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Give IR 2 the usual order: (s 1, s2)~( t l ,  t2) ifs 1 _< t 1 and s 2 N t2, and (st, s2)~K(tl, t2) if 
Sl< t t and s 2 < t 2 . The question that prompted this study is this: i fM is a martingale 
indexed by IR 2, does it necessarily have a version which is right-continuous and has 
left limits? (A func t ionf  on IR 2 is right-continuous at t if l imf(s) =f i t ) ,  and f has a 
left limit at t if l imf(s) exists.) s~t t ~ , s  

s ~ t  
s -<~ t 

This question has been answered when M is a functional of the Brownian sheet. 
In this case, M will even have a continuous version as long as it is bounded in 
L log L, but if it is only Ll-bounded, it may have no continuous version whatsoever 
[2]. This is, however, a very special case, and one knows that in general, martingales 
may have at least jump discontinuities. The real question is whether they can have 
oscillatory discontinuities 

We will give a partial answer to these questions. If M is a strong martingale, it 
does indeed have a right continuous version. 

In order to prove this result, we first prove a maximal inequality for strong 
martingales which sharpens Cairoli's inequality [1], and then use it to prove a new 
convergence theorem for strong martingales: a strong martingale which is bounded 
in L 1 converges a.s. This is in contrast to ordinary two-parameter  martingales, 
which converge a.e. if they are bounded in L log L [1] but which may not con- 
verge a.e. if they are only bounded in L 1 [2]. 

However, our methods give us no information on the important  question of left 
limits, and they do not extend to cover ordinary martingales. We think that strong 
martingales should have left limits a.s., and that ordinary martingales which are 
bounded in L l o g L  should have versions which are right continuous and have left 
limits, but these questions are open at the moment.  

w 1. Strong Martingales 

Let 11 and I 2 be subsets of R and put I--11 x I 2. Let ( ( 2 , ~P )  be a complete 
probabili ty space and let {o~t, t~I} be a family of sub-o--fields o f ~  such that each ~,~ 
contains all null-sets of ~ and such that, if s~t~I, then ~ ~ ~,~. If t = (t 1, t2), put 
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def 

.~' =~ , ,  oo = V J,,, ~; 
"r~I2 

clef 

Veil 

and put  

< *  =~,* v <~. 

If  we think of the pa ramete r  as being two-dimensional  time, then ~ represents 
the past  before t. But this " t i m e "  is only part ial ly ordered, so we could also think of 
the past  as being "everyth ing not  in the future".  ~ ,*  represents the past  in this wider 
sense. 

A process M = {Mr, ~,~, tel} is a martingale i fM,  e ~  for all teI, and i fE {M t [~,~} 
= M s whenever  s~.teI. It  is al-martingale i f M t e ~  1 for all te l  and if for each o < a '  
in I1 and re /2  

E{M~, ~1o%}} --M~,, 

and it is a 2-martingale if M t e ~  2 for all te l  and if, for each o-eI 1 and r < 7 : ' e I  2 

E{Mo~, ~ } - - M , . .  

If  s<< t, let (s, t] denote  the rectangle { u ~ ] R  2 : S'~(R ~ t}. Given  a process {Xt, teI}, 
we define a finitely-additive signed measure  on the rectangles with corners in I by 

X(s, t] = Xr, r2 - X,, s2 - X,2s, + x . . . .  , (1.1) 

where s=(s>si)<<t=(t>t2). The points  (tl ,s2) and ( %  t,) are in I since I is a 
product  set. 

We say that  M = {M r, J~,, teI} is a strong martingale if it is a mar t ingale  and if, in 
addition, for each s<<teI 

E {M(s, t] I~ * }  = 0. (1.2) 

Remark. If  M = 0 on the axes, then M is a s trong mart ingale  if it is adap ted  and if 
(1.2) holds. 

The  easiest non-tr ivial  example  of  a s trong mart ingale  is this. Let  {Xu, i,j 

= 1, 2 . . . .  } be independent  mean  zero r a n d o m  variables, and let Mmn = ~ X u. 
i = l j = l  

Then  {Mm,,, m, n = 1, 2,...} is a s trong martingale.  More  generally, let # be a r andom 
set function defined on the rectangles of  IR2+ with the propert ies  that  E {#(A)} = 0 for 
each rectangle and that, if A 1 . . . . .  A n are disjoint, then g(A1) . . . . .  /~(A,) are 
independent .  Set M~ = #(0, t]. Then  {Mr, ~ ,  t ~IR2+ } is a s t rong martingale,  where ~,~ 
=~{M~,sMt}. Moreover ,  s tochastic integrals relative to M are also s t rong 
mart ingales  [2]. The most-s tudied case of this is that  in which # is Gaussian,  and 
#(A) has var iance equal to the area  of  A. M is then the Brownian  sheet. 

