Z. Wahrscheinlichkeitstheorie verw. Geb. 28, 99-112 (1974) © by Springer-Verlag 1974

A Representation for Invariant Measures for Transient Markov Chains

Richard L. Tweedie

§ 1. Introduction

Let P = (p(i, j)) be the matrix of transition probabilities of a temporally homogeneous Markov chain $\{X_n\}$, n=0, 1, 2, ..., on a countable state space \mathscr{S} indexed by the non-negative integers 0, 1, 2, ...

We write $P^n = (p^{(n)}(i, j))$ for the matrix of *n*-step transition probabilities

$$p^{(n)}(i,j) = Pr\{X_n = j | X_0 = i\}$$

of the chain $\{X_n\}$, and put $P^0 = (\delta_{ij})$. We shall assume that $\{X_n\}$ is *irreducible*: that is, for each pair (i, j) there exists n > 0 such that $p^{(n)}(i, j) > 0$.

Irreducibility is not critical for our results, and is mainly to ease notation: a vital assumption, which we shall always make, is that

 $\{X_n\}$ is a transient Markov chain.

In terms of transition probabilities, this means (Chung, 1967) that

$$\sum_{n} p^{(n)}(i,j) < \infty \quad \text{for each pair } (i,j).$$

We shall call a vector x = (x(j)) with $0 \le x(j) < \infty$ (j=0, 1, ...) and x(j) not identically zero, an *invariant measure for* P (or for $\{X_n\}$) if x(0)=1, and x satisfies the left invariant equations x = x P:

$$x = x P; \tag{1.1}$$

we shall call a vector y = (y(j)) with finite non-negative entries, not identically zero, subinvariant for P if y(0) = 1 and

$$y(j) \ge \sum_{k} y(k) p(k, j), \quad j \in \mathscr{S}.$$
(1.2)

The results we shall prove depend heavily on the following simple lemma.

Lemma A. Write $l^{(0)}(0, j) = 0$, and for $n \ge 1$,

$$l^{(n)}(0,j) = Pr\{X_n = j, X_r \neq 0 (r = 1, ..., n-1) | X_0 = 0\},\$$

and define the vector $L_0 = (L_0(j)) by$

$$L_0(0) = 1,$$

 $L_0(j) = \sum_{n=0}^{\infty} l^{(n)}(0, j), \quad j = 1, 2, \dots.$

Then $L_0(j)$ is finite for each j, and L_0 satisfies

$$L_0(0) > \sum_k L_0(k) p(k, 0) = \sum_n l^{(n)}(0, 0) = F_{00}, \qquad (1.3)$$

$$L_0(j) = \sum_k L_0(k) p(k, j), \quad j \neq 0,$$
(1.4)

so that L_0 is strictly subinvariant for P. Moreover, if y is any other subinvariant measure for P, $y(j) \ge L_0(j), \quad j \in \mathcal{S}$

so that L_0 is the minimal subinvariant measure for P.

This lemma remains true even if P is substochastic. Proofs of these results are by now well-known (cf. Vere-Jones, 1967). When $\{X_n\}$ is non-transient, the vector L_0 defined above satisfies (1.3) with equality, and it can then be shown that there is a unique solution to (1.2) which in fact satisfies (1.1), in the recurrent case; hence our assumption of transience. Note that each $L_0(j)$ is finite.

Now define the matrix $P_n = (p_n(i, j))$ by

$$p_n(i,j) = \begin{cases} p(i,j) & (i,j \ge n), \\ 0, & \text{otherwise.} \end{cases}$$

We shall call P_n the *n*-th diagonal submatrix of *P*. It is formed from *P* merely by omitting the first *n* rows and columns of *P*. Since *P* is irreducible, the diagonal submatrices of *P* are strictly substochastic (that is, have at least one row sum strictly less than unity), and in general they will not be irreducible. We shall call a vector $x_n = (x_n(j))$ with finite non-negative entries, *invariant for* P_n if x_n satisfies

$$x_n(j) = 0$$
 $(j = 0, 1, ..., n-1),$
 $x_n(j) = \sum_k x_n(k) p_n(k, j)$ $(j \ge n),$

and $x_n(\alpha) > 0$ for some $\alpha \ge n$. Since P_n may be reducible, we can no longer demand that $x_n(n) = 1$, since $x_n(n)$ may be zero; to avoid ambiguity, we shall further require that $x_n(\alpha(n)) = 1$

where

$$\alpha(n) = \min\{j \ge n \colon x_n(j) > 0\}.$$

(This difficulty does not arise when n=0, because if x is invariant for P then we can show that x(j)>0 for all j.)

Of course, if x_n is invariant for P_n , it is also invariant for $P_{n+1}, \ldots, P_{\alpha(n)}$.

In this paper we shall show that P possesses an invariant measure if and only if the diagonal submatrices of P all possess invariant measures of a particular kind, and further that if two transition matrices P and P' share a diagonal submatrix, then there is a 1:1 correspondence between their invariant measures.

We shall then derive a representation for invariant measures in terms of taboo probabilities. It follows that there exists an invariant measure for P if and only if a certain set of auxiliary equations are satisfied.

