in (5.2 ~ is bounded above by c3s r 2 
and select c29 appropriately. 

(b ~ Show that the bound upon S ~176 goes to zero as r ~ + oo. 

First consider (b~ By (iii ~ above and (5.3 ~ we have: 

r - -1 r - - j  

S~176 ~ ~ U~((i U2/r, O)) 
j = l  i = 1  

<crt2-~)~x-u)~O as r ~  + ~  (since # > 1  and 2 - ~ > 1 ) .  

We now consider the ~o factor of (5.2~ 

y'o<=2r2X~,{U(xv-Xl)}kUv(Xv-Xl) (v:#jr+l ,  0 < j < r -  1). 

Reposition the grid as before, form the three regions I, III and II, and consider the 
sum of {U(G)} k Uv(G) for z, lying in these regions (denoted by S], S1~ and SI~ 
respectively). Once we show that each of these sums is bounded above by c r 2, the 
lemma (and hence the theorem) will be established. In regions I and II we use ob- 
servation (ii) of our previous lemma, while III requires (ii ~ of the present lemma. 
To use (ii) in I we also require the condition k( )<~, .  The desired bounds follow 
from: r 

S~ <= c r 1-~/~2 ~ j=*/~= {U((] I22/r, 0))} k U~(), 
j=l 

r 

S~l < c Y,J { U ((O, j l~'/r))} k G( ) ,  
j=l  
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and 
r 

SI~ ---~ 2 {U((iIs163 U~( , ) 
j=S i=j 

r r 
< rk( )/=~ +(2 -~) 2 (l/J) k( )/=' ~ (1/i)2-7 

j = l  i=j 

< rk( )/~ +(2 -~) ~ (1/j)k()/~, +(2 -- 7)- 1. 
j= l  

S e c t i o n  6: R e m a r k s  

(i) In [4] we have recently shown that for fixed Borel sets E c [0, 1] and for 
X(t) of the type being considered here we have (with probability one): 

X E ~'~1 d i m E  for 0_< dim E_< l/g 1 
dim ( )=  - - 

1 + c~ 2 dim E -  c~2/~ 1 for 1/a 1 < dim E < 1 

where X(E) denotes the set of points in R 2 hit at some time t ~ E. Intuitively, we can 
think of using up the X 1 component on sets E of small dimension (dim X s (E)= 
~1 dim E when dim E < 1/a s according to the results of Blumenthal and Getoor  [2] 
in the stable case) and then using up the X 2 component. 

Theorems 3 and 4 show us hat: 

dim Ek=~ 2 - k ( e s  -]-~2 --(ZI ~2)/CZI when 0 < k ( ~  1 " ~ 2  --~S (X2)< ~1 

1 + ~1/~2 - k (  )/e2 when el <k (  )<e l  +e2.  

For  stable processes X,, 2 of index ~>1  in the plane Taylor's result is: dim Ek= 
2--k  ( 2 -  ~). Thus, we are again led to think (intuitively) of successively using up the 
two components. In fact, this is what led to the discovery of our dim E k results. 

(ii) The proofs of our dimension theorems required considerable effort to 
uncover, and it did not seem possible to avoid using the two kinds of grids and 
rectangles. This is no doubt a reflection of some of the basic properties of the pro- 
cess. 

(iii) If we consider the quantity k (a 1 + e 2 - es e2) we can determine a maximum 
multiplicity possible. For  the processes being considered double points must 
exist, but it is possible (by choosing ~ and e 2 close to 1) that triple points do not 
exist. Moreover, given an integer k >2,  it is possible (by choosing a s and e 2 near 2 
for large k) to have points of multiplicity k but that (k + 1)-multiple points will fail 
to exist. 

(iv) The problem of multiple points in R 3 when one of the components is 
planar or if 3 independent one-dimensional components are present remains 
unsolved. Earlier work on these processes ([4, 6, 10]) suggests that the present 
case is the most interesting one, but Fristedt's [3] extension of Taylor's [12] 
result suggests that the problem may involve some detailed calculations. We 
conjecture that there are basically two cases to consider, depending upon whether 
~ > d  1 (dimension o f X  0 or a a < d  s. Taylor's work in the stable case ([12] and [13]) 
requires each of the stable components to be type A, and to have stable index 
greater than �89 when the component is linear. When e~ >d  I we suspect the results 
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to be identical to those obtained in the present paper. When el ____dl we predict 
that the behaviour of the process is similar to that of X 1. Analogous results in the 
cases cq > d 1 and el __< d~ were obtained in the previous studies. 

(v) The above conjecture has been found to be true for (X1, X2) in R 2 when 
� 8 9  1 <~1 and X 2 is type A (and in addition symmetric if c~2= 1). One must 
only check that the estimates of Lemma 3.1 for the kernel and of Lemma 3.2 for 
the capacity of the rectangles actually used in the argument hold. In Lemma 3.1 
we can estimate the kernel in the same way as before. The lower bound poses no 
difficulty, while the upper bound as done in Lemma 3.1 of [7] does seem to 
require e2 >�89 (which we assume anyway). In Lemma 3.2 we thus have the same 
upper bounds upon C(R~,b) as before. The lower bounds for C(R(~)) and C(S(g))) 
which are obtained by only assuming at > 1, namely c -1 b 1 -~2+~2/,1, are the same 
as the upper bounds for the capacity of these two types of rectangles. Hence it 
suffices in all of our theorems to allow �89 < c~ 2 __< 1 < el when the process is planar. 

This research was begun as a part of the author's doctoral dissertation under the direction of 
Professor W.E. Pruitt at the University of Minnesota. The original results were incomplete. Recent 
communications with Professor Pruitt and with S.J. Taylor of Westfield College have provided many 
helpful ideas in establishing the present results. The contributions of Professors Pruitt and Taylor 
to this work are gratefully acknowledged. 
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