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Summary. For a set of i.i.d, random variables indexed by the positive integer 
d-dimensional lattice points we give conditions for the existence of moments 
of the supremum of normed partial sums, thereby obtaining results related to 
the Kolmogorov-Marcinkiewicz strong law of large numbers and the law of 
the iterated logarithm. 

1. Introduction 

Let { X , ; n > l }  be a sequence of independent, identically distributed (i.i.d.) 
random variables and let S,,, n > 1, denote their partial sums. Further, let X be a 
random variable which has the same distribution as X 1 and which is inde- 
pendent of all other random variables, Let the common distribution function be 
F(xJ=P(X<=x). 

Marcinkiewicz and Zygmund [13] proved that 

EsuplS, , /nlP<c~,  p > l ,  (1.1) 
n 

provided 

EjXjlog+jX]<oo i f p = l  and EBXBP<~ if p > l .  (1.2) 

A related but more general result was proved by Wiener [-18] in the context 
of ergodic theory. 

Since sup iS,In] > ISI/1 r = IX11, (1.1) implies that E ]XI p < ~ and therefore (1.2) 
n 

is trivially necessary for (1.1) to hold if p > l .  Burkholder [1] proved the 
necessity for p = 1 and further that (1.1), (1.2) and 

E sup ]X,/n] l' < c~, p ~ 1, (1.3) 
n 

are equivalent. 
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New proofs of the equivalences of (1.1)-(1.3) were given in [12] and (for 
P ( X > 0 ) = I )  in [5]. A variation of this result has been established in [2]. 
Gabriel has generalized the result to the case of i.i.d, random variables with 
multidimensional indices for the case p = 1, (see [3] and [4], Theorem 5). 

Teicher [16] studied the problem for more general normalizing sequences 
and, finally, Siegmund [14] and Teicher [17] proved that, if EX =0, then 

EX2.(12(lXI))-l.l(IXI)<o�9 if p = 2  and EIX[ p if p > 2  (1.4) 

E sup [Xn/nl/n/2(n ) f < oo (1.5) 
n 

E sup IS,,/]/n 12 (n)[" < oo (1.6) 
n 

are all equivalent, Siegmund proving it for the integers 2, (3, 4 . . . .  ) and Teicher 
for p>2.  

Here and in the following l(x)=max{1,1ogx} and 12(x)=l(I(x)) 
= max { 1, loglog x}. 

The main purpose of this paper is to generalize the last result to random 
variables with multidimensional indices. The proofs in [14] and [17] use sharp 
tail estimates of the partial sums (exponential bounds), whereas our approach is 
different, making use of an extension of a result by Hoffmann-Jorgensen, [8], 
Corollary 3.4, which will provide a general result for proving implications of the 
type (1.3)~(1.1) and (1.5)~(1.6). This also gives a new proof for the case d =  1. 
With this, more general, method we also prove a result corresponding to the 
normalizing sequence {nl/r}n=l, ~ 0 < r < 2 ,  which, for r:t=l relates to the Marcin- 
kiewicz strong law (see e.g. Lo6ve Ell], pp. 242-243) in the same way as the case 
r = l  relates to the classical Kolmogorov strong law. Note also, that while 
martingale methods work if r = 1, this is not the case if r 4= 1. 

After some preliminaries in Sect. 2, the results are formulated in Sect. 3 and 
proved in Sect. 4 and 5. Sect. 6 finally, contains some remarks on how the results 
relate to the law of large numbers and the law of the iterated logarithm and on 
the proofs. 

2. Preliminaries 

We follow the notation of [15, 6], and [7]. Let Zd+, d>__ 1, be the positive integer 
d-dimensional lattice points with coordinate-wise partial ordering, ~ .  Points in 
Z~+ are denoted by m, n etc. (We use, however, m, n etc. if d =  1.) For n~Zd+ we 
define In] to be the product of the coordinates n~, l<i<d, and n ~ o o  is to be 
interpreted as min n i ~  oo. 

l<i=<d 
Also, [x] denotes the integral part of x and I{-} denotes the indicator 

function of the set in braces. 
Following Smythe [15], let d(x)=card{neZe+;Inl=[x]} and M(x) 

[x] 

=card (neZ~+; Inl=<[x]} = y, d(k) for x > l  and M ( x ) = l  for 0-<x-<l. Then 
k = l  

M(x)=O(x(logx) e-l) and d(x)=o(x~)V(5>O as x ~ o o .  
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Lemma 2.2. 
independent 
positive real 
In[ _-< Iml.  Se~ 

Lemma 2.1. For an), random variable X, the following are equivalent: 

giN[.  (/(IXl)) a < ov (2.1) 

L F~P(IXI > m  lkl)<oo. (2.2) 
m = i  k 

Proof By considering 7 e+~ with elements k* =(k t, k d, m) we note that (2.2) 
can be written 

P(IXt > Ik* I) < ~ .  (2.3) 
k *  

The conclusion now follows from [6], Lemma 2.1 (cf. also [153, Lemma 2.1). 