A Representation for Invariant Measures for Transient Markov Chains

§2. The Diagonal Submatrices of P

Theorem 1. If P is transient, a necessary and sufficient condition for the existence of an invariant measure x for P is the existence of an invariant measure x_1 for P_1 such that ∞

$$N_0(x_1) = \sum_{j=0}^{\infty} x_1(j) \, p(j,0) < \infty.$$
(2.1)

The equations

$$x_1 = [x - L_0]/c_0(x), \qquad (2.2)$$

$$x = \frac{1 - F_{00}}{N_0(x_1)} x_1 + L_0 \tag{2.3}$$

with L_0 and F_{00} as defined in Lemma A and

$$c_0(x) = x(\alpha) - L_0(\alpha),$$
 (2.4)

where

$$\alpha = \min(j: x(j) - L_0(j) > 0),$$

set up a 1:1 correspondence between the *P*-invariant measures x and those P_1 -invariant measures x_1 for which $N_0(x_1) < \infty$.

Proof. (i) Suppose that x is P-invariant. From Lemma A, we have $x(j) \ge L_0(j)$ (j=0, 1, ...), and since x is P-invariant whilst L_0 is not, this is a strict inequality for some j; thus $c_0(x)$ is well defined by (2.4), and is positive. Define x_1 by (2.2); by definition $x_1(0)=0$, and $x_1(\alpha)=1$ where $\alpha = \min(j: x_1(j)>0)$. For $j \neq 0$, from (1.4),

$$\begin{split} x_1(j) &= [x(j) - L_0(j)]/c_0(x) \\ &= [\sum_{k \ge 0} x(k) \, p(k, j) - \sum_{k \ge 0} L_0(k) \, p(k, j)]/c_0(x) \\ &= \sum_{k \ge 1} x_1(k) \, p(k, j). \end{split}$$

Hence x_1 is P_1 -invariant. The quantity $N_0(x_1)$, when x_1 is given by (2.2), is

$$\begin{split} N_0(x_1) &= \sum_{0}^{\infty} x_1(j) \, p(j,0) \\ &= \left[\sum_{0}^{\infty} x(j) \, p(j,0) - \sum_{0}^{\infty} L_0(j) \, p(j,0) \right] \Big/ c_0(x) \\ &= [1 - F_{0,0}] / c_0(x), \end{split}$$

and so (2.1) holds, and indeed $N_0(x_1) > 0$. Thus (2.2) is a map from the set of *P*-invariant measures into the set of *P*₁-invariant measures satisfying (2.1). This map is 1:1, for if

$$[x(j) - L_0(j)]/c_0(x) = [\tilde{x}(j) - L_0(j)]/c_0(\tilde{x}),$$

then either $c_0(x) = c_0(\tilde{x})$, whence $x = \tilde{x}$; or $c_0(x) \neq c_0(\tilde{x})$, and, assuming without loss of generality $c_0(x) < c_0(\tilde{x})$, we have

$$x(j) - \tilde{x}(j) \frac{c_0(x)}{c_0(\tilde{x})} = L_0(j) [1 - c_0(x)/c_0(\tilde{x})].$$
(2.5)

8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 28

But the right hand side of (2.5) satisfies (1.2) with strict inequality at j=0, whilst the left hand side satisfies (1.2) with equality for all j if x, \tilde{x} are *P*-invariant. Thus we have a contradiction, and $x = \tilde{x}$.

(ii) Suppose now that x_1 is P_1 -invariant, and satisfies (2.1). Let $\alpha \ge 1$ be the first state such that $x_1(\alpha) > 0$. Since P is irreducible, there exists n > 0 such that

$$p_{0}p^{(n)}(\alpha, 0) = Pr\{X_{n}=0, X_{r} \neq 0 (r=1, ..., n-1) | X_{0}=\alpha\} > 0,$$

and since x_1 is P_1 -invariant,

$$\sum_{1}^{\infty} x_{1}(k) p(k, 0) = \sum_{k=1}^{\infty} \left[\sum_{j=1}^{\infty} x_{1}(j) p_{1}^{(n-1)}(j, k) \right] p(k, 0)$$
$$= \sum_{1}^{\infty} x_{1}(j) p^{(n)}(j, 0)$$
$$> x_{1}(\alpha) p^{(n)}(\alpha, 0)$$
$$> 0.$$

Hence $N_0(x_1)$ is positive, and we can define x (finite and non-negative) by (2.3). Since $x_1(0)=0, x(0)=L_0(0)=1$, and for $j \neq 0$,

$$\begin{aligned} x(j) &= \frac{1 - F_{00}}{N_0(x_1)} x_1(j) + L_0(j) \\ &= \frac{1 - F_{00}}{N_0(x_1)} \sum_{k=0}^{\infty} x_1(k) p(k,j) + \sum_{k=0}^{\infty} L_0(k) p(k,j) \\ &= \sum_{k=0}^{\infty} x(k) p(k,j). \end{aligned}$$

For j = 0,

$$\sum_{k=0}^{\infty} x(k) p(k,0) = \frac{1 - F_{00}}{N_0(x_1)} \sum_{k=0}^{\infty} x_1(k) p(k,0) + \sum_{k=0}^{\infty} L_0(k) p(k,0)$$
$$= \frac{1 - F_{00}}{N_0(x_1)} N_0(x_1) + F_{00}$$
$$= 1 = x(0)$$

and so x is P-invariant.