In studying two-pa ramete r  martingales,  one often assumes that  the fields 
satisfy a condi t ional  independence hypothesis :  for each teI, ~ and ~ 2  are 
condit ional ly independent  given ~ .  But, as we deal exlusively with s t rong 
martingales,  this hypothesis  will not  be a s s u m e d -  the strong mart ingale  proper ty  
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takes its place. Here,  for instance, is a result which is true for ordinary  mart ingales  
only under  the condi t ional  independence hypothesis.  

Proposition 1.1. A strong martingale is both a 1- and a 2-martingale. 

Proof Fix a < o.' in 11 and z < p in 12 . Let  A be the rectangle ((o., z), (o-', p)], so that  

M(A)=M~,o-Moo-(M~,~-Mo~). 

Then 

E {M(A)I~o} =E {E {M(A)lY~*}I~p} - 0 .  

But, as M is a mart ingale,  

E{Mo, o-M~p[~.~o } = 0  

so that  

E{Mo,~-M~INp} =0.  

N o w  let p-- ,  oo and notice that  J~p T ~ ,  so that  in the limit 

E { M ~ , ~ - M ~ I ~ }  =0,  

hence M is a 1-martingale,  and, by symmetry ,  a 2-mart ingale  as well. 

w 2. Stopping Domains and Lines: The Discrete Case 

Let I = {(i,j): i = 0, 1 . . . . .  m, j = 0, 1 . . . . .  n} where m and n are fixed (possibly infinite) 
integers. If  t = (i,j), we denote  t + + = (i + 1,j + 1), t + 0 = (i + 1,j) and t o + = (i,j + 1). For  
any set A c l R  2, A~ ~t~A~s<.(t}. I f  t~lR~,  R, will denote  the closed 
rectangle [0, t]. 

Definition. A stopping domain D is a r a n d o m  subset  of  IRe such that  

(i) for each co, there is a set D ' c I  such that  

D(CO)= ~) Rt; 
t~D'  

(ii) ift~I, {co: t + + ~ D ( c o ) } E ~ ;  in addition, if t is on the axes, the sets {teD}, 
{t~ and {t+~ are also in ~ .  

The  stopping line associated with D is D - D  ~ 

Remarks. 1 ~ Stopping domains  have been defined by W o n g  and Zaka i  in the 
cont inuous  case [4], under  the name  of s topping times. The definition appears  
more  complex  in the discrete case pr incipal ly because there is no discrete analogue 
of r ight-cont inuous o.-fields. 

2 ~ I fD  is a s topping domain ,  it is easily seen that  {teD}, {t o+ ~D}, and {t + ~ 
are in ~ for all t, not  just  those t on the axes. It  was necessary to state this explicitly 
in the definition since if t is on one of the axes, there is no s such that  t = s  ++ 
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Condition (ii) could be stated more succinctly as follows: if t e 1, and if s is a nearest 
neighbor of t, then {seD} e ~ .  

3 ~ To see why it is {t + +eD}, rather than {teD}, which is ~-measurable,  
observe that a domain in the one-parameter case would be an interval [0, T], where 
T is a stopping time. Then {T<  i} e ~ .  But this is the complement of {ie[0, T -  1]} 
= {i + 1 e [0, T]}, so the latter must be ~-measurable.  

4 ~ A stopping domain D is a closed, simply-connected subset of IR2+, and a 
stopping line L is a continuous curve with the property that if s, teL, then s ~  t. 1 It is 
of course D n I and Lc~ I that are of interest, but it seems convenient to extend D and 
L to be continuous, rather than discrete. 

Most elementary properties of stopping domains are proved exactly as are the 
analogous properties of stopping times. One just needs to keep Remark 3 ~ in mind. 
For instance 

Proposition 2.1. (i) I f  A ~ I, U Rt is a stopping domain. 
t e A  

(ii) I f  D 1 and D E a r e  stopping domains, so are D 1 u D 2 and D 1 c~ D 2 . In particular, 
if teI, D 1 ~ R  t is a stopping domain. 

(iii) I f D is a stopping domain and L its associated stopping line, then for each t e I, 
the sets {teD~ {teD} and {teL) are all in ~ .  