The following result is an extension of Corollary 3.4 of [8] to the d- 
dimensional case. 

Let E be a Banach space with norm ]1" II and let {Y,:neZd+} be 
E-valued random variables. Further, let {a , ;neZ~}  be a set of 
numbers which are functions of Inl only and such that a , < a  m if 

gn=an*" ~ Yk, V=supl[g.[I, W=suplla2*" g.l]. 
k ~ n  n n 

and suppose that V<oo a.s. Then W<oo a.s. and if EWP<oo for some p such 
that 0 < p <  oo, then EVP<ov. 

Remarks. 1. For d = 1 and a n -  1, this is Theorem 3.1 of Hoffmann-Jorgensen [8], 
and for d = 1 and general nondecreasing sequences {a,}n% , it is Corollary 3.4 of 
[8].  

2. Since V< sup ilU, l i + sup J[U.J i it is obvious that the lemma remains true 
Inl _<,o Inl >,,o 

if the monotonicity only holds for Inl >some n o. 
The proof is an appropriate modification of those given in [8] for Theo- 

rem 3.1 and Corollary 3.4. 

Proof Since W < 2  a V we always have W< oo a.s. 

First assume that a ,=- i  and that Y. has a symmetric distribution for all 
n~Z~+. The L6vy inequality for symmetric Banach space valued random vari- 
ables indexed by Za+ now becomes 

P(sup IPU, II >2) <Re sup P(ll ~,ll _->~), ~>0.  (2.4) 
n n 

This is seen by combining the proof in Kahane [9], p. 12 for the case d = 1 
with the method of Gabriel [3], where a related problem is treated for general d 
in the real valued case. 

Therefore, the inequality on the bottom of p. 164 of [8] is modified into 

P(V>=2t +s)<2~. P ( W > s ) +  2 d+ 2 . (P(V >t)) 2. (2.5) 

The conclusion now follows exactly as in [8]. 
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For the general case we proceed roughly as in [8], p. 167. For each j, let us 
define 

~jn={~nl' Y] ifj~n 
otherwise 

and ~ : {~, ;  n~Ze+ }. 
By defining Sj = 

k-<j 

- ~'an 1' Z Yk if j<n  
Sjn =~ k<j 

Un A j otherwise, 

Yk it follows that Sj = {Sin; nEZ~+}, where 

(2.6) 

(2.7) 

and where n/x j denotes coordinate-wise minimum. The conclusion now follows 
from the first part of the lemma just as in [81, p. 167. We omit the details. 

Remark. For our purposes we need Lemma 2.2 in the real valued case only. The 
proof for general {a.}, however, is based on the validity of the case a , - 1  for 
Banach space valued random variables (cf. [8]) and this is why the lemma has 
been given in the more abstract setting. 

3. Results 

In this section we state two theorems, the proofs of which are given in Sections 4 
and 5 respectively. 

Theorem 3.1. Let X and {Xn; n~Zd+} be i.i.d, random variables with E X  =O. Let 
p > 2. The following statements are equivalent." 

EX2.(12(lXl)) 1.(/(IX}))d<oo /f p = 2  and E I X l P < ~  if p>2.  (3.1) 

x .  p 
ESUPn ] / n  -12(n ) < ~ "  (3.2) 

E sup, 1/n[ . /2(  n ) < ~ .  (3.3) 

For d = 1, the above are also equivalent ro 

x,, P < oo (3.4) sup E 

sN v <  (3.5) sup E ~ o% 

where sup means that the supremum is taken over all stopping rules (cf [12, 2]). 
N 
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For d = l  and p=2,  (3, 4 . . . .  ) the equivalence of (3.1)-(3.3) has been proved 
by Siegmund [14] and for d = l  and p > 2  by Teicher [17], in both cases with a 
method which is different from the one presented below. The fact that (3.1)-(3.3) 
are equivalent to (3.4) and (3.5) for d = 1 is new. 

As mentioned in the introduction, several authors have treated the problem 
of relating moments of X to moments of sup l n - l . X , I  and sup In 1.S,[. 

n tl 

Lemma 2.2 makes it possible to derive the following generalization. 