The mappings (2.2) and (2.3) are mutually inverse, since if x is *P*-invariant, defining x_1 from x by (2.2) and \tilde{x} from x_1 by (2.3) gives, from the definition of N_0 in (2.1),

$$\tilde{x} = \frac{1 - F_{00}}{N_0 ([x - L_0]/c_0(x))} \frac{x - L_0}{c_0(x)} + L_0 = x;$$

whilst defining \tilde{x}_1 from x_1 via (2.3) and (2.2) gives

$$\tilde{x}_{1} = \left[\frac{1 - F_{00}}{N_{0}(x_{1})} x_{1} + L_{0} - L_{0}\right] / c_{0} \left(\frac{1 - F_{00}}{N_{0}(x_{1})} x_{1} + L_{0}\right)$$
$$= x_{1},$$

A Representation for Invariant Measures for Transient Markov Chains

since

$$\alpha = \min\left(j: \frac{1 - F_{00}}{N_0(x_1)} x_1(j) + L_0(j) - L_0(j) > 0\right)$$

= min(j: x_1(j) > 0)

and for this α , $x_1(\alpha) = 1$ by definition.

*Example 1*¹. Let P be the transition matrix of a renewing transient branching process; that is, $\sum_{n=1}^{\infty} (\sum_{i=1}^{n} (1 + 1))$

$$p_{0j} = \gamma_j, \quad (\sum_j \gamma_j = 1, \gamma_0 \neq 1),$$

and

$$\sum_{j} p_{ij} z^{j} = [f(z)]^{i} \quad (i = 1, 2, ..., |z| \le 1),$$

where f(z) is a probability-generating function. Such a process corresponds to an ordinary branching process with the exception that, when state 0 is reached, it is restarted with probability γ_j of being in state j on the next "run". This process is clearly transient if and only if m = f'(1-) > 1 (cf. Harris, 1963), and one may apply a result of Kingman (1965) to show that P must have an invariant measure but that this may be non-unique.

The condition (2.1) is non-trivial (although in Example 1 it is always satisfied for invariant measures for P_1). The next example exhibits a matrix P such that the first diagonal submatrix admits an invariant measure, but P itself does not, because (2.1) fails.

Example 2. From Vere-Jones ((1967), Theorem 5.1), we have that if x satisfies

$$x(j) \leq \sum_{k} x(k) p(k, j)$$
(2.6)

and y satisfies

$$y(j) \ge \sum_{k} p(j,k) y(k), \qquad (2.7)$$

and P is transient, then (provided neither x nor y is identically zero)

$$\sum x(k) y(k) = \infty$$
.

If x_1 is invariant for P_1 , then x_1 satisfies (2.6); the vector y(k) = p(k, 0) satisfies (2.7) if and only if

$$p(j, 0) \ge p^{(2)}(j, 0)$$
 $(j = 0, 1, 2, ...)$

Hence any transient P such that this holds and P_1 admits an invariant measure provides an example where (2.1) is false. Such a matrix is

$$P = \begin{pmatrix} \frac{1}{8} & \frac{7}{8} & 0 & 0 & \dots \\ \frac{1}{8} & \frac{5}{8} & \frac{1}{4} & 0 & \dots \\ \frac{1}{16} & \frac{1}{16} & \frac{5}{8} & \frac{1}{4} & 0 & \dots \\ \frac{1}{32} & 0 & \frac{1}{32} & \frac{11}{16} & \frac{1}{4} & 0 & \dots \\ \dots & \dots & \dots & \dots \\ \frac{1}{2^{i+2}} & 0 & \dots & 0 & \frac{1}{2^{i+2}} & \frac{2^{i+2}-2^{i}-2}{2^{i+2}} & \frac{1}{4} & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}.$$

¹ This result has been derived independently, using special properties of branching processes, by Seneta (1974), who also shows that P possesses a unique invariant measure satisfying a certain regular variation criterion.

Example 3. Let P be the transition matrix of a renewal process,

$$P = \begin{pmatrix} f_0 & 1 - f_0 & 0 & 0 & 0 & \dots \\ f_1 & 0 & 1 - f_1 & 0 & 0 & \dots \\ f_2 & 0 & 0 & 1 - f_2 & 0 & \dots \\ f_3 & 0 & 0 & 0 & 1 - f_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{pmatrix}$$

Derman (1955) showed by direct calculation that such a matrix has no invariant measure when transient; this result follows trivially from Theorem 1, since the only solution to $x_1 = x_1 P_1$

is

 $x_1(j) \equiv 0$.

