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A Representation for Invariant Measures
for Transient Markov Chains

Richard L. Tweedie

§ 1. Introduction

Let P=(p(i,)) be the matrix of transition probabilities of a temporally homo-
geneous Markov chain {X,}, n=0,1,2, ..., on a countable state space ¥ indexed
by the non-negative integers 0, 1,2, ....

We write P"=(p™ (i, j)) for the matrix of n-step transition probabilities

p(n)(iaj)=Pr{Xn ZJ’XO:l}

of the chain {X,}, and put P®=(9,). We shall assume that {X,} is irreducible: that
is, for each pair (i, j) there exists n>0 such that p™ (i, j)> 0.

Irreducibility is not critical for our results, and is mainly to ease notation:
a vital assumption, which we shall always make, is that

{X,} is a transient Markov chain.
In terms of transition probabilities, this means (Chung, 1967) that
Y p™(,j)<oo  for each pair (i, ).
We shall call a vector x =(x(j)) with 0= x(j) < 00 (j=0, 1, ...) and x(j) not identically

zero, an invariant measure for P (or for {X,}) if x(0)=1, and x satisfies the left
mvariant equations X=xP; (1.1)

we shall call a vector y=(y(j)) with finite non-negative entries, not identically zero,
subinvariant for P if y(0)=1 and

y(i)égy(k)l’(k,j), jes. (1.2)

The results we shall prove depend heavily on the following simple lemma.
Lemma A. Write (0, /)=0, and forn=1,
12(0,))=Pr{X,=j, X,+0(r=1,...,n—1)|X,=0},
and define the vector Lo=(L,(j)) by
LO (0) = 19

Lo()= > 10,7, j=1,2,....
n=0
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Then L(j) is finite for each j, and L, satisfies
Ly(0)> Ly (k) p(k, 0) =) I™(0,0)=Fp,, (1.3)
k n

LOU):;Lo(k)P(k,j), Jj*0, (14)

so that L, is strictly subinvariant for P. Moreover, if y is any other subinvariant

measure for P, . , )
yNZ2LoG), je&

so that L, is the minimal subinvariant measure for P. ||

This lemma remains true even if P is substochastic. Proofs of these results are
by now well-known (cf. Vere-Jones, 1967). When {X,} is non-transient, the vector
L, defined above satisfies (1.3) with equality, and it can then be shown that there
is a unique solution to (1.2) which in fact satisfies (1.1), in the recurrent case; hence
our assumption of transience. Note that each L, (j) is finite.

Now define the matrix P,=(p, (i, /) by

o JpGh) G jzm),
P, )= {0’ otherwise.

We shall call P, the n-th diagonal submatrix of P. It is formed from P merely by
omitting the first n rows and columns of P. Since P is irreducible, the diagonal
submatrices of P are strictly substochastic (that is, have at least one row sum
strictly less than unity), and in general they will not be irreducible. We shall call a
vector x,=(x,(j)) with finite non-negative entries, invariant for B,if x, satisfies

x,()=0 (i=0,1,...,n—-1),
xn(j)=§ X, (k) puk, ) (j=n),

and x,()>0 for some o= n. Since P, may be reducible, we can no longer demand
that x,(n)=1, since x, (1) may be zero; to avoid ambiguity, we shall further require

that
X, (o (n))=1

am=min{j=n: x,(j)>0}.

where

(This difficulty does not arise when n=0, because if x is invariant for P then we
can show that x(j)>0 for all j.)

Of course, if x,, is invariant for B, it is also invariant for B, ,, ..., B, .

In this paper we shall show that P possesses an invariant measure if and only
if the diagonal submatrices of P all possess invariant measures of a particular kind,
and further that if two transition matrices P and P’ share a diagonal submatrix,
then there is a 1:1 correspondence between their invariant measures.

We shall then derive a representation for invariant measures in terms of taboo
probabilities. It follows that there exists an invariant measure for P if and only if a

certain set of auxiliary equations are satisfied.
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§2. The Diagonal Submatrices of P

Theorem 1. If P is transient, a necessary and sufficient condition for the existence
of an invariant measure x for P is the existence of an invariant measure x, for B

such that ©
No(x)= 2, % () p(j> 0)< 0. 2.1)
j=0
The equations
Xy =[x—Lol/co (), 22)
1—-Fyo
= 2.3
x Ny (x,) x1+Lg 23)

with L, and F,, as defined in Lemma A and

Co(x)=x(a)— Ly (), (24)
where
a=min(j: x(j)— Lo (7)>0),

setup a 1:1 correspondence between the P-invariant measures x and those B,-invariant
measures x,; for which Ny (x;}< co.