Proof Both (i) and (ii) are immediate from the definition. As for (iii), if teI, {teD ~ 
= {t + + e D } e ~  and {teD} = {seD ~ V s(~(t, seI} which is in V ~ c ~ .  Finally, 
{teL} = { t e D } -  { t e D ~  qed. s~t 

Let K ~ IR be a Borel set and let {Xt, tel} be a process adapted to the ~#t. Define 

DK=U{Rt++: XseK c, VseRtc~I }. 
t e l  

Then D K is a stopping domain and its associated stopping line L r is called thefirst 
hitting line of K. Notice that if X~eK for some sel, then X~eK for s o m e - b u t  not 
necessarily a l l -seLt~.  To verify that D r is a stopping domain, let te l  and write 

{t + + eDK} = {X~eK ~, V s e R t n I } e  ~ .  

If t is on one of the axes, 

{t ~176 ={t  + + e D r } e ~  r 

Definition. Let D be a stopping domain. Then 

@D= {Ae~' :  Ac~ {tq~D~ e ~  *, V tel}. 

Remarks. 5 ~ ~-D is a a-field. 

6 ~ If D c D' are stopping domains, ~ ~ YD- 

7 ~ {teD}el*- D. More generally, if Y is ~-measurable,  then YI(~D ~ is ~-~D- 
measurable. 

8 ~ . IfD=_Rt, ~ c ~  D. 

i -~ means "not <-( ". 
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Remarks 5 ~ and 6 ~ are proved as in the one-parameter  case. To verify 7 ~ , 
suppose Y > 0 is ~-measurab le .  Then 

{ Y I ~ D  ~ >= 2} n {tq~D ~ = { Y > 2} ~ {seD} c~ {teD~ 

If t<<s this is empty, hence in ~ * .  If t.C,s, it is in ~ v ~ c ~ * .  Remark  8 ~ follows 
from Remark  7 ~ on taking Y to be the indicator function of an arbitrary event in ~ .  

If  the fields satisfy the conditional independence hypothesis, and if~0* is trivial, 
then there is equality in 8 ~ , but in general there is only inclusion. 

If  R is a rectangle with corners in I and if {Mr, t e l }  is any process, M(R)  is 
defined by (1.1). Stopping domains are unions of this type of ractangle, so we can 
define M(D) for any stopping domain. We then have the following analogue of 
Doob 's  martingale stopping theorem, due to Wong and Zakai in the continuous 
c a s e .  

Proposition 2.2. Let D 1 ~ D  z be stopping domains and let {Mr, ~t, t e l }  be a strong 
martingale. Then 

E {M (D2) I~D , } = M(D 1). 

Proof. Set A t =(t, t + +] for te l .  D 1 and D 2 are both disjoint unions of the A~ so that, 
for i=1 ,2 :  

M(Di) = ~ M(A,) I~=D~ 1 
t ~ l  

t c I  

this last because A t c D  i iff t++eD~. It follows by Remark  7 that M(Di) is ~ ,  - D~ 

measurable. Now note that 

M ( D 2 ) -  M(D1) = M(D 2 - D  1) 

= ~ M(At) I(t + + CD~ I(t + + ~v2}" 
t e I  

If AeYD 1, 

I M(At)I(t++~D2-DI~ = S M(At)=O, 
A A n { t  + + ~ D l } n { t  + +eD2} 

because both {t++eD2} and A ~ { t + + ~ D I }  are in ~ * ,  and, as M is a strong 
martingale, E {M(At)[~*} = 0. It follows that E {M(D2)-  M(D1) [o~  } = 0, and we 
are done. 

w 3. The Decomposition of a Strong Martingale 
along a Stopping Line 

Let { M t , ~ , t d  } be a strong martingale, where I={(i , j ) ,  i=0 ,1  . . . .  ,m. j 
= 0, 1, ..., n}. Let L be a stopping line and consider M along L: {Mr, t e L  n I}. This is 
essentially a one-parameter  process, but, as the points of L are not ordered, we can't  
expect it to be a martingale. Nevertheless, we shall see that it is a sum of one- 
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parameter martingales. These martingales are with repsect to different fields, which 
is why their sum is not a martingale. 

IfD is the stopping domain associated with L, D cRm,, and, on the set {(i , j)eL} 
we have 

D = (D c~ Ri. ) w (D ~ Rmj ) 

so that 

M(D) = M(D c~ Ri. ) + M(D c~ Rmj ) - M(RIj ). 

Since 

Mij  = M (Rij) + M~ o + M o j -  Moo, 

we have on the set {( i , j )sL}:  

Mq = M (D c~ R~,) + M (D ~ Rmj ) - M (D) + M~0 + M 0j - M 00" (3.1) 

This equation simplifies it M vanishes on the axes, and it turns out that, modulo 
a trivial re-parametrization, one can always assume that this happens, as the 
following lemma shows. 