We can iterate Theorem 1 for the set of diagonal submatrices of P to find

Theorem 2. If P is a transient transition matrix, then a necessary and sufficient condition for the existence of an invariant measure x for P is the existence of an invariant measure x_n for some one diagonal submatrix P_n satisfying

$$N_{\kappa}(x_n) = \sum_k x_n(k) \, p(k, \kappa) < \infty \qquad (\kappa = 0, 1, \dots, n-1).$$
(2.8)

If such a measure x_n exists, then for every $m \ge 0$ there is an invariant measure x_m for P_m satisfying the κ -th assertion in (2.8) for each $\kappa < m$. To each x_n invariant for P_n and satisfying (2.8), there corresponds biuniquely an x_m invariant for P_m with $N_{\kappa}(x_m) < \infty$ for each $\kappa < m$.

Proof. We define a sequence of measures $L_n = (L_n(j))$ (each $L_n(j)$ finite and non-negative) by

$$L_{n}(j) = \begin{cases} 0 & (j < n), \\ 1 & (j = n), \\ \sum_{r=0}^{\infty} [n]^{l^{(r)}}(n, j) & (j > n), \end{cases}$$
(2.9)

where $_{[n]}l^{(0)}(n,j)=0$ and for $r \ge 1$,

 $[n]^{l^{(r)}}(n,j) = Pr\{X_r = j, X_s \notin \{0, 1, \dots, n\} (s = 1, \dots, r-1) | X_0 = n\}.$

Now suppose x is invariant for P. Then from Theorem 1, there exists x_1 invariant for P_1 . Suppose that $\alpha \ge 1$ is the first α such that $x_1(\alpha) > 0$. Then x_1 is also invariant for $P_1, P_2, \ldots, P_{\alpha}$. For P_{α} , the measure L_{α} is the minimal subinvariant measure, from Lemma A; the measure $x_{\alpha+1}$ defined by

$$x_{\alpha+1}(j) = x_1(j) - L_{\alpha}(j)$$

must then, as in Theorem 1, be invariant for $P_{\alpha+1}$ when normalised as usual to be unity at its first non-zero component. One can in this manner construct a sequence of measures x_n invariant for P_n by putting inductively

$$x_{n+1} = x_n$$
, when $x_n(n) = 0$,
 $x_{n+1} = [x_n - L_n]/c_n(x_n)$ when $x_n(n) > 0$,

where

$$c_n(x_n) = x_n(\alpha(n)) - L_n(\alpha(n))$$

and

$$\alpha(n) = \min(j: x_n(j) - L_n(j) > 0).$$

Since $x_n(j) \leq c x(j)$ for each *j*, where $c = \prod_{r=0}^{n-1} c_r$ and $c_r = 1$ or $1/c_r(x_r)$, it follows that $N_{\kappa}(x_n) \leq c N_{\kappa}(x) = c x(\kappa) < \infty$ ($\kappa = 0, 1, ..., n-1$). By this construction, distinct invariant measures for *P* lead to distinct invariant measures satisfying (2.8) for P_n , for each value of *n*.

Now suppose that x_{n+1} satisfies the κ -th assertion in (2.8) for $\kappa \leq n$, and is invariant for P_{n+1} ; as in Theorem 1, we show that there is an invariant measure x_n for P_n which satisfies the κ -th assertion in (2.8) for $\kappa \leq n-1$ (i.e. (2.8) as it stands).

This is trivially true if x_{n+1} itself is invariant for P_n ; and if x_{n+1} is not invariant for P_n , we must have

$$0 = x_{n+1}(n) + \sum_{\beta \ge n+1} x_{n+1}(\beta) p(\beta, n) < \infty,$$

and so there must exist $\beta > n$ such that $x_{n+1}(\beta) > 0$ and $p(\beta, n) > 0$.

Define $\phi_{nn} = \sum_{r=0}^{\infty} \sum_{n=1}^{\infty} l^{(r)}(n, n) \leq Pr\{\text{the chain } \{X_k\} \text{ ever returns to } n | X_0 = n\} < 1,$ and put $x_n = \frac{1 - \phi_{nn}}{N(x_{n-1})} x_{n+1} + L_n;$

this is well defined and finite and non-negative since $\infty > N_n(x_{n+1}) > x_{n+1}(\beta) p(\beta, n)$. To check P_n -invariance it suffices to look at

$$\sum_{j \ge n} x_n(j) p(j,n) = \frac{1 - \phi_{nn}}{N_n(x_{n+1})} \sum_{j \ge n} x_{n+1}(j) p(j,n) + \sum_{j \ge n} L_n(j) p(j,n)$$
$$= \frac{1 - \phi_{nn}}{N_n(x_{n+1})} N_n(x_{n+1}) + \phi_{nn}$$
$$= 1 = x_n(n).$$

Moreover, for $\kappa < n$, writing $\gamma = [1 - \phi_{nn}] / N_n(x_{n+1})$,

$$\sum_{k \ge n} x_n(k) p(k, \kappa) = \sum_{k \ge n} [L_n(k) + \gamma x_{n+1}(k)] p(k, \kappa)$$

= $p(n, \kappa) + \sum_{k > n} (\sum_r [n]^{l(r)}(n, k) p(k, \kappa)) + \gamma \sum_{k \ge n+1} x_{n+1}(k) p(k, \kappa)$

and since the third of these terms is finite for all $\kappa < n+1$ by hypothesis, and the second is bounded by

$$\sum_{r} Pr\{X_{r} = \kappa, X_{s} \notin \{0, 1, \dots, n\} (s = 1, \dots, r-1) | X_{0} = n\},\$$

which is finite for all κ , x_n satisfies (2.8).