Proof. (i) Suppose that x is P-invariant. From Lemma A, we have x(j)= L, (j)
(j=0,1,...), and since x is P-invariant whilst L, is not, this is a strict inequality
for some j; thus ¢, (x) is well defined by (2.4), and is positive. Define x, by (2.2);
by definition x, (0)=0, and x, (x)=1 where a =minj: x, (j)>0). For j+0, from (1.4),

Xy ()=Dx ()= Lo ()1/¢o (x)
= [kgox (kyp(k, )= 3. Lo (k) p(k, )]/co(x)

k20

= 2. x1 (k) p(k, ).

k=1

Hence x, is F-invariant. The quantity N, (x,), when X, is given by (2.2), is
No(x)=> %, () p(;, 0)
0

= [Sx0)06:0- o900 / (%)

0 0

=[1—Fy0]/ce(x),

and so (2.1) holds, and indeed N, (x,)>0. Thus (2.2) is a map from the set of P-
invariant measures into the set of F,-invariant measures satisfying (2.1). This map

is 1:1, for if . . o . o
s () — Lo (3o (6) = [ () — Lo ()] /co %),
then either ¢,(x)=c,(X), whence x=X; or ¢, (x)=#c,(X), and, assuming without

loss of generality ¢, (x)< ¢, (%), we have

(=50 LY L ()1 —eo (x)/eo (0] 2.5)

Co (%)

8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd, 28
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But the right hand side of (2.5) satisfies (1.2) with strict inequality at j=0, whilst
the left hand side satisfies (1.2) with equality for all j if x, % are P-invariant. Thus
we have a contradiction, and x=%.

(i1) Suppose now that x, is F,-invariant, and satisfies (2.1). Let > 1 be the first
state such that x, («)> 0. Since P is irreducible, there exists n>0 such that

P (o, 0)=Pr{X,=0, X, +0(r=1, con~=1)X,=0}>0,

and since x, is F-invariant,

Y@t 0= 3 [ $x,0p706.0] ok, 0

k=1 Lj=1

X1 () o™ (7, 0)

HMS

> x; (@) op™ (e, 0)
>0.

Hence Ny (x,) is positive, and we can define x (finite and non-negative) by (2.3).
Since x, (0)=0, x(0)=L,(0)=1, and for j+0,

NI Y
X0 = %)+ Lo()

1-Fyy & s |
BRI A Ly () p(k,
N, (x,) k=0x1( )p( JH;Z‘() o) p(k, j)
zkiox(k)p(k’j)'
For j=0, B
@ 1— - ;
S () plk, 0) =00 ¥ (k) p(Ue, 0+ Ly (k) p(k, 0)
k=0 No(xy) =% .
- 1_Foo
N, (%) No (1) + Foo
=1=x(0)

and so x is P-invariant.

The mappings (2.2) and (2.3) are mutually inverse, since if x is P-invariant,
defining x, from x by (2.2) and X from x, by (2.3) gives, from the definition of N,

in (2.1), 1—F, x—L,
No([x—Lol/eo(x))  colx)
whilst defining X, from x, via (2.3) and (2.2) gives
. 1-Fyo / 1-F,
X = x+L—L]c(——x+L)
= et feo (gt

=x1’

X= +Ly=x;
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- . - FOO . . 5
since g=min {j: ————x, (j)+ Lo(j)— L (])>0)
( Nolx;) ™" 0 ¢
=min(j: x, (j)>0)
and for this o, x, {&)=1 by definition. |
Example 1*. Let P be the transition matrix of a renewing transient branching

process; that is, Po;=7js (Z yjzl,’})ozf:l)’
and ’

Zpijzj:[f(z)]i (l=1=2=a|2|§1)9

where f(z) is a probability-generating function. Such a process corresponds to an
ordinary branching process with the exception that, when state 0 is reached, it is
restarted with probability y; of being in state j on the next “run”. This process is
clearly transient if and only if m=f"(1—)>1 (cf. Harris, 1963), and one may apply
a result of Kingman (1965) to show that P must have an invariant measure but
that this may be non-unique. |

The condition (2.1) is non-trivial (although in Example 1 it is always satisfied
for invariant measures for F). The next example exhibits a matrix P such that the
first diagonal submatrix admits an invariant measure, but P itself does not,
because (2.1) fails.

