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Suppose that the minimum of a pair of independent non-negative random vari- 
ables X and Y has the same distribution, up to a scale factor, as the first of the 
two random variables. The restricted class of possible distributions for X and Y 
is identified. If in addition it is required that X and Y have distributions only 
differing by a scale factor, it is shown under mild regularity conditions that X 
and Y have Weibull distributions. 

I. Introduction 

Suppose that X and Y are independent non-negative random variables with the 
property that rain (X, Y) has the same distribution as aX, for some a > 0, which 
we write as 

min (X, Y) d aX. (1) 

What can be said about the distributions of X and Y? If X and Yare required to 
be identically distributed with common distribution function F(x), then following 
Arnold (1971), we may conclude that, subject to lira F(x)/x~=c for some c~>0, 

the common distribution must be of the Weibull type. A convenient reference 
for this and related results is Galambos (1975) (see also Gupta (1973)). It is not 
difficult to verify that if X and Y are independent identically distributed Weibull 
random variables then for any positive d there exists a constant a > 0  such that 

rain (X, dy) d=aX. Consequently, Weibull pairs provide examples of non-identi- 
cally distributed solutions to (1). Do other solutions exist? In Section 2, the family 
of solutions to (1) is identified. It may be noted that Weibull pairs, independent 
and with possibly different scale parameters, satisfy the more stringent require- 
ment that, for some a, b > 0, we have 

rain (X, Y) e= aX e= b Y (2) 
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In Section 3, it is shown that subject to lim F(x)/x ~ = c, and 0 < a, b < 1, the only 
X ~ 0  + 

non-degenerate solutions to (2) are Weibull random variables. Section 3 thus 
represents a generalization of one of the characterizations presented in Arnold 
(1971) and Gupta (1973). 

2. The Family of Solutions to min (X, Y) a= aX 

Suppose that X and Y are independent non-negative random variables with 
distribution functions F and G respectively and suppose that they satisfy (1). If 
we define if(x) = 1 - F(x) and G(x) = 1 - G(x), it follows that 

F(x) 8(x):P(x/a), v x. (3) 

Iterating this result we find, V n and V x that 

n 

if(x) = lf (a" x) l~l (J(a i x). (4) 
i = l  

If a >  1, then (4) implies i f (x)=0 for all x > 0  so that no non-degenerate solutions 
exist. If a = 1, one may conclude that the support of F lies to the left of the support 
of G and, except for this restriction, F and G are arbitrary. For  ae(0, 1) we con- 
clude from (4), letting n ~ 0% that 

O(3 

F(x)=f f (O)Hd(a~x) ,  for x=>0. 
i = 1  

This will be satisfied in the degenerate case  where ff(x)=-O, x>=O. Nontrivial 
solutions will arise if if(0) = 1 and if, for some x > 0, the indicated infinite product 
does not diverge to 0. The standard criterion for convergence of an infinite pro- 
duct then permits the following description of the class of solutions to (1), with 
a~(0, 1). Let G be a distribution function such that for some a~(O, 1), 

~ G ( a ~ x ) <  oo for some x > 0 .  (5) 
i = l  

Define 
0(3 

F(x) = 1 - l-[ [1 - G(a ~ x)]. (6) 
i = 1  

Any pair of independent random variables X and Y with respective distribution 
functions F and G given by (5) and (6) will satisfy (1). Any distribution function G, 
satisfying (5) may be used to generate such a solution to (1). If we choose G to 
be a Weibull distribution, the accompanying distribution function F (obtained 
from (6)), will also correspond to a Weibull distribution. An example of a non- 
Weibull solution is provided by considering the distribution function 

G(x)=0,  x < 0  

= l - e  -x2/2, 0 < x < l  

= l - - e  -x+1/2 , 1 ~X<OO. (7) 
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The accompanying distribution function F(x) has the form 

F(x)=0,  x < 0  

= 1 - e x p  { - a  2 x2/2(1 --a2)}, O<x<a -1 
a_a~+l j a 2 j + 2 x 2 ~  

= 1 - e x p  1 - a  -x-t 2 2(1--~a-)( 'a-~<x<a-(~+~)'- j = 1 , 2 , 3 , . . . .  
) 

(8) 

Distributions of the form (7) arise in the study of limiting distributions for waiting 
times in birthday problems with finite memory (see Arnold (1972)). 

An example of essentially different character is the following, supplied by a 
referee. Let X be uniform (1, 2) and Y uniform (1/2, 1), independent of X. It is 

evident that rain (X, Y)~=X/2 so that (1) is satisfied. Actually this example also 
satisfies (2). It is believed that the cases of most interest will be .those which can 
serve as models of failure distributions with time of failure not bounded away 
from zero. It thus remains of interest to find a distribution function G satisfying 
(5), which is non-Weibull and has support that is not bounded away from zero, 
but which leads to an accompanying distribution function F with a simple closed 
form. 