By iterating this construction, one obtains an invariant measure for P, and then on applying the first part of the theorem, one obtains invariant measures x_m

satisfying the appropriate finiteness conditions for each diagonal submatrix P_m ; since distinct invariant measures for P_n lead to distinct invariant measures for P, and conversely, in the above constructions, the theorem is proved.

Example 2 shows that a chain whose diagonal submatrix admits an invariant measure may not have an invariant measure itself. However, from Theorem 2 it is simple to prove

Theorem 3. Suppose P and P' are transient transition matrices which share a diagonal submatrix; that is $P_n = P'_m$ for some n, m. Then P has an invariant measure if and only if P' has, and there is a 1:1 correspondence between their invariant measures.

Proof. If P has an invariant measure, then from the necessity part of Theorem 2, there exists x_n such that $x_n = x_n P_n$, and

$$\sum_{\kappa=0}^{n-1}\sum_{k}x_{n}(k)\,p(k,\kappa)<\infty.$$

Put $x'_m(j) = x_n(j+n-m)$, for $j \ge m$, and elsewhere let $x'_m(j) = 0$, so that x'_m is P'_m -invariant; we wish to show that for $\kappa < m$, $\sum_k x'_m(k) p'(k, \kappa) < \infty$. It is certainly enough to show that $\sum_{\kappa < m} \sum_k x'_m(k) p'(k, \kappa)$ is finite. Since $x'_m(k) = 0$ for k < m, this sum equals

$$\sum_{\kappa < m} \sum_{k \ge m} x'_m(k) p'(k, \kappa) = \sum_{k \ge m} x'_m(k) \left[\sum_{\kappa < m} p'(k, \kappa) \right],$$

which in turn is equal to

$$\sum_{h\geq n} x_n(h) \Big[\sum_{\kappa < n} p(h, \kappa) \Big] < \infty,$$

because for $k \ge m$ we have

$$\sum_{\kappa=0}^{m-1} p'(k,\kappa) = 1 - \sum_{\kappa} p'_m(k,\kappa)$$
$$= 1 - \sum_{\kappa} p_n(k+n-m,\kappa)$$
$$= \sum_{\kappa=0}^{n-1} p(k+n-m,\kappa).$$

Hence x'_m satisfies the *m*-fold analogue of (2.8) for P'.

From the sufficiency part of Theorem 2, there is then an invariant measure for P'. The 1:1 correspondence of measures for P and P' comes from the correspondence between measures for P(P') and $P_n(P'_m)$.

We have concentrated on proving results for the diagonal submatrices of P. However, by rearranging rows and columns, it is easy to see that, if $P(j_1, \ldots, j_n)$ is any square submatrix of P, obtained by removing the elements of the rows and columns corresponding to any n states j_1, \ldots, j_n , there exists an invariant vector for P if and only if there exists an invariant vector x for $P(j_1, j_2, \ldots, j_n)$ satisfying

$$\sum_{k} x(k) p(k, j_{\kappa}) < \infty$$

for each $\kappa = 1, \ldots, n$.

A Representation for Invariant Measures for Transient Markov Chains

§3. The Representation of Invariant Measures

Theorem 4. If *P* is transient, a necessary and sufficient condition for the existence of an invariant measure for *P* is the existence of a sequence of non-negative constants $\beta_0 = 1, \beta_1, \beta_2, ...,$ not necessarily all positive, such that

$$x^{\beta} = \sum_{0}^{\infty} \beta_k L_k \tag{3.1}$$

has finite components and is invariant for P; indeed every invariant measure can be written uniquely in the form (3.1) for some sequence $\{\beta_k\}$. If x^{β} is invariant for P and has the canonical representation (3.1), then the corresponding invariant measure x_n^{β} for the n-th diagonal submatrix P_n , whose existence was established in Theorem 2, is

$$x_n^{\beta} = c_n \sum_{k=n}^{\infty} \beta_k L_k,$$

where $c_n = [\beta_{\alpha(n)}]^{-1}$ and $\alpha(n) = \min(j \ge n : \beta_j > 0)$.