Theorem 3.2. Let X and {X,; nEZd+} be i.i.d, random variables and suppose that 
E X = O  whenever it is finite. Let 0 < r < 2  and p>r. The following statements are 
equivalent: 

E]XlP.(l(lXl))d<oo if p=r  and EIXlP<oo if p>r. (3.6) 

X P 
e --i1 sup inrl/~ < oo. (3.7) 

S P 
Esup [ n ~  <oo. (3.8) 

For d---1 the above are also equivalent to 

sup E Xu p N N1/r < oo (3.9) 

sup E SN p N N1/r < or, (3.10) 

where, as before, the supremum is taken over all stopping rules. 

Remark. It is in fact no loss of generality to assume that E X = O  if r <  1 _<p. This 
is seen as follows: 

Consider e.g. (3.8) and suppose that E X = # # O .  Then 

sup l in I 1/~. S. I __<sup i in[-a/~. (Sn_ Inl #)l +/~ sup InJ 1-~/r 
n I i  n 

<suplln1-1/~' ~ (Xk-~)l+#, 
n k ~ n  

which shows that if (3.8) holds for E X  =0  it also holds for EX ~= O. 
The case d = 1, r = 1, has been studied by several authors. Marcinkiewicz and 

Zygmund [13] proved that (3.6)~(3.8). Burkholder [1] proved that (3.6).(3.8) 
are equivalent if p = 1. Further, when p = 1, McCabe and Shepp [12] proved the 
equivalence of (3.6).(3.10) partly with a different method, Davis [2] proved the 
equivalence of (3.6), (3.9), and (3.10) and, for P (X  > 0)= 1, Gundy [5], proved the 
equivalence of (3.6) and (3.8). 

For d>2,  r = p = l ,  Gabriel [3] and [4], Theorem 5 has demonstrated the 
equivalence of (3.6).(3.8). 
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4. Proof of Theorem 3.1. 

(3.1) ~ (3 .2) .  Set a n =l~lnl"/2(Inl) and b. =~lnl' (12(Inl))-1, i i ~ Z  d and define 

S ' n = S n . l { I X ,  l<__b,,} and X ~ = X , , - X ' . .  (4.1) 

Lemma 4.1. Let X and {X,; n~Ze+} be i.i.d, random variables. I f  X '  n and X~ are 
defined as in (4.1), then 

! . E X  .(12(]XI))l-v.(l(lXI)) ~-1 if 0 < p < 2  

~a;V.EIX'~l  p< E X  2 (/2(IXI)) 1.(/([XI))~ if p--2 

" EIXI v if p>2,  

where c is a constant. 

Proof For convenience we write aj(bj) instead of a ( j ,  1 . . . . .  1)(b(j, 1 ..... 1))" We first 
show that, for large j, 

j [c. b~ -p. (12(bj)) 1 -P. (l(bj)) a-1 if 0 < p  <2 

Z (k. l 2 (k))- p/2. d(k) < ]c. (/2 (b j))- l .  (/(bj))d if p = 2 (4.2) 

k=l [c if p>2.  

Let p > 2. Since d(x) = o(x ~) V 6 > 0 as x ~ ~ we have d(j) <j~ if j >Jo. Choose 
6 such that 0 < 6 < p / 2 -  1 to obtain 

J Jo J 
(k'12(k))-v/Z'd(k) < ~ k-v/2.d(k)+ ~ k -'p/2)+~ 

k - 1  k = l  k - j o + l  

<MOo)+ ~ k-CP/a)+~<oo, 
since p/2 - 6 > 1. k = 1 

This proves (4.2) for p > 2. 
Now, let p=2.  Summation by parts together with the facts that M(x) 

=O(x(logx) d-l) as x ~ o o  and 

J 
~. (k 12 (k))-J. (l(k)) ~-1 = O((loglog j)-  1. (log j)a) as j --+ oo (4.3) 

k = l  

(see [14], p. 528 for the case d = 1) yield 

J J 
(k 12(k)) -~'/2. d(k)= ~ (k 12(k)) -1. d(k) 

k = l  k ~ l  

=(J"/2(J))- 1. M ( j  -~- 1 ) - -  1 

J 
+ ~ ((k 12(k))- ~ - ( ( k +  1) 12(k+ 1))- 1).  M(k) 

k = l  

<( j .  loglogj)- 1. M(j+  1) 

J 
+ ~ k- 2. (/2 (k))-~. M(k) ~ (j. loglog j ) - l .  M(j + 1) 

k = l  

J 
+ Y~ (kl~(k)) -1 .  (l(k)) ~-1 

k = l  
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= O((loglog j ) -  1. (log j)d- ~) + O((loglog j ) -  1. (log j)a) 

= O((loglog j ) -  1. (log j)d) 

= O((1oglog bj)- 1. (log bS), as j ~ ~ .  

