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A Representation for Invariant Measures 
for Transient Markov Chains 

Richard L. Tweedie 

w l.'Introduction 

Let P = (p (i, j)) be the matr ix of transit ion probabilit ies of a temporal ly  homo-  
geneous Markov  chain {X,}, n =0 ,  1, 2, . . . ,  on a countable  state space 5 P indexed 
by the non-negative integers 0, 1, 2, . . . .  

We write P ' =  (p<")(i,j)) for the matrix of n-step transition probabili t ies 

p(")(i,j) = P r  {X  n = j l X  o = i} 

of the chain {X,}, and put  p o =  (6u)" We shall assume that {X,} is irreducible: that  
is, for each pair (i, j) there exists n > 0 such that pC,) (i, j) > 0. 

Irreducibili ty is not  critical for our  results, and is mainly to ease notat ion:  
a vital assumption,  which we shall always make, is that 

{X,} is a transient Markov chain. 

In terms of transit ion probabilities, this means (Chung, 1967) that  

p~")(i,j)< oo for each pair (i,j). 
n 

We shall call a vector x = (x (j)) with 0 < x (j) < oo (j = 0, 1,. . .)  and x (j) not  identically 
zero, an invariant measure for P (or for {X,}) if x (0) = 1, and x satisfies the left 

invariant equat ions x = x P ;  (1.1) 

we shall call a vector y = (y (j)) with finite non-negative entries, not  identically zero, 
subinvariant for P if y (0 )=  1 and 

y ( j ) > ~ y ( k ) p ( k , j ) ,  j~SP. (1.2) 
k 

The results we shall prove depend heavily on the following simple lemma. 

Lemm a  A. Write l(~ and for n>_ 1, 

l(n)(O,j)= P r  (X ,  =j, Xr # O(r= 1, ..., n -  1)IX o =0} ,  

and define the vector L o = (L o (j)) by 

Lo (0) = 1, 

Lo( j )=  ~ l(")(O,j), j = l , 2 ,  . . . .  
n ~ O  
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Then L o (j) is finite for each j, and L o satisfies 

L o (0) > ~ L o (k) p (k, O) = ~ 1 <") (0, O) -= F o o, (1.3) 
k n 

L o ( j ) = ~  Lo(k)p(k, j) ,  j+O,  (1.4) 
k 

so that L o is strictly subinvariant for P. Moreover, if y is any other subinvariant 
measure for P, 

y(j)>=Lo(j) ' j6  cj 

so that L o is the minimal subinvariant measure for P. II 

This lemma remains true even if P is substochastic. Proofs of these results are 
by now well-known (cf. Vere-Jones, 1967). When {X,} is non-transient, the vector 
L 0 defined above satisfies (1.3) with equality, and it can then be shown that there 
is a unique solution to (1.2) which in fact satisfies (1.1), in the recurrent case; hence 
our assumption of transience. Note that each L o (j) is finite. 

Now define the matrix P,=(p,(i,j)) by 

~p(i,j) (i,j>=n), 
p. (i, j) = (0, otherwise. 

We shall call P,. the n-th diagonal submatrix of P. It is formed from P merely by 
omitting the first n rows and columns of P. Since P is irreducible, the diagonal 
submatrices of P are strictly substochastic (that is, have at least one row sum 
strictly less than unity), and in general they will not be irreducible. We shall call a 
vector x,  = (x, (j)) with finite non-negative entries, invariant for P. if x, satisfies 

x,(j)--O (j=O, 1, ..., n -  1), 

x, (j) = ~  x , (k )p , (k , j )  (j>n), 
k 

and x,(:O>O for some e>n .  Since P, may be reducible, we can no longer demand 
that x, (n) = 1, since x, (n) may be zero; to avoid ambiguity, we shall further require 
that 

x, (~ (n)) --- 1 
where 

~ (n )=min{ j~n :  x,( j )> 0}. 

(This difficulty does not arise when n = O, because if x is invariant for P then we 
can show that x(j)>O for allj.) 