Proof. The sufficiency is trivial. Suppose x is P-invariant; from (2.2), there is a P_1 -invariant measure x_1 and a non-negative constant η_1 such that

$$x(j) = L_0(j) + \eta_1 x_1(j). \tag{3.2}$$

If $\alpha(1) = \min(j \ge 1: x_1(j) > 0)$, we again have, as in the proof of Theorem 2, that for some $x_{\alpha(1)+1}$ which is invariant for $P_{\alpha(1)+1}$,

$$x_{1}(j) = L_{\alpha(1)}(j) + \eta_{\alpha(1)+1} x_{\alpha(1)+1}(j), \qquad (3.3)$$

where $\eta_{\alpha(1)+1}$ is again a non-negative normalising constant. Putting (3.3) into (3.2) we can write

$$x(j) = L_0(j) + \sum_{1}^{\alpha(k)} \beta_k L_k(j) + \eta_1 \eta_{\alpha(1)+1} x_{\alpha(1)+1}(j) \quad (j = 0, 1, ...),$$

where $\beta_k = \eta_1$ if $k = \alpha(1)$ and 0 if $0 < k < \alpha(1)$. Iterating this procedure *m* times will give us

$$x(j) = \sum_{0}^{\alpha(m)} \beta_k L_k(j) + \eta_1 \eta_{\alpha(1)+1} \dots \eta_{\alpha(m)+1} x_{\alpha(m)+1}(j)$$
(3.4)

where $x_{\alpha(m)+1}$ is invariant for $P_{\alpha(m)+1}$ and

$$\beta_k = \eta_1 \eta_{\alpha(1)+1} \dots \eta_{\alpha(r)+1}$$
 if $k = \alpha(r)$ and $\beta_k = 0$ if $\alpha(r) < k < \alpha(r+1)$,

 $r=1,\ldots,\alpha(m)$. Of course the analogue of (2.8) will hold for $x_{\alpha(m)+1}$.

But for each k, by definition $L_k(j) = 0$ when j < k; applying this to (3.4) for fixed j, we must have a terminating sequence of no more than j+1 terms, and we can write (3.4) as

$$x(j) = \sum_{k \le j} \beta_k L_k(j)$$
(3.5)

where the β_k are given (uniquely, because of the unique correspondence between P_n -invariant and P_m -invariant measures of Theorem 2) as above. Thus x has the form (3.1), as claimed. Comparing this construction with that in Theorem 2 proves the statement regarding the form of the P_n -invariant measure corresponding to x.

We now investigate conditions on a sequence β of non-negative numbers which will make (3.1) a *P*-invariant measure. Extending the definition of ϕ_{nn} , we write

$$\phi(n, i) = \begin{cases} \sum_{m=0}^{\infty} [n]^{l(m)}(n, i) & (i \leq n), \\ 0 & \text{otherwise} \end{cases}$$

Now suppose that x^{β} given by (3.1) is to be invariant for P; this is equivalent to

$$\sum_{k=0}^{\infty} \beta_k L_k(j) = \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \beta_k L_k(i) p(i,j), \qquad (3.6)$$

for every $j = 0, 1, \dots$ Using the definition of $L_k(i)$ and $\phi(k, i)$, we have

$$\sum_{i=0}^{\infty} L_{k}(i) p(i,j) = p(k,j) + \sum_{i=k+1}^{\infty} \left(\sum_{r=0}^{\infty} {}_{[k]} l^{(r)}(k,i) \right) p(i,j)$$

$$= p(k,j) + \sum_{r=1}^{\infty} {}_{[k]} l^{(r+1)}(k,j)$$

$$= \sum_{r=0}^{\infty} {}_{[k]} l^{(r)}(k,j),$$
(3.7)

and the right hand side of (3.7) is $L_k(j)$ if j > k, and $\phi(k, j)$ if $j \le k$. Hence the right hand side of (3.6) is

$$\sum_{k} \beta_{k} \left(\sum_{0}^{\infty} {}_{[k]} l^{(r)}(k,j) \right) = \sum_{k=0}^{j-1} \beta_{k} L_{k}(j) + \sum_{k=j}^{\infty} \beta_{k} \phi(k,j)$$

so that $\{\beta_k\}$ satisfies (3.6) if and only if

$$\sum_{k=j}^{\infty} \beta_k L_k(j) = \sum_{k=j}^{\infty} \beta_k \phi(k, j) \quad (j \in \mathscr{S}).$$
(3.8)

But as in (3.4), $L_k(j) = 0$, k > j; and $L_i(j) = 1$. Thus (3.8) is in fact

$$\beta_j = \sum_{k=j}^{\infty} \beta_k \phi(k,j) \quad (j \in \mathscr{S}).$$

Denote by Φ the triangular matrix whose elements are $\phi(k, j)$. We have proved

Theorem 5. If P is transient, there is a non-negative finite solution x to x = xP, x(0)=1, if and only if there is a non-negative finite solution $\beta = (\beta_k)$ with $\beta_0 = 1$ to

$$\beta = \beta \Phi;$$

that is, if and only if there exists a sequence of non-negative finite numbers $\beta_0 = 1, \beta_1, \beta_2, \dots$ satisfying

$$\beta_j = \sum_{k \ge j} \beta_k \phi(k, j) \quad (j \in \mathscr{S}).$$
(3.9)

There is a 1:1 convex-linear correspondence between the allowed solutions of (3.9) and the allowed solutions of (1.1), given by (3.1) (or equivalently (3.5)).