Thus (4.2) also holds if p = 2. 
Finally, if 0 < p < 2, (4.2) follows by the same procedure as for the case p = 2 

together with the fact that 
J 

(k 12(k))-P/2 . (l(k)) a - l =  O((loglogj) -p/2 .jl p/2 . (iogj)d-1) 
k = l  

=O(b~-P.(loglogbj)l-P.(logbj) a-l) as j ~ .  

This concludes the proof of (4.2) and we return to the proof of the lemma. 
We have 

~, a alp. E]X~f  = ~ d(k). a; p ~ J" ]xf dF 
n k = l  j=k  b~<]x[<-bd~l 

) ./2(k)) pjz.d(k) �9 ~ ]xlPdF. 
~ j  1 k bs<[x[<bj+z 

The conclusion follows by inserting the estimates obtained in (4.2) in the last 
expression. (Cf. also [14], p. 528.) 

The implication (3.1)~(3.2) now is immediate, because of 

E sup la ,  1. X', I p < sup (a,- 1. b.)p < 1 
n 1, (4.4) 

E sup la 2 i. X2rp < ~  a2p. EIX2jp. 
n n 

This terminates the first step of the proof. 

(3.2) ~(3.1). Since sup IXn/l/~l/2(Inl)l > IX11 it follows that (3.2)~ElXl p < ~ .  If 
n 

p > 2 there is nothing more to prove, so suppose that p = 2. 
For d = 1 the implication has been proved by Siegmund [14]. Since the proof 

below is based on induction on the dimension we present a proof for the case d 
=1 which is related to the proof given in Gabriel [3,4] for the implication 
(3.7)~(3.6) with p = r =  1. 

Since the conclusion is trivial for uniformly bounded random variables we 
may assume without loss of generality that X is unbounded. We may also 
assume that P(IXf < 1)> 0. Recall that we already have EX2< oo. 

Set A =  I~I P ( X 2 < j  �9 Then, from the well-known fact that for a se- 
j ~ l  

quence of nonnegative real numbers {~,}~= 1~ IF[ ( 1 - % )  converges if and only if 

c~, converges, it follows that A > 0  if and only if p(X2>j.12(j))<cr.). 
n = l  / = 1  

Since this sum is majorized by ~ P(X 2 > j ) < E X Z <  o% we conclude that 
j = l  

A > 0. (4.5) 



212 A. Gut 

By using the argument of Gabriel [3] and [4], pp. 892-893, we obtain, for d 
= 1, and m = 1, 2 . . . .  

P s u p ~ > m  > p(X2>mn.12(n)) El P(IXjl<__l/j.12(j)) 
n = l  j = l  

>A. ~ p(X2>mn ./2(n)) 
n = l  

and thus 

o e > E s u p  X, _> ~ P sup >m 
n n.12(n )-~2=1 \ , n./2(n) 

>=A ~ ~ p(X2>rnn.12(n)) 
m = l  n = l  

m = l  n = l  

It now follows from Lemma 2.1 that EX 2.(/2(IXt)) -1 . / ( IX])<oe,  which 
proves the conclusion for d = 1. 

Next, let d=>2 and suppose that the conclusion is known to hold for d - 1  
dimensions. Since 

(x2) " > E sup o o > E s u p  [n[ - /~ [n l )  - , . . . . . . . . . . . . .  \[n[./2(Inl)] 
n d  = 1 

it follows from the induction hypothesis that EX2.(12(IX]))-l.(l([XI))a-l<oc,. 
According to [6], Lemma2.1 (with a = r = e = l  and m=0)  the moment 

condition is equivalent to 

~, d(j). P(X 2. (12(IXD)- 1 >j) < 00, 
j = l  

which in turn is equivalent to 

d(j). P(X 2 >j. /2(j)) < oo, (4.6) 
j = l  

because P(X 2. (I 2 (IX I))-1 >j)=< p(x 2 >j. 12 (j))< p(x 2" (/2 (IX [))-1 >j/2). 
Define Yj= sup Xk z, j =  1, 2 . . . . .  The Yj:s are independent (but not identically 

Ikl =j 
distributed) random variables. We wish to show that 

B= fI  P(YJ<J/2(J)) >0, (4.7) 
j = l  

or, equivalently, (cf. above) that 

~, P(Yj>j. /2(j))< oe. (4.8) 
j = l  
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To prove this we first note that  

P(Yj > j .  12 (j)) = 1 - (P(X 2 < j.  l 2 (j)))dIj) = 1 -- (1 - P(X 2 >j. 12 (j))),o). 