~ .  0 < i <_ m, 0 < j  < n} be a strong martingale. Then there Lemma 3.1. Let  ~Mij, ~, _ _ 
exists a strong martingale IM~2,~ ̂  ~,~j, 0_<i_<m+l, 0<j_<n+l}_ such that for  each 
O<_i<_m, O < j < n  

m i j  = J~li + 1, j + 1 @ E {Moo }, 
A 

~ =~+1,j+1, 
and 

~oj=~o=O. 

Proof  By subtracting E{Moo } if necessary, we may suppose E{M~j} =0. If i>  1, 
j >  1, set Mij  = M i -  !, j -  1, and ~ j  - - ~ -  ~, j -  1, whiie if either i o r j  is zero, set Mi j=0  
and ~2  = {~b, s M is clearly a martingale, and we need only verify the strong 
martingale property. Let s = (i,j)<< t = (k, h). Suppose first that i>  1 andj  > 1, and let 
s - - = ( i - l , j - 1 )  a n d t -  = ( k - l , h - 1 ) . T h e n ~ / * = ~ *  , so  

E { ~ r ( s ,  t3  ~ *  - - ~* 1 ~  } = E { M ( s  , t -  ]lJ~ _}=0. 

If i > l  and j = 0 ,  then ~ss* = uo/~i-~l 1, o and, as Mio=Mi, o=0, ~ l ( s , t ] = M k _ l , h _  I 
- -  M i -  1, h -  t ,  SO that 

E { M ( s , t ]  ~ *  - M  i_ I~/a_l}=O [N*s } =-E{Mk-x ,h -1  t ,h-1 

by Proposition 1.1. Finally, if i = j = 0 ,  ~ *  is trivial, so 

E { Y I ( s , t ] I ~ , ~ * } = E { M t _ _ } = O .  qed. 

Theorem 3.2. Let  {Mr, ~T t, t ~ I } be a strong martingale which vanishes on the axes, and 
let D be a stopping domain with associated stopping line L. Then there are two 
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processes {X i, 0 < i < m} and { Yj, 0 <j < n} such that for each (i,j)eI, 

Mij=Xi+ Yj-M(D) on {(i,j)~L}. (3.2) 

Moreover, {X 0 . . . . .  Xm,Mm,}, {I1o . . . . .  Y,,Mmn }, and {M(D),Mm, } are all mar- 
tingales. 

Proof Set Xi=M(Dc~Ri,,) and Yj=M(D~R,nj). Then (3.2) follows from (3.1). To 
verify that the three processes are martingales, set D~=Dc~Ri,. Then 
DicDi+~cR,,  ~ and the Dz are stopping regions. Thus :~v c,~D Xi=M(Di) 

i i + 1  ~ 

is J r -measurable ,  and, by Proposition 2.2 

X~ =E {M(R~)I~,} .  

Thus { X i , ~ ,  O<=i<m} is a martingale and we can add M(Rm,,)=Mmn as a final 
element. Since D=D,,, this also shows that {M(D),M,,~} is a martingale. By 
symmetry, Yo .... , Y,,, Mm, is also a martingale, qed. 

This brings us to the maximal inequality for strong martingales. 

Theorem 3.3. Let {M t, 7~, tel} be a strong martingale. Then for 2 > 0  

2P {sup IMtl>2} <13E  {[Mm,I }. (3.3) 
t 

Proof Write M t =Nt+.  + E  {Mo}, where {Nt} is a strong martingale which vanishes 
on the axes (Lemma 3.1), and let a=ie{Mo}t. 

e {sup IMt] > )~} < P {sup INtl > 2 - a}. 
t t 

Let L be the first hitting line of the set (INn > 2 - a }  (see w 2). If IN~I exceeds 2 - a  in 
R~,, it must do so somewhere along L. Now write 

Nij=Xi+ Yj-N(D) on {(i,j)~L}, 

where X and Y are the martingales of Theorem 3.2. Note that N t can exceed 2 - a 
only if at least one of sup IxL sup I~l or IN(D)[ exceeds �89 a). Since N(D) = X~, we 
see that 

2 - a  2 - a  
P { s u p ] N ~ l > 2 - a } < P { s u p ] X i l > ~ - } + P { s u p l Y j [ > ~ } .  