Example 2. From Vere-Jones ((1967), Theorem 5.1), we have that if x satisfies
x()=), x (k) p(k, ) (2.6)
k

and y satisfies

y(i)%;p(i, k) y(k), (2.7)
and P is transient, then (provided neither x nor y is identically zero)

2. x(k) y(k)=o0.
If x, is invariant for F|, then x; satisfies (2.6); the vector y(k)=p(k, 0) satisfies (2.7)
if and only if p(.0)2pPG0)  (=0.1.2,..).

Hence any transient P such that this holds and B admits an invariant measure
provides an example where (2.1) is false. Such a matrix is

N
T
T 15 3 1 0 .
p| 2 0 % R i 0 |
1 1 2iv2_gip
0..0 2i+2 2i+2 % 0

! This result has been derived independently, using special properties of branching processes, by Seneta
(1974), who also shows that P possesses a unique invariant measure satisfying a certain regular variation
criterion.

g*
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Example 3. Let P be the transition matrix of a renewal process,

fo 1=f, 0 0 0
fi 0 1—f, 0 0
p={f, 0 0 1-f, 0

fs 00 0 1—f ..

Derman (1955) showed by direct calculation that such a matrix has no invariant
measure when transient; this result follows trivially from Theorem 1, since the only

uti
solution to x,=x, P

is
x ()=0. |
We can iterate Theorem 1 for the set of diagonal submatrices of P to find

Theorem 2. If P is a transient transition matrix, then a necessary and sufficient
condition for the existence of an invariant measure X for P is the existence of an
invariant measure x, for some one diagonal submatrix P, satisfying

N(x)=Y x,() plk,k)<co  (k=0,1,...,n—1). (2.8)
k

If such a measure x, exists, then for every m 20 there is an invariant measure x,,
Jfor B, satisfying the x-th assertion in (2.8) for each x <m. To each x,, invariant for P,
and satisfying (2.8), there corresponds biuniquely an x,, invariant for B, with
N, (x,) < for each k<m.

Proof. We define a sequence of measures L,=(L, () (each L,(j) finite and non-
negative) by

0 (j<n),

. 1 j=n),
Lo={", 0 9)

Zo[n]l(') mj) (>n),

where [,/ (n, )=0and for r= 1,
w0, )=Pr{X,=j,X¢{0,1,....n}(s=1,...,r=1)|X,=n}.

Now suppose x is invariant for P. Then from Theorem 1, there exists x, invariant
for B. Suppose that a>1 is the first « such that x, (¢)>0. Then x, is also invariant
for B, P, ..., . For P, the measure L, is the minimal subinvariant measure, from
Lemma A ; the measure x,_ , defined by

Xoyrt U):x1 U)_La(i)
must then, as in Theorem 1, be invariant for F, _, when normalised as usual to be
unity at its first non-zero component. One can in this manner construct a sequence

of measures x, invariant for E, by putting inductively

a+1

Xy =Xy, when x,(n)=0,

nt
X,,1=[x,—L,1/c,(x,) when x,(n)>0,



A Representation for Invariant Measures for Transient Markov Chains 105

where
Cp (xn) = xn (OC (7’1)) - Ln (OC (n))
and
a(n)=min(j: x,(j)— L,(j)>0).
n—1
Since x,(j)<cx(j) for each j, where c=[] ¢, and ¢,=1 or 1/c,(x,), it follows that

r=0
N.(x,)ScN.(x)=cx(k)<oo (k=0,1,...,n—1). By this construction, distinct
invariant measures for P lead to distinct invariant measures satisfying (2.8) for P,
for each value of n.

Now suppose that x, , satisfies the k-th assertion in (2.8) for x<n, and is
invariant for P, ; as in Theorem 1, we show that there is an invariant measure
x,, for P, which satisfies the x-th assertion in (2.8) for k<n—1 (i.e. (2.8) as it stands).

This is trivially true if x,  ; itself is invariant for F; and if x,_ , is not invariant
for P, we must have

O=x,. M+ ¥ x,.(B)p(B n<oo,

Bzn+1
and so there must exist 8> n such that x, _, (8)>0and p(8, n)>0.
Define ¢,,= i " (n, n)< Pr{the chain {X,} ever returns to n|X,=n}<l1,
and put r=0 =g,
T NG

this is well defined and finite and non-negative since co > N, (x,_ {)>x, ., (B) p(B, n).
To check B-invariance it suffices to look at

xn+1 +Ln’

1
> %, () p (i, ) = P Y X1 (VPG )+ Y LG) p,n)
jizn N( n+1) jzn jzn
. 1-—(f)nn
~mNn(xn+1)+¢nn
=1=x,([n).