Furthermore ,  since (4.6) in part icular  implies that 

d(j). P(X 2 >j. 12 (j)) ---+ 0 as j -+ oo 

we obtain 

4. d(j). P(X 2 >j. I 2 (j)) < P(Yj >j. l 2 (j)) N d(j). P(X 2 > j .  12 (j)), (4.9) 

the first inequality only being true for j > some Jo, where Jo is large. 
Consequently,  B > 0 if and only if 

d(j). P(X 2 >j. /2(J)) < 00. 
j = l  

in view of the computa t ions  which lead to (4.6) this sum is finite if and only if 
EX2"(lx([XI)) -1./([X])~-i<oo. However,  this moment  condit ion was already 
known to hold because of the induction hypothesis. 

Therefore,  

Ikl=j P ( s u p  ik l_12(~)>m)=P(sup sup Ikl 

=P(sup Y~J >m~>>-B �9 ~ P(Yj>mjl2(j)) 
\ J J'12(j) / -  j=l 

B 
> ~.  .~. d(j). P(X 2 >mj I2(j)), 

J = J O  

where the last inequality follows from (4.9). Finally, 

oo > E  sup X2 > B  ~, d(J)'P(XZ>mjl2(j)) 
k Ik l . /2 ( [k l )=2  m=1J=Jo 

> 7  d(j). P(X 2. ( / 2 ( I X I ) )  1 >m j) 
--  m = l  j = j o  

=~ ~ P(X 2" (/2 ([XI)) -~ >m-Ik l )  
m = 1 {k; [k l  >_-Jo} 

B o~ >_-~ - 2  , . - i  ~ P(X2 . ( /2 (Jx l ) )  l > m l k P )  

B. ~ M(jo) P(X2. (/2(IXI)) -1 >m) 
2 m=l 

>=~- ~p(xz.(12(IX]))-l>rnlkl)_ .M(jo).EX2.(I2(IX[))1. 
- -  m = l  k 

An applicat ion of L e m m a  2.1 now shows that (3.1) holds and so the proof  of 
this par t  is complete.  
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(3.2) ~ (3.3). We already know that (3.2)<=>(3.1). In order to apply Lemma2.2 

we set Y;,---X n and a. =]/In1-12(Inl). Then, U,=(Inl.12(tnl))-l/2.S., 

V--supl(lnl.lz(lnl))-l/Z.Snl and W=supl(ln[.lz(ln[))-l/2.Xn]. 
n n 

The law of the iterated logarithm (see [19J, p. 280) guarantees the a.s. 
finiteness of V, since (3.1) holds. Thus, assuming (3.2) i.e. that E W  p < oo it follows 
that EVP< ~ ,  i.e. it follows that (3.3) holds. 

(3.3) ~ (3.2). Immediate, since W < 2 d V. 
This concludes the proof of the theorem if d > 2. We therefore assume that d 

= 1 in order to complete the proof also for this case. This is accomplished by 
suitable modifications of the proof given in 1-12] for the case a, = n. 

(3.2) ~ (3,4). Immediate, since for every rule N, 

[(N- 12(N)) 1/2. XN [ <sup ](n./2(tl))- 1/2. Xn[. 
n 

(3.3) ~(3.5). Similarly, since 

[(N' I2(N))- 1 / 2 .  S N  [ <sup L(n" 12 (n))- 1 / 2 .  S n [ .  
n 

(3.4) ~ (3.1). By choosing N = I  we find that (3.4)~E]X]P<oo and the proof is 
complete unless p = 2. Furthermore, like in the proof of (3.2)~(3.1) we note that 
it is no loss of generality to assume that X is unbounded and that P(]X] < 1)> 0. 
Define 

N=inf{n;  ]Xn l>~ . l z (n ) } ,  N=oo  if no such n exists. (4.11) 

Since we already know that EX 2 < ~  it follows that (4.5) holds. Further- 
more, 