Apply the maximal inequality to both X and Y, remembering that N~,, is the final 
element of each: 

6 
< E{IN~,I}. 
= 2 - a  

Now 

E {[X~nl} < a + E {IMm,,I } < 2E {IMm,,I }, 
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so the above is 

< 1 ~ 2  E{lMm.I}. 
: , ~ - - a  

This inequality is only useful if the right-hand side is smaller than one. Since 
E {[Mm,I } >a,  this can only happen if a__<2/13. Setting a=2/13  above gives (3.3). 

Remark. If E{Moo } --0, the same argument shows that one can replace 13 by 6 in 
(3.3), but we have made no effort to find the best constant. 

Corollary 3.4. Let 11 and 12 be arbitrary subsets oflR, and let I = I  1 x 12. I f  {Mt, 
~ ,  t~I} is a separable strong martingale, then 

2P {sup IMtl > 2} < 13 sup E {[Mt] }. (3.4) 
t e l  t ~ I  

This follows from Theorem 3.3 as usual by choosing a sequence of finite subsets 
o f /whose  union is a separability set, applying Theorem 3.3 to each, and taking the 
limit. 

The above maximal inequality allows us to sharpen Cairoli's convergence 
theorem in the case of strong martingales. 

Theorem 3.5. Let 11 and 12 be subsets of lR which are unbounded both above and 
below, and put I =11 x 12. Suppose {Mr, J~, t s I}  is a separable strong martingale. 
Then 

(i) lim M t = M  ~ exists a.s. and in L1; 
t -~ ( -  oe, - o~) 

t E I  

(ii) if sup E {IMtl} < ~ ,  then lira Mr-- Moo exists a.s. 
t t ~ ( ~ ,  0o) 

t E I  

Before proving this, we need a lemma concerning ordinary martingales. 

Lemma 3.6. Let {Xn, ~ ,  n>= 1} be an Ll-bounded martingale. Then there exists a 
sequence (rig) and sets (Ak) such that A k ~ ,  and such that 

P{Ak}>_I--2 -k and ~ ] X p - X ~ J < 4  -k, all p>n k. 
A k  

Proof. Using Krickeberg's decomposition, it is easy to show that we can write 

X =Y. + -  Y . - + Z . ,  

where Yn +- are positive martingales with limit zero, and Z.  is a uniformly integrable 
martingale. Choose n k large enough so that 

and 

E{IZo~-Zpl}<-~4 -k, for all p>n k. 
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Let A k = { Y.+ < 1 4 -  k, ys < + 4 -  k}. Then, if p > n k 

IXp-X,~I < ff (Yp+ + Iv- + Y,+~ + gs  +E{ lZ ,~ -Z~ l} .  
Ak Ak  

As Y• is a martingale, S Y ~  = S Y.. • --<~ 4.k, and both expectations are bounded 
Ak Ak 

by ~4 -k, so the above expression is bounded by 4 -k. qed. 

We can now prove Theorem 3.5. By a theorem of Helms [3], M converges in L I 
as t ~ ( - 0% - oo). To show that there is almost-everywhere convergence, let M_ 
be the limit and choose a sequence ( t , ) c I  tending to ( - 0 %  - o o )  such that 

E {IM, - M_ ~ol} <= 4 -". 

Now {M t -  M_ 0o, teI} is a strong martingale, so by Corollary 3.4, 

P{sup ]M t - M _  ~[ > 2-"} __< 13.2 -n. 
t'.~,tn 
t E I  

It follows by the Borel-Cantelli lemma that M t converges a.s. as t--* ( -  oo, - oo). 
The proof of (ii) is similar. If ( t , ) c I  is an increasing sequence-i .e ,  t,<<t~+ 1 

- t e n d i n g  to (0% oo), {M,,, n > 1} is an L 1-bounded one-parameter martingale. By 
Lemma 3.6, there is a subsequence (nk) and sets A k ~ with P {Ak} > 1 --2-k and 

[Mtp-Mtn~](=4 -k for all p>n k. 
Ak 

Now if tn~-~t , there is an i for which t~t~,, and so, since ]Mt-Mtn~] is a sub- 
martingale 

We can now apply Corollary 3.4 to the strong martingale 

{(Mt--Mt,k) IAk, t,~ <t, t~I} 

to see that 

P{Ak; sup IMt-M,,~l>=2 k}<13.2 -k, 
t > tnl r 

t e I  

or, since P {Ak} > 1 - 2  -k 

P{sup [Mt--Mt,,~I>2-k} <14.2  -k. 
tnk'<t 

t ~ I  

If M~ = lim Mtn k (which exists a.s.), an application of the Borel-Cantelli lemma 

shows that M t ~ M  ~ a.s. as t--.(oo, oo), and we are done. 
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w 4. The Right Continuity of the Paths 

Let {~ ,  telR2+ } be a family of sub-a-fields o f g  and define ~,~i, i=  1, 2, and ~ *  as in 
w 1. We assume that the fields are complete, increasing, and right-continuous, that 
is: 

1) if s~(t, then ~ . ~ c ~ ;  

2) ~ contains all null-sets of Y ; .  