Of course, i fx,  is invariant for P., it is also invariant for P,+I,---, P~r 
In this paper we shall show that P possesses an invariant measure if and only 

if the diagonal submatrices of P all possess invariant measures of a particular kind, 
and further that if two transition matrices P and P' share a diagonal submatrix, 
then there is a 1:1 correspondence between their invariant measures. 

We shall then derive a representation for invariant measures in terms of taboo 
probabilities. It follows that there exists an invariant measure for P if and only if a 
certain set of auxiliary equations are satisfied. 
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w 2. The Diagonal Suhmatrices of P 

Theorem 1. I f  P is transient, a necessary and sufficient condition for the existence 
of an invariant measure x for P is the existence of an invariant measure x I for P~ 
such that ct3 

No(Xl)=  ~ x I (j)p(], 0 ) <  oe. (2.1) 
j=o 

The equations 
x,  = I x -  Lo]/C o (x), (2.2) 

1 - F o o  
x = x,  + L  o (2.3) 

No(x1) 

with L o and Foo as defined in Lemma A and 

c o (x) = x (cQ- L o (e), (2.4) 
where 

= min  (j: x ( j ) -  L o (j) > 0), 

set up a 1 : 1 correspondence between the P-invariant measures x and those Pl-invariant 
measures x 1 for which No(x1)<  oo. 

Proof (i) Suppose  that  x is P- invar ian t .  F r o m  L e m m a  A, we have  x (])> L o (]) 
( j = 0 ,  1, ...), a n d  since x is P - inva r i an t  whilst  L o is not,  this is a strict inequal i ty  
for some  j ;  thus  Co(X ) is well defined by (2.4), a n d  is positive. Define x 1 by (2.2); 
by def ini t ion x 1 (0) = 0, and  x 1 (e) = 1 where  c~ = min  (j: x 1 (]) > 0). F o r j  4= 0, f rom (1.4), 

x 1 (]) = [x  (j) - L o (])]/c o (x) 

= [ ~ x ( k ) p ( k , j ) -  ~ Lo(k)p(k,j)]/Co(X ) 
k>=O k>O 

= ~ x , (k)p(k , j ) .  
k>=l 

H e n c e  x 1 is Pl- invariant .  The  quan t i ty  N O (xl) , when  x,  is given by (2.2), is 

oo 

No(X,)= Y xl (]) p(], 0) 
0 

= ~x( j )p(] ,O)-~Lo(] )p( j ,O ) Co(X) 
L O  0 

= [1 - Fo o] /Co (x) ,  

a n d  so (2.1) holds,  and  indeed  No(x1)>0 .  Thus  (2.2) is a m a p  f rom the set of  P-  
invar ian t  measures  into the set of  P~-invariant measures  satisfying (2.1). This  m a p  
is l : 1, for if 

Ix (] ) -  Lo (])]/Co (x) = [2 (j) - Lo (])]/co (2), 

then either c o (x) = c o (2), whence  x = 2 ;  or  c o (x) ~= c o (2), and,  a s suming  wi thou t  
loss o f  genera l i ty  c o (x) < c o (2), we have  

x q ) - 2 " ~  Co(X) _ .  
w Co (2) - - ~  (J) [1 - c o (x)/c o (2)].  (2.5) 

8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 28 
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But the right hand side of (2.5) satisfies (1.2) with strict inequality at j =  0, whilst 
the left hand side satisfies (1.2) with equality for all j if x, 2 are P-invariant.  Thus 
we have a contradict ion,  and x = 2. 

(ii) Suppose now that x 1 is Pl-invariant, and satisfies (2.1). Let e >  1 be the first 
state such that x 1 (c 0 > 0. Since P is irreducible, there exists n > 0 such that  

opt") (c~, 0 ) = P r  {X, =0 ,  X r + 0 ( r  = 1, . . . ,  n -  1)[X o =a}  > 0 ,  

and since x 1 is/]l-invariant, 

~xa(k)p(k,O)= xl(j)p~"-l)(j,k) p(k,O) 
1 k = l  - 

co 

-- ~ xl (/) or "~ (j, 0) 
1 

> x 1 (c0 op (") (a, 0) 

> 0 .  