Moreover, for k <n, writing y=[1-¢, 1/N,(x, ),
> %, (k) pk, k)= Z LL, (k) +vx,, 1 (k)] plk, )

kzn
—-an—i—Z(Z[]l("nk)pkK) v an+1 pk, x)

k>n r kzn+1

and since the third of these terms is finite for all k <n+ 1 by hypothesis, and the
second is bounded by

Y PriX,=x, X,¢{0,1,...,n}(s=1, ...,r— )| X,=n},

which is finite for all k, x,, satisfies (2.8).

By iterating this construction, one obtains an invariant measure for P, and
then on applying the first part of the theorem, one obtains invariant measures x,,
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satisfying the appropriate finiteness conditions for each diagonal submatrix P,;
since distinct invariant measures for P, lead to distinct invariant measures for P,
and conversely, in the above constructions, the theorem is proved. ||

Example 2 shows that a chain whose diagonal submatrix admits an invariant
measure may not have an invariant measure itself. However, from Theorem 2 it is
simple to prove

Theorem 3. Suppose P and P’ are transient transition matrices which share a
diagonal submatrix; that is B=E, for some n, m. Then P has an invariant measure
if and only if P' has, and there is a 1:1 correspondence between their invariant
measures.

Proof. If P has an invariant measure, then from the necessity part of Theorem 2,
there exists x, such that x,=x, P, and

"i gx,,(k)p(k, K) < 0.
k=0

Put x, (j)=x,(j+n—m), for j=m, and elsewhere let x,,(j)=0, so that x,, is F,-
invariant; we wish to show that for k<m, ) x;,(k)p'(k, k)< oco. It is certainly

k
enough to show that Y, Y x (k) p'(k,x) is finite. Since x;,(k)=0 for k<m, this
sum equals x<m k

Y Lxukp'k, K)=k; Xuk)[ Y Pk,

kK<m kzZm Kk<m

which in turn is equal to

T x WL ph 0] <,

K<h

because for k=m we have
m—1
2. Pk, 1) =1=3 p}, (k, )
k=0 K
=1-Y p,(k+n—m,x)

n—1
= Z p(k+n_m9 K)'
k=0
Hence x,, satisfies the m-fold analogue of (2.8) for P'.
From the sufficiency part of Theorem 2, there is then an invariant measure
for P'. The 1:1 correspondence of measures for P and P’ comes from the corre-
spondence between measures for P(P')and B (E,). |

We have concentrated on proving results for the diagonal submatrices of P.
However, by rearranging rows and columns, it is easy to see that, if P(j, ..., j,) is
any square submatrix of P, obtained by removing the elements of the rows and
columns corresponding to any n states j, ..., Jj,, there exists an invariant vector
for P if and only if there exists an invariant vector x for P(j, j,, ..., j,) satisfying

Y x(kyp(k,j) <o
foreach k=1, ...,n. y
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§3. The Representation of Invariant Measures

Theorem 4. If P is transient, a necessary and sufficient condition for the existence
of an invariant measure for P is the existence of a sequence of non-negative constants
Bo=1,B,B,, ..., not necessarily all positive, such that

XBziﬁk L, (3.1)

has finite components and is invariant for P; indeed every invariant measure can be
written uniquely in the form (3.1) for some sequence {B,}. If x* is invariant for P and
has the canonical representation (3.1), then the corresponding invariant measure x?
for the n-th diagonal submatrix B, whose existence was established in Theorem 2, is

©
xg:cnz ﬁk Lka
k=n

where ¢,=[B, 1" and a(n)=min(j=n: §,>0).

Proof. The sufficiency is trivial. Suppose x is P-invariant; from (2.2), there is a
B-invariant measure x, and a non-negative constant 5, such that

x()=Lo )+, %, ()- (32)

Ifa(l)=min(j=1: x,()> 0), we again have, as in the proof of Theorem 2, that for
some X, ; Which is invariant for F, , ;,

X1 ()= L,a)(D+H ey 1 Xet)+1 ) (33)

where 1,4, ; is again a non-negative normalising constant. Putting (3.3) into (3.2)
we can write 2(1)

x()=Lo()+ ;ﬂk Li(D+m a1 Xay1 G0 (=0,1,...),

where f,=n, if k=a(l) and 0 if O<k<a(l). Iterating this procedure m times

will give us 2m)

x(j)= Z B Ly()+1y Hay+1 - Hapmy+1 Xamy+1 1)) (B34
0
where x,,, , is invariant for F,,,, ., and
Be=M1Naitys1 - Mupy41 I k=0(r) and B, =0 if a(r)<k<a(r+1),

r=1,...,a(m). Of course the analogue of (2.8) will hold forx,,, .