3) for each s, ~s = ~ ~ and ~ * =  (~ ~ * .  
s<<t s~<t 

Then we have: 

Theorem 4.1. Let {Mr, ~ ,  t E ~  2 } be a strong martingale. Then it has a version which 
is a.s. right-continuous. 

Before embarking on a proof of this theorem, we will introduce and establish 
some properties of a second two-parameter analogue of stopping times which, for 
lack of a better name, we call weak stopping points. A weak stopping point T is a 
random variable with values in IR+ u {co} such that for each t~lR2+, {T~t}  ~ * .  
We define 

~,~* = { A e f f :  A n  { r < t } e ~ * ,  all telR2+}, 

The elementary properties of ~ *  are derived exactly as in the classical case, so we 
will leave the proofs of the following to the reader. 

a) ~-* is a a-field; 

b) if r -~ t, then ~-* -- ~ * ;  

c) if S-<T are weak stopping points, ~ss* CYT; 

d) T is ~r*-measurable; 

e) if T <  T, are weak stopping points and T, --, T, then Yr* = (~ St*,. 
n 

Here is one example of a weak stopping point. For i = 1, 2, let z~ be an ordinary 
stopping time relative to the fields {Waa ~, a > 0} and {W0~, b > 0} respectively. We call 
~ an ~-s topping time. Then T = (z 1, z2) is a weak stopping point. Indeed, ift = (tt, t2), 

{rMt} = {~1 < tl} c~ {~2 <-- t2} ~ ~ 1  V ~ t  2 = ~t*" 

In the simplest non-trivial case (which is the only case we shall use in this article 2 
one of the z~ is constant. Then we have 

f) if z 1 is an o~l-stopping time, then 

where 

N * = { a e ~ :  a ~ { ' c l _ < a } s ~ l  o, all a>O}. 

2 Our original proof of this theorem used more complex stopping points. We wish to thank R. Cairoli 
for pointing out that they weren't necessary and that our proof could be shortened and simplified by 
omitting its middle third 
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J',, t ~lR + } be a strong martingale and let S ~, T be bounded weak Lemma 4.2. Let {Mr, Jz~ 
stopping points such that T is ,~s*-measurable. Suppose both S and T take on only 
countably many values. Then 

E {M(S, T] tYs*} =0. (4.1) 

Proof If A ~  s, and if both S and T take their values in the set {t~}, 

E{M(S ,T] ;A}=  ~ E(M(tm, tJ;Ar~{T=t~}c~{X=t~}}. 
tm ~ tn 

But Am {T=t,,}~ffs*, so Ac~{r=t~}c~{S=tm}~*,  and each term in the sum 
vanishes by the strong martingale property, qed. 

We can now prove Theorem 4.1. Notice first that we can replace Mr, t~ by M,, ,~ 
-Mr1 o -Mot~ +Moo to get a strong martingale which vanishes on the axes. Since 
M is an ordinary martingale along each of the coordinate axes, it has a version 
which is right-continuous and has left limits there. Thus we can replace M by a 
martingale which is zero along the axes without affecting the continuity of M in the 
interior. We will accordingly assume that M vanishes on the coordinate axes. 

If t=( t l , t 2 ) ,  then t i - ~ M  t is right-continuous in probability and a.s. right- 
continuous along the rationals, i = 1, 2, since M is an/-martingale and the fields are 
right-continuous. Thus, define a standard modification, also denoted by M, by 

Mr1 t2 = lira Mrt ~. 
r, ,H 
rEQ 

For each fixed to_, this version will be right continuous in t 1 . We can extend Lemma 
4.2 to a rather special case of weak stopping times. Let a < r  be bounded ~-1_ 
stopping times, such that z is ~l -measurable ,  let O<s2<t 2 be real, and set S 
= (a, s2) and T = (z, tz). We claim that (4.1) holds for this S and T. Let aj = k2 - j  if (k 
- 1) 2-J < a ~ k 2  -J and ~ = k 2  - j  i f ( k -  1) 2 - J < z  <k 2  -J. We can apply Lemma 4.2 
to the times Sj=(aj ,  s2) and Tj=(zj, t_~): 

E{M(Sj, 7)][~ s }=E{E{M(Sj,  Tj][.~sj ~l~ s }=0.  (4.2) 

Now crj+a and rjSr, and M is a.s. right continuous in its first parameter for both 
values so_ and t 2 of the second, so M(Sj, T~]~M(S,T]. Moreover, the family 
{M(Sj, Tj]} is uniformly integrable, since if N is a bound for the aj and 5, then 

M(S~, Tj] =M~j. ~ -M~j. ~ -M~j, ~ + M ...... 

and each term of the difference is a conditional expectation of either MNs,, or Mm~, 
e , E M ~1 .g. M~ t~= { ut~f~,~}. We can thus go to the limit in (4.2) to get (4.1). 