Hence No(x 0 is positive, and we can define x (finite and non-negative) by (2.3). 
Since x I (0) = 0, x (0) = L o (0) = 1, and for j +  0, 

For  j = 0 ,  

1- /7oo 
x(j) - -  xl (j)+ Lo(j) 

No ( xl ) 

_ 1 - F o o  ~ xl(k)p(k,J)+ ~ Lo(k)p(k,J) 
No(x1) k=o k=O 

= ~ x(k)p(k,j). 
k = O  

§ 1 Foo c o  co 

X (k) (k, O) x 1 (k) p (k, O)+ ~ L o (k) p (k, O) 
'-" P -= No (xa) k = 0 o k = O  

1 --Foo 
- No(Xl)+Foo No(xJ 
= l = x ( 0 )  

and so x is P-invariant .  

The mappings (2.2) and (2.3) are mutual ly inverse, since if x is P-invariant,  
defining x 1 from x by (2.2) and 2 from x 1 by (2.3) gives, from the definition of N o 
in (2.1), 

1 -Foo x - L  o 
2= No([x_Lo]/Co(X)) Co(X) + L o = x  ; 

whilst defining 21 from x I via (2.3) and (2.2) gives 

[1 
No(x 0 Xl+Lo-Lo c o No(x 0 xl 

~ X 1 ,  



1-Foo 
since e = min j:  No (X 1) 

=min ( j :  xl ( j)> 0) 

and for this e, x I (e) = 1 by definition. 
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xl (]) + Lo ( ] ) -  Lo (]) > 0] 
! 
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Example 1 i. Let P be the transit ion matr ix of a renewing transient branching 
process;  that  is, poj=~j, (Y~ ~j= 1, ~o, 1), 
and J 

~pi j zJ=[f (z )]  i ( i=1 ,2 , . . . , 121<1) ,  
) 

where f(z) is a probabil i ty-generat ing function. Such a process corresponds to an 
ordinary  branching process with the exception that, when state 0 is reached, it is 
restarted with probabil i ty  7j of being in state j on the next " r u n ' .  This process is 
clearly transient if and only if m =f '  (1 - ) >  1 (cf. Harr is ,  1963), and one may apply 
a result of Kingman  (1965) to show that P must  have an invariant measure but 
that  this may  be non-unique.  ]l 

The condi t ion (2.1) is non-trivial  (although in Example  1 it is always satisfied 
for invariant  measures for P1). The next example exhibits a matr ix P such that the 
first diagonal submatr ix  admits an invariant measure,  but  P itself does not, 
because (2.1) fails. 

Example 2. F r o m  Vere-Jones ((1967), Theorem 5.1), we have that i fx  satisfies 

x(j)< ~ x(k) p(k,j) (2.6) 
k 

and y satisfies y (j) > ~ p (j, k) y (k), (2.7) 

k 
and P is transient, then (provided neither x nor  y is identically zero) 

E x (k) y (k) = oo. 
If x 1 is invariant  for/]1, then x 1 satisfies (2.6); the vector y(k)=p(k, 0) satisfies (2.7) 
if and only if 

p(], O)> p(2)(], O) U--0, 1,2, ...). 

Hence any transient  P such that  this holds and/]1 admits an invariant measure 
provides an example where (2.1) is false. Such a matrix is 

/ 0 0 \ g ... 
• _5 ! 0 

) 

8 8 4 ""  

16 16 8 4 �9 "' 

0 ~ 11 1 0 
p =  32 32 16. 4 "'" �9 I1 

1 1 "2i+2--2i--2 t 
21+~ 0 . . .  0 2i+2 21+2 g 0 j  

: /  
This result has been derived independently, using special properties of branching processes, by Seneta 

(1974), who also shows that P possesses a unique invariant measure satisfying a certain regular variation 
criterion. 
8* 
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Example 3. Let P be the transition matrix of a renewal process, 

1 o0 0 0 
fl  0 1-f~ 0 0 

P =  o o 1 - f ~  o . 