But for each k, by definition L,(j)=0 when j<k; applying this to (3.4) for
fixed j, we must have a terminating sequence of no more than j+1 terms, and we
can write (3.4) as ) .

x(j)= Z B L () (3.5

k=]
where the f, are given (uniquely, because of the unique correspondence between
E-invariant and P-invariant measures of Theorem 2) as above. Thus x has the

form (3.1), as claimed. Comparing this construction with that in Theorem 2 proves
the statement regarding the form of the P-invariant measure corresponding to x. ||
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We now investigate conditions on a sequence S of non-negative numbers
which will make (3.1) a P-invariant measure. Extending the definition of ¢
write

nn’

¢ (n, l) = mzzlo[n]l(m) (n, l) (l g n) ,

0 otherwise.

Now suppose that x* given by (3.1) is to be invariant for P; this is equivalent to

ZmLU=§ i B L) p (G, J), (3.6)

for every j=0, 1, .... Using the definition of L, (i) and ¢ (k, i), we have

Y LOpi=pti+ ¥ (5l 0) )

i=k+1

=p(k,j)+ Z "+ k. ) 3.7
r=1

= Z [k]l(r) (k,j),
r=0

and the right hand side of (3.7) is L, (j) if j>k, and ¢ (k, j) if j<k. Hence the right
hand side of (3.6) is

Y (Xt k) = ¥ B L)+ 3 pud ik
k 0 k=0 k=j
so that {f,} satisfies (3.6) if and only if

ShLG=T Aok (=) 69

Butasin (34), L,()=0, k> j; and L;(j)=1. Thus (3.8) is in fact
ﬁj=kZ_ﬁk¢(k,j) (je&).
=j

Denote by @ the triangular matrix whose elements are ¢ (k, j). We have proved
Theorem 5, If P is transient, there is a non-negative finite solution x to x=xP,
x(0)=1, if and only if there is a non-negative finite solution =(f,) with f,=1to
B=p2;
that is, if and only if there exists a sequence of non-negative finite numbers
Bo=1,p1, 85, ... satisfying
Bi=Y B¢k (e¥). (3.9)

kzj

There is a 1:1 convex-linear correspondence between the allowed solutions of (3.9)
and the allowed solutions of (1.1), given by (3.1) (or equivalently (3.5)). ||
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Let us call a set of states {k,, k;, ...} a simple path from infinity if all the states k,
are distinct and if, for each i, p(k;, |, k;)>0. Harris (1957) showed that a necessary
condition for the existence of a P-invariant measure for transient P is the existence
of a simple path from infinity. Harris’ result can be derived from Theorem 5 as
follows. The matrix @ need not be irreducible, and if it is not, in general solutions
to (3.9) will have some of the coefficients f;=0, as has already been mentioned.
However, since L, is not invariant for B, for any k, x defined by (3.1) can be
P-invariant only if f=(8,) is an infinite vector. Suppose x* is P-invariant, and let
K={k: p,>0}; we can write (3.9) as

Be=Y.B;0(.k) (k=0,1,2,..), (3.10)
jek

and since B, =0 for k¢ K, this shows that K is a closed class under . Since ¢ {j, k)=0
for j<k, and ¢ (j, j)< 1, (3.10) also shows that for any ke K there existsin K a j>k
such that ¢ (j, k)>0, which in turn implies that there is a state k, =j>k such that
p(k,,k)>0. Since K is closed, k, is again in K, and by repeating this procedure,

we see that, because K is infinite, we can construct a simple path from infinity.
Example 4. Given a probability distribution {¢;,i=...—2, —1,0,1,2,...} on
the integers, define the transition matrix of random walk with boundaries near zero by

(0,0 p(0,1)... p(0,®) p(0,x+1) p(0,a+2)
r(1,0) p(1,1)...p(1, ) p(l,a+1) p(l,a+2) ...