3. Solutions to min (X, Y) a= aX a= b Y 

To avoid cases of minimal interest restrict attention to non-negative independent 
random variables X and Y satisfying (2) for some pair (a, b) such that 0 < a, b < 1. 
If F is the distribution function of X and _P = 1 - F, it follows from (2) that 

which may be rewritten in the form 

f (x)=F(ax) F(bx), Vx. (9) 

Without loss of generality, in the rest of this section attention is restricted to 
x > 0. If (9) is iterated, one finds 

Fn - i 
F(x) = | l~ _f(a b i X)] F(b" x). 

ki=O J 

Consequently, provided that ~ F(a b i x)< ~, F will satisfy 
i=0 

F(x) = ]YI F(a b i x) > 0. (10) 
i=0  

As an example, consider the Weibull distribution F(x)= e - ~ ' .  If (10) is to be 
satisfied we must have 

e- ~.x~ = e -  2a=x~/(1 --b ~) 
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which implies 

1 = a~/(1 - b~). 

Thus F(x)= e -zx" will provide a solution to (2) provided that 

a~---1-bL (11) 

It is of interest to determine conditions under which this family of Weibull solu- 
tions exhausts the lists of solutions to (2). Some conditions are necessary since, 
when a=b = 1/2, non-Weibull solutions to (2) can be constructed (see Arnold 
(1971) and Huang (1974)). For the case a=b (the identically distributed case), 
Arnold (1971) showed that the assumption 

lira f ( x ) / x  ~ = c > 0 (12) 
X ~ 0  + 

guarantees a Weibull solution. In fact, assumption (12) is adequate to ensure that 
all solutions are Weibull for any pair a, b satisfying (11). 

By considering X ~ for suitable ~, the problem reduces to that of finding solu- 
tions to 

min (X, Y ) ~ 2 X d ( 1  --)~) Y 

for 2 E (0, 1) [i.e. choose ~ such that a~+ b~= 1 and set 2 = a~]. The characterization 
problem may then be stated in terms of exponential distributions as follows. 

Theorem 3.1. Let X and Y be non-degenerate non-negative independent random 
variables satisfying 

rain (X, Y)s (1 -2)  Y (13) 

for some 2e(0, 1). Let F be the distribution function of X and assume F has a right 
derivative at zero denoted by F'(O). Then F must be an exponential distribution. 

Proof Observe that (13) implies F(0)=0 or 1. Consequently since F is non- 
degenerate we must have F(0)=0. Let O(x )=- logF(x ) .  We see that ~ has a 
right derivative at zero which will be denoted by 0'(0). 

From (13) it follows that 

F(x) = F(~ x) F((1 - ,~) x), v x 

l-cf. Eq. (9)]. Taking logarithms one obtains 

Ip(x) = @(2x) + tp((1 - 2) x). (14) 

Iteration of (14) yields, for every integer n, 

n n 

Let f l=max (2, 1 - 2 )  and note that fl< 1. Fix x > 0  and let e>0. There exists 6>0  

such that whenever x < 5  we have ~ t x ) - o ' ( 0 )  <e. Choose N=N(~ ,2 ,  x) such 
x 
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that 2k(1--2)"-kX<6 whenever n > N .  (This is possible since 2k(1--2)n-k<fln). 
Hence for n > N we get 

n (n)k - x , ' ( 0 )  Ir ~ 0[~(1-,0"-kx] 
k= 0 

k k 2k(1--2)"-kXk )ok(1--2)n--kX 

It thus follows since e is arbitrary, that, 0(x)=xO'(0 ). If ~/(0)=0 then 0(x)=-0 
and F(x)=-O, x>>_O, which is impossible, so ~'(0)>0. Consequently F(x) is an 
exponential distribution function with mean [O'(0)]-a. 

By considering powers of exponential random variables the above permits 
the following conclusion. If X and Y are non-degenerate non-negative random 

d 
variables with rain (X, Y) d= a X  = b Y where 0 < a, b < 1 then X and Y have Weibull 
distributions provided that, for that c~ for which a s + b ~ = 1, we have 

lira Fx(x)/x ~ = c. 
x ~ O  + 

By using multinomial expansions instead of binomial expansions, Theorem 3.1 
can be generalized and used to prove: 

Theorem 3.2. Let  X 1, X 2 . . . . .  X m be independent non-degenerate non-negative 
random variables. Suppose that 

min ( X  1 , X 2 . . . .  , X m  ) d ~ d d = a  I X 1 = a  2 X z . . . . .  a,, Xm, 

where 0 < a i <  1, i=  1,2, . . . ,  m. I f  for  that e for which ~ a is-l,- lira Fx(x)/x~=c 
i = l  x ~ O +  

then the Xi 's  have Weibull distributions. 
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