0 0 0 1 - f  3 

Derman (1955) showed by direct calculation that such a matrix has no invariant 
measure when transient; this result follows trivially from Theorem 1, since the only 
solution to 

Xl ~-X1 P1 
is 

x~(j)-0. II 

We can iterate Theorem 1 for the set of diagonal submatrices of P to find 

Theorem 2. I f  P is a transient transition matrix, then a necessary and sufficient 
condition for the existence of an invariant measure x for P is the existence of an 
invariant measure x ,  for some one diagonal submatrix P, satisfying 

N, (x , )=~x, (k)p(k ,~c)<oo (~c=0, 1 . . . .  , n - I ) .  (2.8) 
k 

I f  such a measure x,  exists, then for every m > 0 there is an invariant measure x m 
for P,, sat!,sfying the ~c-th assertion in (2.8) for each ~c < m. To each x, invariant for P~ 
and satisfying (2.8), there corresponds biuniquely an x,, invariant for Pm with 
NK(x,,) < oo for each ~ <m. 

Proof. We define a sequence of measures L. = (L. (j)) (each L. (j) finite and non- 
negative) by 

l 
0 (j<n), 

( j=n),  
L.(j) = lo (2.9) 

[ 
where [.]l(~ and for r > 1, 

[,] l(') (n, j) = P r {X, =j,  X~q~ {0, 1, ..., n} (s = 1, ..., r -  1)1Xo = n}. 

Now suppose x is invariant for P. Then from Theorem 1, there exists x 1 invariant 
for/]1. Suppose that a >  1 is the first e such that x I (~)>0. Then x 1 is also invariant 
for P~, P2, ..., P~. For  P,, the measure L~ is the minimal subinvariant measure, from 
Lemma A; the measure G+I  defined by 

x~+l (j)=x~(j)-G(j) 
must then, as in Theorem 1, be invariant for P~+t when normalised as usual to be 
unity at its first non-zero component. One can in this manner construct a sequence 
of measures x. invariant for P. by putting inductively 

x.+l = x . ,  when x.(n)=O, 

x . + l = [ x . - L . ] / c . ( x . )  when x.(n)>O, 
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where 
G (x,) -- x,(~(n))- L,  (~ (n)) 

and  
(n) = min (j: x .  ( j ) -  L. (j) > 0). 

n - - 1  

Since x, (j)< e x (j) for each j, where c = l-[ G and G = 1 or 1/c r (G), it follows that  
r ~ O  

N~(x,)<c~(x)=cx(~)<oo ( ~ = 0 , 1 , . . . , n - 1 ) .  By this construct ion,  distinct 
invar iant  measures  for P lead to distinct invar iant  measures  satisfying (2.8) for P,, 
for each value of n. 

N o w  suppose  that  x ,+  1 satisfies the rc-th assertion in (2.8) for ~c<n, and is 
invar iant  for P,+I;  as in T h e o r e m  1, we show that  there is an invar iant  measure  
x,  for P, which satisfies the K-th assertion in (2.8) for tc < n- -  1 (i. e. (2.8) as it stands). 

This is trivially true if x ,+  a itself is invar iant  for P.; and  if x ,+ 1 is not  invar iant  
for P,, we mus t  have 

0 = x . + t ( n ) +  ~ x.+t(fl)P(fl, n )<~ ,  
f l > n + l  

and so there must  exist fl > n such that  x .  + 1 (fl) > 0 and p (fi, n) > 0. 
(X3 

Define d?. .= Z ~.jl(~)( n, n)<Pr{the chain {Xk} ever returns to n[Xo=n}<l,  
and put  ~= o 

1 - G .  
x . -  N.(x.+I) x.+ 1 + L . ;  

this is well defined and finite and non-negat ive  since ~ > N. (x. + 1) > x .  + 1 (fl) P (fl, n). 
To  check P.-invariance it suffices to look at 

~ x.(j)p(j,n)= l-d?. .  ~ X.+x(j)p(j,n) + ~ L.(j)p(j,n) 
N.(x.+t) ~ .  ~>__. j>n 

_ l -d?. .  N.(x.+a)+d?.. 
N.(x.+l) 

= l = x . ( n ) .  