P= p(a, 0) pla, 1) ... plo, ) pl,o+1) ple,o+2) ... (3.11)
p+1,0) pla+1,1)...pla+1,a) Co c1 Cy e
pla+2,0) pla+2,1)...p(a+2,0) c¢_, Cq ¢
: . : c_, c_4 Cg .-

so that p(j, k)=c,_; for both j and k> «, whilst the first « rows and columns are
arbitrary, subject only to the conditions

;p(j,k)zl (7=0,1,...,a),

;p(f,k)=_ic,~ (>a).

This transition matrix occurs naturally in the context of embedded Markov
chains for queueing processes (cf. Miller, 1965).

If P is transient, it follows from the above theorems that there will be a solution
to x=xP if and only if there is a solution to x,=x,P,, where B(i,j)=c;_;
(i,j=1,2,...), such that

—J

gxa(i) (_chi) <0, (3.12)

(This finiteness condition corresponds to (2.8) summed over x.) It is proved in
Tweedie (1971), that such a solution x, exists if and only if there is a positive real
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number f< 1 such that

S, pi=1. (3.13)

Hence the existence of such a root is also necessary and sufficient for the existence
of an invariant measure for P given by (3.11), since it is shown in the above paper
that when such a root exists, the unique solution x, of x,=x, P, satisfies (3.12).

The method used in Tweedie (1971) is that of finding the form (3.1) for invariant
measures in the special case of random walk on a half line, and then solving (3.9)
for this case. This provides an example where the equation = is rather easier
to solve than the original invariant equations; the unique solution when (3.13)
holds is given by ;=77 j=«. |

Example 5. Tt is possible to construct an irreducible transition matrix P with
any desired number of invariant measures using the results of this section. One may
utilise the result of the previous example, say, and construct d random walks on
the half lattices r+dj (j=1, 2, ...; r=1, ..., d) each of which has '

p(r+d.]’ r+dk)=ck—ja
—J
p(r—l—dj, 0): Z Crs

for some probability distribution satisfying (3.13); one thus generates d different
invariant measures for P, each with a corresponding vector f§ concentrated on a
different lattice. ||

§4. Non-Negative Matrices

Many of the properties of transition matrices carry over to arbitrary non-
negative matrices, and the above work is not exceptional. We sketch some of these
results; the proofs are identical with those for transition matrices.

Let T=(t(j)) be a matrix with non-negative terms, and with finite iterates
T"=(t"(, j)). The more usual problem here is to consider the equation

x=rxT 4.1)

for real non-negative r; results on these equations can be found in Vere-Jones
(1967). We assume T is irreducible and r-transient; that is, for all (3, j),

Yt jyrt<co.
We define the vectors L, n=0,1, ... by

0 G<n),

I (]): 1 (]'=n),
z [n]l(k)(naj) rk (i>n)’
k=0
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where [n]l"‘) {n, j) is zero for k=0 and is defined iteratively for k=1 by

[n]l(l)(nsj):t(naj)
[n]l(k"'l)(n’j): Z [n]l(k)(nv l) t(lb-])

i>n

The vectors L, play the same role in the theory of r-invariant measures
(solutions to (4.1)) as do the vectors L, similarly defined, in the theory of invariant
measures: this is because (Vere-Jones, 1967) they are the minimal r-subinvariant
vectors for the diagonal submatrices of T.

Defining the matrix ' =(¢® (i, j)) by

0 (i>1)
P, j)= i GRG0, 4.2)

we have
Theorem 6. (i) There is a non-negative solution x® to the r-invariant equations
(4.1) if and only if there are non-negative solutions x) to the r-invariant equations
XO=rx0 T,
for each diagonal submatrix T, of T, such that

Y xUGtGik)<oo  (k=0,1,...,n—1).

J

(ii) There is a solution x to (4.1) if and only if there is a solution f”=(BY) to
B(r) —_ ﬁ(r‘) g (43)

where @) is defined by (4.2). Solutions of (4.1) and (4.3) are in 1:1 correspondence,
and are related by

()= 3 O IDG). |
k=0

The only one of Theorems 1-5 whose analogue does not hold is Theorem 3:
for non-negative matrices, the existence of r-invariant measures is not governed
entirely by the behaviour in the tail: the behaviour of individual columns can also
affect this existence. Our final example demonstrates this.

Example 6. Let P be as in Example 2, and let x, be the invariant measure for F,.
Define T by

where T’ is a column vector with 77 (j)=[2/ x, (j)] .

Then P does not admit an invariant measure, since the elements of the first
column do not satisfy A
%1 () P, 0)< 03
J
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T does admit an invariant measure, having been constructed so that

3 x, ()¢, 0)=1.
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