Now let o- be a bounded ~* -stopping time, let S=(a 0), t =(t~, t~), and consider 
the process 

N t =  Mc~ + ~x, t2 - M at2 

=M(S,S+t],  
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where this last equality holds because M vanishes on the axes. We claim that N is a 
strong martingale relative to its natural fields Nt = a {Ns, s < t}. Indeed, if s M t, N (s, t] 
=M(S+s,S+t] and ~ * ~ *  s+s, so by the above extension of Lemma 4.2 

E {N(s,t][~;*} =E {E {M(S + s,S +t][o~s*s} lcg*} =0. (4.3) 

But now N vanishes on the axes, so (4.3) implies that N is a strong martingale. 
Next, let K be a bounded subset of the rationals and notice that Nu. v is a.s. right 

continuous in u simultaneously for all v~K, so by Corollary 3.4, if p =sup  K and 
2>0 ,  ~ > 0  

2P {sup INn, ] > 2} =< 6E {[NJ}. 
u_-<a 
r e K  

But E {IN~pl} ~ 0 as ~$0, so we can conclude that with probability one, Nu~ ~ 0 as 
u~O, uniformly over all reK. In terms of M, we have proved that for any WI_ 
stopping time ax, 

lira Mu~ = M . . . .  
ulff l  

a.s. uniformly for reK. 
Now let's apply Doob's  transfinite induction argument. Let ao=0 ,  a l  

= inf {u > 0: sup ]M,~ - Mo~l > e}, and, by induction, 
reK 

a,+ i = in f  {u> a,:  sup IMu,-M~I >e}. 
r~K 

Then P{a,+l>a, la,<oe}=l. If l i m a , < ~ ,  define a o = l i m a , ,  and define 
a~+ ~, ao~+ 2,...  and so on. Thus we define a~ for all countable ordinals a. Since 
a~+ ~ >a~ a.s. on {a~< ~} ,  it is easily seen that there is a countable ordinal fi such 
that a~(~o) = oe for a.e. co. Now for such an co and for any u > 0, there is some ordinal 

such that a~(co)<u<a~+ 1(co), so that 

lira [sup [M,> - M,~]] < 2~. 
u'  $ u  r e K  

This being true simultaneously for a sequence of a ~ 0, we conclude that u ~ M ~  is 
a.s. right-continuous, uniformly for reK. 

The above was derived using a standard modification of M, but we can conclude 
for any version of M that u---, M~ is right-continuous along the rationals, uniformly 
for r eK.  By symmetry, v ~ M ~  is also right continuous along the rationals, 
uniformly for r eK.  This uniformity implies that for a.e. co and any selR2+ 

lim {[Mt-M~,[: s-~t,s~t',t,t' eK2}=O; 
t ,  t '  ~ s 

as K was arbitrary we have that for a.e. co, 

lira {M,(co), sMt, tell)~ } exists. 
t ~ S  

Thus, define for each s~lR 2" 

M~(co) = l im  {Mr(co): s-<t, teQ2+} 
t ~ s  
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if the limit exists, and set M s = 0  if not. Then M is right continuous, and it is a 
standard modification of M since M is already right-continuous in probability. 
This finishes the proof. 

We can squeeze a little more out of the proof. For each rational v, u ~ M~, has 
left limits. But, in view of the fact that v ~  M ~  is right continuous, and uniformly so 
for u in bounded sets, we see that u ~ M,~ has left limits for every v, and, moreover, 
that 