Moreover ,  for tc < n, writ ing ? = [ 1 - d?..]/N. (x. + 1 ), 

Z x.(k) p(k, ~c)= Z [L.(k)+yx.+a (k)] p(k, ~:) 
k > n  k > n  

=p(n, ~)+ Y (Z E.3;(r~(n,k)p(k,~))+ ~ Z X~ ~) 
k > n  r k > _ n + l  

and since the third of these terms is finite for all tr < n + 1 by hypothesis,  and the 
second is bounded  by 

Pr{X,=K, Xsq~ (0 , 1 . . . .  , n} ( s=  l . . . .  , r -  1)IX o = n } ,  
r 

which is finite for all ~, x .  satisfies (2.8). 

By i terating this construct ion,  one obtains  an invariant  measure  for P, and  
then on apply ing  the first pa r t  of  the theorem,  one obtains  invar iant  measures  x m 
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satisfying the appropriate finiteness conditions for each diagonal submatrix P,,; 
since distinct invariant measures for P, lead to distinct invariant measures for P, 
and conversely, in the above constructions, the theorem is proved. I1 

Example 2 shows that a chain whose diagonal submatrix admits an invariant 
measure may not have an invariant measure itself. However, from Theorem 2 it is 
simple to prove 

Theorem 3. Suppose P and P' are transient transition matrices which share a 
diagonal submatrix ; that is P,= P~, for some n, m. Then P has an invariant measure 
if and only if P' has, and there is a 1:1 correspondence between their invariant 
measures. 

Proof. I fP has an invariant measure, then from the necessity part of Theorem 2, 
there exists x, such that x , - -x .  P,, and 

n- -1  

E ~ x , ( k ) p ( k , ~ ) < o o .  
r = O  k 

Put x~, (j)-- x, (j + n -  m), for j >__ m, and elsewhere let x~, (j)--- O, so that x~, is P,~- 
invariant; we wish to show that for ~c <m, ~ x'~(k) if (k, ~c)< Go. It is certainly 

k 

enough to show that ~ ~ x ' ( k )p '  (k, ~c) is finite. Since x~,(k)=O for k < m, this 
sum equals r <m k 

E Z x~,(k) p' (k, x) = Z x" (k) [ Z P' (k, to)], 
~r k>=m k>=m K < m  

which in turn is equal to 
x~ (h) [ ~ p (h, x)] < 0% 

h>_n Ic<n 

because for k > m we have 
m--1  

S P ' (k ,  = 1 - p;. (k, 
K=O K 

= l - ~ p , ( k + n - m , K )  
K 

n- -1  

= ~ p ( k + n - m , ~ c ) .  
K=O 

Hence x~, satisfies the m-fold analogue of (2.8) for P'. 
From the sufficiency part of Theorem 2, there is then an invariant measure 

for P'. The 1 : 1 correspondence of measures for P and P' comes from the corre- 
spondence between measures for P (P') and P, (P'). II 

We have concentrated on proving results for the diagonal submatrices of P. 
However, by rearranging rows and columns, it is easy to see that, if P (Jl, ... ,J,) is 
any square submatrix of P, obtained by removing the elements of the rows and 
columns corresponding to any n states Jl . . . .  , j , ,  there exists an invariant vector 
for P if and only if there exists an invariant vector x for P (Jl ,J2, -.., J,) satisfying 

~ x(k) p(k,j~)< oo 
k 

for each K = 1, ..., n. 
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w 3. The Representation of Invariant Measures 

Theorem 4. I f  P is transient, a necessary and sufficient condition for the existence 
of an invariant measure for P is the existence of a sequence of non-negative constants 
flo = 1, ill, f12, -.., not necessarily all positive, such that 

o~ 

x ~ = ~ fl~ L k (3.1) 
0 

has finite components and is invariant for P; indeed every invariant measure can be 
written uniquely in the form (3.1)for some sequence {fig}. I f  x ~ is invariant for P and 
has the canonical representation (3.1), then the corresponding invariant measure xr 
for the n-th diagonal submatrix P,, whose existence was established in Theorem 2, is 

xP. = c. ~ ~k Lk, 
k = n  

where Cn = I-fl~(,)]- 1 and ~ (n) = min (j > n: fli > 0). 

