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A Note on Uniform Strong Convergence 
of Bivariate Density Estimates 

M. S a m a n t a  

Abstract. In this paper we consider a class of estimates of a bivariate density function f based on an 
independent sample of size n. Under the assumption that f is uniformly continuous, the uniform strong 
consistency of such estimates was first proved by Nadaraya (1970) for a large class of kernel functions. 
In this note we show that the assumption of the uniform continuity of f is necessary for this type of 
convergence. 

1. Introduction 

Let  (X1, Yl), (X2, Y2), ... be a sequence of  independen t  two d imens iona l  
r a n d o m  var iables  with a c o m m o n  d i s t r ibu t ion  funct ion F and let 

1 n x - - X j  

where {h,} is a sequence of posi t ive  numbers  converging to zero and k I and  k 2 
are p robab i l i t y  densi ty  functions.  

We assume the fol lowing cond i t ions :  

(i) the series ~ e x p { - 7  n h 4} is convergent  for all 7 > 0 ,  
n = l  

(ii) k 1 and  k 2 are  funct ions  of  b o u n d e d  var ia t ion .  

In  this no te  we prove  the fol lowing 

Theorem. A necessary and sufficient condition for 

l im sup If ,  (x, y ) -  g (x, y)[ = 0 
n ~ c ~  ( x , y ) ~ R 2  

with probability one for some function g is that g be the uniformly continuous Lebesgue 
density of F. 

2. Proof  of  the Theorem 

The sufficiency of the cond i t ion  is due to N a d a r a y a  (1970). To establ ish the 
necessi ty of the cond i t ion  we need a series of lemmas.  

Lemma 1. 

lira sup I f , (x ,y ) -Ef , (x ,y ) l=O 
n ~  o~ ( x , y ) ~ R 2  

with probability one. 
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Proof. Denote by G(. l u) the conditional distribution function of Y given 
X = u and by F~(.) the marginal distribution function of X. Hence, 

Ef,(x, y)= ; h22 k 1 ( ~ - )  k2 ( ~ ) d G ( v [ u )  dFl(u). 
- -o0  

Integrating by parts the integral in the bracket and inte(changing the order of 
integration we get 

Ef,(x,y)= ~f h22kl ~ - ; G(vlu)dk2 ~ dFl(u) 
- -o0  --0O 

- - 0 0  - - G O  

- -o0  - -o0  

where for fixed v 0 the function F* (u) is defined by 
u 

F*(u)-- I G(Volt) aS(t)=r(u, Vo). 
- - 0 0  

Again, integrating by parts the integral inside the bracket we obtain 

Ef,(x,y)= ; ; h$ZF(u,v)dkl (~_)x-u dk 2 (~_).y-v 
--0O - -o0  

Similarly, 

f.(x,y)= . . . . ;  ~h$2kl (~_)x-u k2 (~_)y-v dS.(u,v) 

-~ cf ; hn 2Sn(u,~J) dkl(~n-n dk 2(~nn )'Y-l) 
- -o0  - -o0  

(1) 

(2) 

where S.(u, v) is the two dimensional empirical distribution function defined by 

H j = l  

and �9 (x -  y) = 1 for y ~ x and vanishes for y > x. Hence, 

sup If.(x, y)-Ef.(x, Y)I < sup IS.(u, v)-F(u, v)l" Pl #2 hn 2 
( x ,  y ) ~ R 2  ( u ,  v ) ~ R 2  

where 
/.tl= ~ [dkl(U)l and #2= ~ Idke(u)l" 

- - c o  - - 0 9  

By a result due to Kiefer and Wolfowitz (1958) we now get for every e>0 

e {(xS~PR] L (x, y)-EL(x, y)l >e} 

eh 2 ) ( 21gZnh4n ] ~ 
GP I sup IS,(u,v)-F(u,v)l>--~<Roexp~ -.~7X..2 " 
- l~", ~)~R~ --  ~1/Z2 J l / ~  #2  J 
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where 20 and 21 

oo 

Z P {  sup IL(x,y)-EL(x,y)l>~} 
n = l  ( x , y ) e R 2  

is finite. An application of the Borel-Cantelli lemma completes the proof. 

Lemma2.  I f  lira sup ]f,(x,y)-g(x,y)l=O 
n ~  oo (x ,  y ) e R 2  

with probability one for some function g, then 

lira sup ]Ef,(x,y)-g(x,y)l=O. 
n ~ o o  ( x , y ) e R 2  

Proof The proof follows from Lemma 1 and the following inequality 

sup IEA(x , y)-g(x,  y)]< sup ]f,(x, y)-Ef , (x ,  y)] 
(x ,  y ) e R 2  (x ,  y ) g R 2  

+ sup [f,(x,y)-g(x,y)l. 
(x, y ) ~ R 2  

Lemma 3. If 

are positive constants. By condition (i) it n o w  follows that 

lim sup I f , ( x , y ) - g ( x , y ) l = O  
n ~  oo (x ,  y ) e R 2  

with probability one for some function g, then F is continuous. 

Proof Suppose F is discontinuous at some point (Xo, Yo). 

This implies that P ( X = x  o, Y=yo)>0 .  Then, 

= k2 y - v  dF(u,v) sup Ef , (x ,y )  sup ~ h22k 1 x - u  
(x, y)~R2 (x, y)eR2 _ m - oo hn 

(3) 
>h~2.p(X=xo,  Y=yo)[ sup ~ k l ( X - X ~  Y-~Y~ 

Again, we get from (1) 

sup Ef~(x,y)= sup ~ ~h;2F(x-h ,u ,y-h ,v)dkl (u)dk2(v)  
(x ,  y ) e R 2  (x, y ) e R 2  _ oa -- oo (4) 

< h ;  2 ]21 /22 .  

It is now easy to see that inequalities (3) and (4) contradict Lemma 2. 

Lemma 4. I f  
lira sup ] f , ( x , y ) - g ( x , y ) [ = 0  
n ~ o o  ( x , y ) e R 2  

with probability one for some function g, then g is uniformly continuous. 

Proof By Lemma 3, F is uniformly continuous. This implies that El, (x, y) is 
uniformly continuous. As g is by Lemma2  the uniform limit of uniformly 
continuous functions it is itself uniformly continuous. 

We now complete the proof of the theorem. By Lemma 2 it follows that for 
any point (x, y) x y x y 

lim 5 ~ EL(u , v)du dv = ~ ~ g(u, v)du dr. 
n ~  oo al bl al bl 

7* 
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Using Fubini 's  theorem and Lebesgue dominated  convergence theorem we get 

x y 

lim S S Ef,(u, v) du dv=F(x, y)-F(a D y)-F(x,  bO+F(al, b 0 
n ~  03 a l  bl  

x y 

: 

al bl 

By the fundamental  theorem of calculus we conclude that  

0 2 
- - F ( x , y ) = g ( x , y ) .  
Ox ~y 

Since the point  (x, y) is chosen arbitrarily, the desired conclusion now follows. 

It may  be ment ioned that  under  similar condit ions the theorem remains true 
for the estimates of  a multivariate density function. 
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