Let us call a set of states $\{k_0, k_1, ...\}$ a simple path from infinity if all the states k_i are distinct and if, for each *i*, $p(k_{i+1}, k_i) > 0$. Harris (1957) showed that a necessary condition for the existence of a *P*-invariant measure for transient *P* is the existence of a simple path from infinity. Harris' result can be derived from Theorem 5 as follows. The matrix Φ need not be irreducible, and if it is not, in general solutions to (3.9) will have some of the coefficients $\beta_j=0$, as has already been mentioned. However, since L_k is not invariant for P_k for any k, x^{β} defined by (3.1) can be *P*-invariant only if $\beta = (\beta_k)$ is an infinite vector. Suppose x^{β} is *P*-invariant, and let $K = \{k: \beta_k > 0\}$; we can write (3.9) as

$$\beta_k = \sum_{j \in K} \beta_j \phi(j, k) \quad (k = 0, 1, 2, ...),$$
(3.10)

and since $\beta_k = 0$ for $k \notin K$, this shows that K is a closed class under Φ . Since $\phi(j, k) = 0$ for j < k, and $\phi(j, j) < 1$, (3.10) also shows that for any $k \in K$ there exists in K a j > k such that $\phi(j, k) > 0$, which in turn implies that there is a state $k_1 \ge j > k$ such that $p(k_1, k) > 0$. Since K is closed, k_1 is again in K, and by repeating this procedure, we see that, because K is infinite, we can construct a simple path from infinity.

Example 4. Given a probability distribution $\{c_i, i = ... - 2, -1, 0, 1, 2, ...\}$ on the integers, define the transition matrix of *random walk with boundaries near zero* by

$$P = \begin{pmatrix} p(0,0) & p(0,1) \dots p(0,\alpha) & p(0,\alpha+1) & p(0,\alpha+2) \\ p(1,0) & p(1,1) \dots p(1,\alpha) & p(1,\alpha+1) & p(1,\alpha+2) & \dots \\ & & & & \\ p(\alpha,0) & p(\alpha,1) \dots p(\alpha,\alpha) & p(\alpha,\alpha+1) & p(\alpha,\alpha+2) & \dots \\ p(\alpha+1,0) & p(\alpha+1,\alpha) & c_0 & c_1 & c_2 & \dots \\ p(\alpha+2,0) & p(\alpha+2,1) \dots p(\alpha+2,\alpha) & c_{-1} & c_0 & c_1 & \dots \\ & & & \vdots & & \vdots & c_{-2} & c_{-1} & c_0 & \dots \end{pmatrix}$$
(3.11)

so that $p(j,k) = c_{k-j}$ for both j and $k > \alpha$, whilst the first α rows and columns are arbitrary, subject only to the conditions

$$\sum_{k} p(j,k) = 1 \qquad (j=0,1,\ldots,\alpha),$$
$$\sum_{0}^{\alpha} p(j,k) = \sum_{-\infty}^{\alpha-j} c_{i} \qquad (j>\alpha).$$

This transition matrix occurs naturally in the context of embedded Markov chains for queueing processes (cf. Miller, 1965).

If P is transient, it follows from the above theorems that there will be a solution to x = xP if and only if there is a solution to $x_{\alpha} = x_{\alpha}P_{\alpha}$, where $P_{\alpha}(i, j) = c_{j-i}(i, j = 1, 2, ...)$, such that

$$\sum_{j} x_{\alpha}(j) \left(\sum_{-\infty}^{-J} c_{j} \right) < \infty.$$
(3.12)

(This finiteness condition corresponds to (2.8) summed over κ .) It is proved in Tweedie (1971), that such a solution x_{α} exists if and only if there is a positive real

number $\beta < 1$ such that

$$\sum_{-\infty}^{\infty} c_j \beta^j = 1.$$
(3.13)

Hence the existence of such a root is also necessary and sufficient for the existence of an invariant measure for P given by (3.11), since it is shown in the above paper that when such a root exists, the unique solution x_a of $x_a = x_a P_a$ satisfies (3.12).

The method used in Tweedie (1971) is that of finding the form (3.1) for invariant measures in the special case of random walk on a half line, and then solving (3.9) for this case. This provides an example where the equation $\beta = \beta \Phi$ is rather easier to solve than the original invariant equations; the unique solution when (3.13) holds is given by $\beta_i = \beta^{-j}, j \ge \alpha$.

Example 5. It is possible to construct an irreducible transition matrix P with any desired number of invariant measures using the results of this section. One may utilise the result of the previous example, say, and construct d random walks on the half lattices r + dj (j = 1, 2, ...; r = 1, ..., d) each of which has

$$p(r+dj, r+dk) = c_{k-j},$$
$$p(r+dj, 0) = \sum_{-\infty}^{-j} c_k,$$

for some probability distribution satisfying (3.13); one thus generates d different invariant measures for P, each with a corresponding vector β concentrated on a different lattice.

§4. Non-Negative Matrices

Many of the properties of transition matrices carry over to arbitrary nonnegative matrices, and the above work is not exceptional. We sketch some of these results; the proofs are identical with those for transition matrices.