Proof The sufficiency is trivial. Suppose x is P-invariant ;  from (2.2), there is a 
P~-invariant measure x a and a non-negat ive constant  r/1 such that 

X (]) = L o  (j) + t/1 x I (j).  (3.2) 

If ~ (1)= rain (] > 1: x 1 (j)> 0), we again have, as in the proof  of Theorem 2, that for 
some x~o)+ 1 which is invariant  for P~(1)+1, 

xl (J) = L~(i)(J) +/~e(1)+l Xe(1)+l (J), (3.3) 

where q,(l!+~ is again a non-negative normalising constant.  Putt ing (3.3) into (3.2) 
we can write ~(1) 

x ( j ) = L o ( j ) +  ~,flkLk(J)+ql /~a(1)+l Xct(1)+l(J) ( j=0 ,  1, ...), 
1 

where ilk=Ill if k=c~(1) and 0 if 0 < k < a ( 1 ) .  I terating this procedure  m times 
will give us ~(m) 

x(j) = ~ flk Lk(j)+~ll /~(1)+1 "'" ?/~(m)+l. Xa(m)+l (J) (3.4) 
0 

where x,(,,)+ 1 is invariant  for P~(m)+~ and 

fik=rll t1~1)+1 ... rl~(r)+l if k = ~ ( r )  and i lk=0 if c~(r)<k<c~(r+l), 

r = 1, . . . ,  c~(m). Of course the analogue of (2.8) will hold for X=(m) + 1' 

But for each k, by definition Lk( j )=0  when j<k ;  applying this to (3.4) for 
fixed j, we must  have a terminating sequence of no more  than j + 1 terms, and we 
can write (3.4) as 

x~j)= Y~/~ LA/) (3.5) 
k<=j 

where the flk are given (uniquely, because of the unique correspondence between 
P,-invariant and P,,-invariant measures of Theorem 2) as above. Thus x has the 
form (3.1), as claimed. Compar ing  this construct ion with that in Theorem 2 proves 
the statement regarding the form of the P,-invariant measure corresponding to x. ]l 
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We now investigate conditions on a sequence fi of non-negative numbers 
which will make (3.1) a P-invariant measure. Extending the definition of ~b,,, we 
write 

{~=o[n]l(m)(n'z) r  i) �9 ( i< n), 

otherwise. 

Now suppose that x p given by (3.1) is to be invariant for P; this is equivalent to 

flkLk(j) = ~ ~ flkLk(i) p(i,j), (3.6) 
k = O  i = 0  k = O  

for every j = 0, 1, .... Using the definition of L k (i) and r (k, i), we have 

Lk(i ) p(i,j)=p(k,j)+ [kll~r)(k, i) p(i,j) 
i = 0  i = k + l  r 

=p(k,j)+ ~ tk]l(r+l)(k,j) (3.7) 
r = l  

= ~ [kll(r)(k,j), 
r = O  

and the right hand side of (3.7) is L k (]) if j > k, and q5 (k, j) if j < k. Hence the right 
hand side of (3.6) is 

k = O  k=j 

so that {ilk} satisfies (3.6) if and only if 

flk Lk (J) = ~ flk ~ (k, j) (j~ ~) .  (3.8) 
k=j k=j 

But as in (3.4), Lk(j ) =0, k>j; and Lj(j) = 1. Thus (3.8) is in fact 

fij= ~ fik 4(k,j) (jeS:). 
k=j 

Denote by tb the triangular matrix whose elements are q5 (k,j). We have proved 

Theorem 5. I f  P is transient, there is a non-negative finite solution x to x = x  P, 
x (0) = 1, if and only if there is a non-negative finite solution fi = (ilk) with flo ---- 1 to 