P(IXnl <an)" P(LXn+ 11 >an+ 1) P(N = n + 1) = P(N = n). , (4.12) 
P(IX,,I > a,,) 

which, after iteration, implies that 

P(N=n)  > A .  P ( N = l )  
P(lX~l>a,)= p ( l X l > l ) - A > O ,  (4.13) 

by (4.5) and the fact that X is unbounded. 
An application of (4.3) shows that 

(~. 12 (n))-~ > ~ (,.  12 0,))-1 
In; ]xi>l/n 12(,~) l {n: n<x2/2 �9 I2([xl}) 

=O((logloglxl) 1.1oglxl) as Ix]--+oo. (4.14) 

Finally, independence, (4.13) and (4.14) yield 
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> const. 
--09 

a,7 ~. E(X~ IN =n).  P(N =n) oo>E((N.12(N))  1 . X 2 . I { N < o Q } ) =  ~, 

= 2 a22"E(X~,llX.I>a,,)'P(N=n) 
n: 1 

= ~ a, 2.(p(lx,,l>a,)) -1. ~ x2dF(x)'P(N=n) 
n=l  Ixl>a. 

>=A. ~ a: 2. ~ x2dF(x)=A �9 S x2( ~ a:2).dF(x) 
n=l [xl>a,~ '~ {n:lxl>a,l 

= A .  ~ x2( ~ (n.12(n))-l).dF(x) 
- ~ {~z, l x l >  l . / q , ) l  

x2(la(Ixl)) - a " I(Ix[) dE(x) 

which proves the assertion. 

(3,5) ~ (3.1). By choosing N - 1  we first obtain (3.5)~EIXtP< ~ ,  which com- 
pletes the proof  unless p=2. For this case we define N as in (4.11) and impose 
the usual conditions on X. We have 

E((N/2 ( N ) ) - I .  XN ' I {N < ~ }) 

<2E((N/z(N))  -1 .  S~. I { N  < or})+2 E((N l:(n)) -1. S ~- �9 I{N<ov}). (4.15) N- 1 

The first term on the RHS of (4.15) is finite by assumption and we now want 
to show that the second term is finite too. 

Towards this end we note that 

E(X~I]Xkl <Ilk/2(k)) =EX~.. I{JXk[ <]/k  12(k)} < E X  2 (4.16) 
P([Xu[ < }&~2 (k)) = P(IXl _-< 1 )  

and, since E X  = 0, that 

V"lf]" 12 (k))[ IE(Xk" I {IXkl > l /k  12 (k)})J IE(x  r PXkl < 
P(IX~l < ~ ( k ) )  

E X  2 E X  2 < - -  < 
- l / k  12(k). P(rXt < 1) = l /k .  P(IXI < 1) (4.17) 

Further, if i4=j, then 

E(x, xjl IXil ~l/~z2(i), lxjl ~ 1/j lz (j)) 

E(Xi Xj. I {IX, I ~IA [z (i), IXjl ~ V~ 12 (j)}) 

E (X i �9 I {] X i ] < ]/il2(ii}. X s �9 I {I Xj[ <= ]/~j 12 (j) }) 

P(IX, I ~ 1/~2 (i)) �9 P(IXjl ~]/j/2 (JD) 

E ( X i . / { I X ,  I ~1~2(i)}) E(Xj.I{IXjl ~ J~2(J)}) 
P(IXil<]/il2(~) P(]XjI<]/~z(j)) 
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It follows from (4.17) that 
(EX2)  2 

I (x,x,I IX, l<=~, ISjl<=l~)l<=l/~(P(ISl<=x))2 if i#j.  (4.18) 

Finally, independence (4.16) and (4.18) yield 

E((N. /2(N))- 1. S 2_ 1" I {N < oo}) 

= ~ a;2"E(S~-IIN=n)'P(N=n) 
n = l  

= ~ a:  2" (n~l E(X~[IXk[ <ak) 

n= 1 \k= 1 
\ 

+2~ ~(x~xjllx~t__<a. Ix~l_-<a?). P(N=~) 
i m j  / 

< ~  a~_Z,((n_t , EX 2 .= i .~1 (  EX 2 )2 ~ j ) . P ( N : n )  
= . = ,  P ( IXl~  <-<1)~-~= j : I \ P ( I X I  <1) " 

EX 2 
< ' ~ ( /2(n) ) - l 'P(N=n)  
=P(IX[__<l) ,=1 

+ \ r ( IXI < 1) . = 1  

E X  2 4 ( E X 2 )  2 
< - -  4 < o o .  
=P(IXI__< 1) (P(IXt__< 1)) 2 

We now know that the LHS of (4.15) is finite, i.e. we know that 
E(N.12(N))-I .X~.I{N<oo}<o% where N is defined as in (4.11). From the 
proof of the previous step we know that this fact implies that (3.1) holds. The 
proof of this step and thus of the whole theorem is therefore complete. 