Let T = (t(i, j)) be a matrix with non-negative terms, and with finite iterates $T^n = (t^{(n)}(i, j))$. The more usual problem here is to consider the equation

$$x = r x T \tag{4.1}$$

for real non-negative r; results on these equations can be found in Vere-Jones (1967). We assume T is irreducible and *r*-transient; that is, for all (i, j),

$$\sum_n t^{(n)}(i,j) r^n < \infty.$$

We define the vectors L_n , n=0, 1, ... by

$$E_{n}(j) = \begin{cases} 0 & (j < n), \\ 1 & (j = n), \\ \sum_{k=0}^{\infty} [n]^{l^{(k)}}(n, j) r^{k} & (j > n), \end{cases}$$

where $_{[n]}l^{(k)}(n, j)$ is zero for k = 0 and is defined iteratively for $k \ge 1$ by

$$[n]^{l^{(1)}}(n,j) = t(n,j)$$
$$[n]^{l^{(k+1)}}(n,j) = \sum_{i>n} [n]^{l^{(k)}}(n,i) t(i,j).$$

The vectors L_n play the same role in the theory of *r*-invariant measures (solutions to (4.1)) as do the vectors L_n , similarly defined, in the theory of invariant measures: this is because (Vere-Jones, 1967) they are the minimal *r*-subinvariant vectors for the diagonal submatrices of *T*.

Defining the matrix $\Phi^{(r)} = (\phi^{(r)}(i, j))$ by

$$\phi^{(r)}(i,j) = \begin{cases} 0 & (j>i) \\ \sum_{k=0}^{\infty} [i]^{l^{(k)}}(i,j) r^k & (j \le i), \end{cases}$$
(4.2)

we have

Theorem 6. (i) There is a non-negative solution $x^{(r)}$ to the r-invariant equations (4.1) if and only if there are non-negative solutions $x_n^{(r)}$ to the r-invariant equations

$$x_n^{(r)} = r x_n^{(r)} T_n$$

for each diagonal submatrix T_n of T, such that

$$\sum_{i} x_n^{(r)}(j) t(j,\kappa) < \infty \qquad (\kappa = 0, 1, \dots, n-1).$$

(ii) There is a solution $x^{(r)}$ to (4.1) if and only if there is a solution $\beta^{(r)} = (\beta_i^{(r)})$ to

$$\beta^{(r)} = r \beta^{(r)} \Phi^{(r)} \tag{4.3}$$

where $\Phi^{(r)}$ is defined by (4.2). Solutions of (4.1) and (4.3) are in 1:1 correspondence, and are related by

$$x^{(r)}(j) = \sum_{k=0}^{J} \beta_k^{(r)} L_k^{(r)}(j).$$

The only one of Theorems 1–5 whose analogue does not hold is Theorem 3: for non-negative matrices, the existence of r-invariant measures is not governed entirely by the behaviour in the tail: the behaviour of individual columns can also affect this existence. Our final example demonstrates this.

Example 6. Let P be as in Example 2, and let x_1 be the invariant measure for P_1 . Define T by

$$T = \begin{pmatrix} \frac{1}{8} \vdots \frac{7}{8} & 0 & 0 & \dots \\ \dots & \dots & \dots & \dots \\ T' \vdots & P_1 & \end{pmatrix}$$

where T' is a column vector with $T'(j) = [2^j x_1(j)]^{-1}$.

Then P does not admit an invariant measure, since the elements of the first column do not satisfy $\sum x_i(i) n(i, 0) < \infty$:

$$\sum_{j} x_1(j) p(j,0) < \infty;$$

T does admit an invariant measure, having been constructed so that

$$\sum_{j} x_{1}(j) t(j, 0) = 1.$$

Acknowledgement. I am grateful to Professor D. G. Kendall, whose comments on the original form of this paper have substantially improved its clarity.

References

- Chung, K.L.: Markov Chains with Stationary Transition Probabilities. 2nd ed. Berlin-Heidelberg-New York: Springer 1967
- Derman, C.: Some contributions to the theory of denumerable Markov chains. Trans. Amer. Math. Soc. 79, 541-555 (1955)
- Harris, T.E.: Transient Markov chains with stationary measures. Proc. Amer. Math. Soc. 8, 937–942 (1957)

Harris, T.E.: The Theory of Branching Processes. Berlin-Göttingen-Heidelberg: Springer 1963

- Kingman, J.F.C.: Stationary measures for branching processes. Proc. Amer. Math. Soc. 16, 245-247 (1965)
- Miller, H. D.: Geometric ergodicity in a class of denumerable Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 4, 354-373 (1965)
- Seneta, E.: Regularly varying functions in the theory of simple branching processes. Advances in Appl. Probability. (To appear 1974)
- Tweedie, R.L.: Stationary measures for random walk on a half line. Z. Wahrscheinlichkeitstheorie verw. Gebiete 20, 28-46 (1971)
- Vere-Jones, D.: Ergodic properties of non-negative matrices. Pacific J. Math., 22, 361-386 (1967)

Dr. R. L. Tweedie Australian National University (Statistics Department) Institute for Advanced Studies P.O. Box 4 Canberra ACT 2600 Australia

(Received February 20, 1973)