that is, if and only if there exists a sequence of non-negative finite numbers 
flo = 1, 11, f12, ... satisfying 

fij = ~ fik (o(k,j) (]~5:). (3.9) 
k>=j 

There is a 1 : 1 convex-linear correspondence between the allowed solutions of (3.9) 
and the allowed solutions of (1.1), given by (3.1) (or equivalently (3.5)). II 
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Let  us call a set of states {ko, kl, ... } a simple path from infinity if all the states k i 
are distinct and if, for each i, p (ki+l, ki)> 0. Harris  (1957) showed that a necessary 
condit ion for the existence o f a  P- invar iant  measure for transient P is the existence 
of a simple path  from infinity. Harr is '  result can be derived from Theorem 5 as 
follows. The matr ix ~b need not  be irreducible, and if it is not, in general solutions 
to (3.9) will have some of the coefficients fij = 0, as has already been mentioned.  
However ,  since L k is not  invariant for Pk for any k, x ~ defined by (3.1) can be 
P-invariant  only if fi = (ilk) is an infinite vector. Suppose x p is P-invariant,  and let 
K = {k: flk > 0}; we can write (3.9) as 

ilk = Zfljcf(],k) (k=0 ,  1,2, ...), (3.10) 
j~K 

and since fik = 0 for k ~K, this shows that K is a closed class under  q~. Since q5 (], k) = 0 
f o r j < k ,  and ~b(j,j) < 1, (3.10) also shows that for any k e K  there exists in K a j > k  
such that r (j, k )>  0, which in turn implies that  there is a state k 1 =>j> k such that 
p(kl ,  k)>0 .  Since K is closed, k 1 is again in K, and by repeating this procedure,  
we see that, because K is infinite, we can construct  a simple path from infinity. 

Example 4. Given a probabil i ty  distr ibution {Q, i . . . .  - 2 ,  - 1, 0, 1, 2, ...} on 
the integers, define the transit ion matrix of random walk with boundaries near zero by 

p(0,0) p(0, 1 ) . . .p (0 ,  c~) p(0, c~+l) p(0, c~+2) \ 

p(1,0) p (1 ,1 ) . . . p (1 ,  c~) p(1, c~+l) p(1, e + 2 ) . . .  

P = [ p ( c ~ , 0 )  p(c~,l)...p(c~,c~) p(cr p(c~,c~+2).. .  

I p ( ~ + l , 0 )  p ( a + l , 1 ) . . . p ( c ~ + l , c ~ )  c o c 1 c 2 ... 

p(c~+2,0) p(cr 1 ) . . . p ( ~ + 2 ,  c 0 c_ 1 c o c 1 ... 

< 2  c_~ c o . . . /  

(3.11) 

so that  p(j, k)=Ck_ j for b o t h j  and k > a ,  whilst the first a rows and columns are 
arbitrary,  subject only to the condit ions 

~ p ( ] , k ) = l  ( ]=0,  l, . . . ,  ~), 
k 

Y p(],k)= 
0 --oO 

This transit ion matr ix occurs naturally in the context  of embedded Markov  
chains for queueing processes (cf. Miller ,  1965). 

I f P  is transient, it follows from the above theorems that there will be a solution 
to x = x P  if and only if there is a solution to x~=GP~,  where P~(i, j)=cj_ i 
( i , j=  1, 2 . . . .  ), such that 

YxAi) ci <oo. (3.12) 
J 

(This finiteness condit ion corresponds to (2.8) summed over •.) It is proved in 
Tweedie (1971), that  such a solution x~ exists if and only if there is a positive real 
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n umbe r / /<  1 such that 

cjflJ= 1. (3.13) 
- c o  

Hence the existence of such a root is also necessary and sufficient for the existence 
of an invariant measure for P given by (3.11), since it is shown in the above paper 
that when such a root exists, the unique solution x, of x, = x~ P~ satisfies (3.12). 