Remark 1. The proof of the theorem also yields a new proof of (3.2)~(3.1) for 
the case d = l  since we have shown that (3.2)~(3.4)~(3.1). 

5. Proof of  Theorem 3.2. 

The proof follows the pattern of Section 4 and is a little easier. 

(3.6) ~(3.7). Set X' .=X. .  I{IX.l<inl 1/'} and X'~ '=X.-X '  n. Computations as in 
the proof of Theorem 3.1 show that 

~c . EIXf  . (I(IXI)) ~ if p=r 
gsup[lnl-1/r'X'nf<l~ (c EIXI p if p > r  (5.1) 

and 

g sup [[nl- 1/r  X,nl p ~ 1. (5.2) 
n 
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(3.7)0(3.6). Trivially, (3 .7)~EIXIP<so.  If p > r  we are done, so assume that 
p=  r, in which case (3.7) can be re-written into 

E sup (/nl- 1 .  i X , , [ p  ) < o o .  ( 5 . 3 )  
n 

Since {IX.I ~} is a sequence of i.i.d, integrable random variables, the problem 
is reduced to the case r =  1 and the conclusion thus follows from [3] and [4], 
Theorem 5, according to which (5.3) is equivalent to EIX[ p. (/(IXlP))a < 0% which 
in turn is equivalent to EIX] p. (I(]X[))a< or. Thus (3.6) follows. 

(3.7)0(3.8). By the preceding step we also known that (3.6) holds. From the 
Kolomogorov-Marcinkiewicz law (see [11], pp. 242-243 for the case d~-i and 
[6], Theorem 3.1 for the case d>2)  it follows that V=supl]nf-1/r. Snl<vo a.s. 

n 

Since (3.7) holds, i.e. EWP< 00, where W=supl ln]  -1/~. X,], an application of 
n 

Lemma 2.2 yields EV p < oo, i.e. (3.8). 

(3.8) ~(3.7). Immediate, since W < 2  e. V. 
This concludes the proof if d>2 .  We therefore assume that d = 1 in the rest 

of the proof. 
The implications (3.7)~ (3.9) and (3.8)~(3.10) follow just as the correspond- 

ing implications of Theorem 3.1. By choosing N-=I it follows that (3.9) and 
(3.10) both imply that E[XfP< ~ ,  which completes the proof for the case p>r. 

If p = r we define 

N=inf{n ;  [X,,J>nl/'}, N=ov  if no such n exists. (5.4) 

By performing the same kind of computations as in [12] and Sect. 4 it follows 
that (3.9) and (3.10) both imply that (3.6) holds also for this case, The details are 
omitted. 

6. Complements 

1. There are various ways of obtaining additional information about the law of 
the iterated logarithm. 

Let V=supla21.S,,I, L~=sup{rn]; IS, l>e.a,},  (supJ~=0), and N~ 
n 

=~I{ISn l>e .a , ,  }, with a .=J /~ - /2 ( ]n ] ) .  Thus, V is the quantity studied in 
n 

Theorem 3.1, L a is a last exit time and Ne equals the number of partial sums 
exceeding e. a. in absolute value. 

The law of the iterated logarithm, (see Wichura [19], p. 280) implies e.g. that, 
if ~y2=EX2<oo for the case d = l  and E X  2 .(12(IX]))-l.(l(IXl))d-l<oo for the 

case d=>2, then N~ and L d are a.s. finite i f e > a  2 ~ d  and then V< so a.s. Also, in 
[7], Theorem6.2, it is shown that the same assumptions imply that 

~ InJ- 1 �9 p(JS,, .,J > ~. a . )  < o o =  for ~ > a l / S d .  
n 
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Theorem 3.t states e.g. that, if in addition E X  z.(/2(tX])) 1.(I([XI))a< oo, 

then EV2< oo. In [7] it is shown that, for e > o ~ ,  the same conditions 
entail E I(Ld)< o% (Theorem 8.3) and E/(Nd) < co, (Corollary 8.5), and also that 

~ j -  ' .  P(sup ]a~- 1. Sk[ > e) < ~ ,  (Theorem 6.1). 
j = l  J_<lkl 

2. In the same way one can obtain additional information about the 
Kolomogorov-Marcinkiewicz strong law of large numbers, which states that, if 
E X = O  whenever it is finite, then lnl-l /r .  Sn---~0 a.s. as n - - ~  if and only if 
EIXI r. l(]XI)a-l<oo, where 0 < r < 2 .  See e.g. Lo6ve [11], pp. 242-243 for the 
case d = l  and [6], Theorem 3.1 for the case d>2.  