The method used in Tweedie (1971) is that of finding the form (3.1) for invariant 
measures in the special case of random walk on a half line, and then solving (3.9) 
for this case. This provides an example where the equation/~ =//~P is rather easier 
to solve than the original invariant equations; the unique solution when (3.13) 
holds is given by flj=fl-J,j>__c~, l[ 

Example 5. It is possible to construct an irreducible transition matrix P with 
any desired number of invariant measures using the results of this section. One may 
utilise the result of the previous example, say, and construct d random walks on 
the half lattices r + dj (j = 1, 2, ... ; r = 1, ..., d) each of which has 

p(r + dj, r + dk)= ck_j, 

-d 
p (r + d j, O) = ~ ck, 

- c o  

for some probability distribution satisfying (3.13); one thus generates d different 
invariant measures for P, each with a corresponding vector/~ concentrated on a 
different lattice. II 

w 4. Non-Negative Matrices 

Many of the properties of transition matrices carry over to arbitrary non- 
negative matrices, and the above work is not exceptional. We sketch some of these 
results; the proofs are identical with those for transition matrices. 

Let T=(t(i , j))  be a matrix with non-negative terms, and with finite iterates 
T"= (t (")(i, j)). The more usual problem here is to consider the equation 

x = r x T  (4.1) 

for real non-negative r; results on these equations can be found in Vere-Jones 
(1967). We assume T is irreducible and r-transient; that is, for all (i,j), 

t(")(i,j) r" < oo. 
?1 

We define the vectors/2~,, n=0 ,  1, ... by 

01 ( j < n ) ,  
~.(J) = oo tj = n), 

[ ~ [nll(g)(n,j)r k (]>n), 
~ - k = O  
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where [nlllk)(n,j) is zero for k =0  and is defined iteratively for k>  1 by 

[.1 l(1) (n, j )  = t (n, j )  

t,ll(k + l ) (n , j )= ~ [,ll(k)(n, i) t(i,j). 
i > n  

The vectors I5, play the same role in the theory of r-invariant measures 
(solutions to (4.1)) as do the vectors L, ,  similarly defined, in the theory ofinvariant 
measures: this is because (Vere-Jones, 1967) they are the minimal r-subinvariant 
vectors for the diagonal submatrices of T. 

Defining the matrix ~(r)=(~b(~)(i,j)) by 

(b('} gi i~ -_: 0~~ 
(/> i) 

" ' J '  [k~=otql(k)(i,j)rk ( j<i) ,  (4.2) 

we have 

Theorem 6. (i) There is a non-negative solution x (r) to the r-invariant equations 
(4.1)/f and only if there are non-negative solutions x~ r) to the r-invariant equations 

(r) (r) 
x .  = r x  n Z n 

for  each diagonal submatrix T, o f  7;, such that 

Y xl,'(j) t(j, ~)< ~ (~=0, 1,...,n-1). 
J 

(ii) There is a solution x (~) to (4.1) if  and only if there is a solution fl(r)= (fi},)) to 

fic~)= r fl(,) ~(r) (4.3) 

where ~b (~) is defined by (4.2). Solutions of  (4.1) and (4.3) are in 1 : 1 correspondence, 
and are related by j 

x(r)(J) = 2 fl(r) L(~)(J) " II 
k=O 

The only one of Theorems 1-5 whose analogue does not hold is Theorem 3: 
for non-negative matrices, the existence of r-invariant measures is not governed 
entirely by the behaviour in the tail: the behaviour of individual columns can also 
affect this existence. Our final example demonstrates this. 

Example 6. Let P be as in Example 2, and let x 1 be the invariant measure for P~. 
Define T by 

! : z  0 0 \ 
T =  ~ . . . . . . . . . . . . . . . . .  

where T' is a column vector with T' (j) = [2 j x 1 (1")]- 1. 

Then P does not admit an invariant measure, since the elements of the first 
column do not satisfy ~ x 1 (]) p (j, 0) < oe ; 

J 
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T d o e s  a d m i t  a n  i n v a r i a n t  m e a s u r e ,  h a v i n g  b e e n  c o n s t r u c t e d  so t h a t  

2 X1 (J) t (j, O) : 1. 
J 
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