Let V, L d and N d be defined as in the previous remark with a,=lnL 1/". The 
strong law thus implies that, under the above moment conditions on X, Nd, L d 
and V are all a.s. finite. 

Theorem 3.2 shows e.g. that, if in addition EIXI". (l(IXl))d < o9, then EVr< o0 
for 0 < r < 2 .  In [6], Theorem4.2, it is shown that the same conditions are 

0:5 

equivalent to ~ j - 1 .  P(sup lak 1. Ski >e)<oO for all ~>0 and, by the method of 
j = l  j < l k l  

[7], Section 8, this can be used to show that E l(Ld)<oo. Furthermore, if 
0 < r < 2, p > r, the statements 

E[X[V.(l(IXI))a-l<c~ and, if p > l ,  EX=O, 

P - 1  
EL~ <oo for all e>0,  

• f--2.  P(sup la~-l. Skl~e)< oo 
j = l  J_-<lkl 

for all ~ > 0 

are all equivalent (see [7], Theorem 8.1 and [63, Theorem 4.1). Further, these 
statements all imply (see [73, Corollary 8.3) that 

P---1 p _  
E N  ~ . l(Nd)-(e- 1) (7 1)<o o for all e > 0. 

3. The cases p < 2  (Theorem 3.1) and p<r  (Theorem 3.2) do not yield much 
more than cases p = 2 and p = r respectively. This is because a necessary condition 
for EVP<oo, (where V--supla2l.Snl), is that V<c~ a.s. and the necessary con- 

n 

ditions for this to hold are given by the law of the iterated logarithm and the 
strong law of large numbers respectively, conditions which are very close to the 
boundary conditions given in Theorems 3.1 and 3.2. For the sufficiency of these 

conditions when d = l ,  p = l ,  see Siegmund [14] for an=l/n. /2(n) and Klass 
[10], p. 904, for an=n l/r, 1 < r < 2 .  

4. By modifying the above proofs it is possible to obtain necessary 
and sufficient conditions for finiteness of E supl(In]l(Inl))-l/2.Xk] p and 

n 

Esup]([nll(ln]))-l/2.S,,[ p. For the case d - - l ,  p = 2  see [14], p. 530, where it is 
n 
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mentioned that, if EX=O, then E sup ((n /(n)) 1 . $ 2 ) < o o  if and only if 
n 

EX 2 �9 12(IXl)< c~. 
5. It is also possible to show that (3.1)~(3.3) by an extension of the method 

of Siegmund and, since the crucial estimates are available from [7], we present a 
brief sketch of how this can be achieved in the symmetric case. 

Again X' n and X~ are as in Sect. 4, S' n = ~ Xj, and S~ = S . - S '  n. Also, a n, 
k ~ n  

b., aj, b~ are as before. 
We first wish to show that 

S xP-1 ' P  sup ~ > x  dx<oo for some Xo>0. (6.1) 
X0 

With minor modifications of the arguments leading to formula (4.3) of [7] 
we obtain 

p(fs, l>x.a~)<2(loglnJ) 4 for Inl and x large. (6.2) 

Next, by performing computations like those made in the derivation of 
formula (5.2) of [6] together with L6vy's inequality, and (6.2) we obtain 

P(sup]affl.S'.[>x)< ~ P( sup ]S'nl>x.a2, 1) 
n j = l  [n [<2J  

< ~ ~ P(suplN~l>x'a2, ~) 
j = l  [ n l = 2 J  +d k ~ n  

<=2 d. Z E e(rS'nl>=x'a ,-O 
j = l  [n ]=2J  +d 

<c .  ~ d(U+a) .(log(U+a)) - =  
J - J o  

<=C" ~ jd 1.({j+d)log2)-x~<=c.e-X~ ' 
J = J o  

where c is a constant. 
Thus, for Xo sufficiently large, it follows that 

xP-l.P(sup[a;1.Sal>x)dx <c ~ xP-l e -~dx  < ~,  
xo  n xo  

which proves (6.1). 
- - 1  t t p  To see that Esupla2~.S~f<oo we use the fact that E s u p l a . . S . I  

n n 

<E(~a2l .  IX'~1) p together with the lemma on p. 2157 of [17] and Lemma4.1. 
n 

We omit the details. 
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