Corollary 4.3. For a,e. co, the following sectorial limits exist for  all t = ( t  1, t2): 

lim {M,~,(co): u > t  l, t~<t2} 
(u, v )~t  

and 

lim {M~,(~): U<tl,V>--__t2}. 
(u, t ' ) ~ t  

w 5. Extension to n Parameters 

The foregoing work extends easily from 2 to n parameters. The partial order in 
IR" becomes (s 1 . . . . .  sn)-<(tl,. . . ,  t,) if si < t  i, i= 1 . . . . .  n. Let 11 . . . . .  /,, be subsets of 
1R and put 1 = 1  l x ... xI,,. Let { ~ , t e I }  be a family of sub-a-fields of Y such 
that s ~ t ~  ~ c ~  t. If t = ( t  1 . . . . .  t,), define 

j ~ i _ ~  and ~ * = ~ l  v - . '  v ~ n .  
t - -  ( ~ ,  . . . ,  ~i . . . . .  aD) 

If  {M t, telR~_} is a process which is zero on the axes, define an additive set 
function M ( A )  on rectangles in IR" by M ( R z ) = M  t, and then extend it by 
additivity to all rectangles. The notions of martingale, strong martingale, and i- 
martingale, i = l  . . . . .  n, are then the same as before. A stopping domain is a 
subset of IR'; .  In the discrete case, where the Ij above are of the form Ij 
= {0, 1 . . . . .  mj}, then D is a stopping domain if it is a union of R ,  for t e l ,  and if, 
whenever t e l  and s is a nearest neighbor of t, { s e D } e ~ .  The set L = D - D  o is a 
stopping surface, rather than a stopping line. The elementary properties of 
martingales and stopping domains are the same in n parameters as in two. The 
first result to change is the decomposition of a strong martingale along a 
stopping surface. 

Suppose { M ,  4 ,  t e l }  is a strong martingale which vanishes on the axes. To 
see how the decomposition changes, if t = ( t  1 . . . . .  t,), put R I = R  ( ...... t . . . . . . .  )= {s 
=(s 1 . . . . .  sn): si<=tl}, and note that if D is a stopping domain and if t eL ,  that D 
= ( D n R ~ ) u . . . u ( D c ~ R ' t ' ) .  By the inclusion-exclusion principle, on { teL}  we 
have 

M(D)=  i M(D~RJt)  - ~ M ( D ~ R l c n R { )  
j = l  i4-j 

+ 2 M(Dc~RI J k c ~ R t ~ R t )  . . . .  + ( - 1 ) ' +  I M(D c~R~ c~ ...c~R"). 
i t j : # k  

(5.1) 
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But, if t eL  ~ D, D c~ R~ c~... c~ R~ = R t and, since M vanishes on the axes, the last 
term is ( -1)"+1Mr.  If t= ( t  1 . . . . .  t,) we define for each of the indices 
l < i < j < . . . < k < n  

MI~'"k=M(Dc~RI~R{c~. . .~R~),  M~ =-M(D). (5.2) 

If we solve (5.1) for Mr, we get 

( - 1 ) " M , =  ~ M I -  E MI j +  . . . .  M~ on {teL}. (5.3) 
i=1 i # j  

Notice that M I depends only on the i th coordinate t i of t, so it is a one-parameter 
process. Similarly, MI j is two-parameter process, MI jk is a three-parameter 
process, and so on. Suppose the stopping domain is bounded, so that M(D) is 
integrable. Then one verifies as before that {MI, teI}  is a martingale for each i, 
that {MI J, t~I} and {MI Jk, teI} are two-parameter and three-parameter strong 
martingales, respectively, relative to the fields ~[=~O~R~, N[J=YD~R~R{, and 
so on. This follows from the n-parameter analogue of Proposition 2.2. Indeed, 
consider the case of M ij. If A is a rectangle in IRZ+ with lower-left-hand and 
upper-right-hand corners (ul,u2) and (vl,v2) respectively, put /l={telR'!~" 
(ti, tj)eA) and note that MiJ(A)=M(D c~A). Further, D c~A can be written as the 
difference D 2 - D  1 of the two stopping regions D 1 and D 2, where D~ 
= D ~ { t e l R ~ _ :  tibia I o r  tj<=u2} and Dz=D~{telR~+: t i~V i and tj<v2}. Thus, 
from Proposition 2.2: 

E { MiJ(A)i(N~u2) *} = E { M (D2)-  M (D1)I ~D, } =0. 

To summarize, we have 

Theorem 5.1. Let {M t, te l}  be an n-parameter strong martingale which vanishes on 
the axes and let f be the final element of I. Let D be a stopping domain and let L be 
its associated stopping smface. Then the decomposition (5.3) is valid, where the 
M~ MI j, ... are all strong martingales of O, 1,2, ..., n - 1  parameters respec- 
tively, and, moreover, one can add M I as a final element of each of these strong 
martingales. 

The maximal inequality follows nearly as before except that we must use an 
induction on the number of parameters. 

Theorem 5.2. There exists a constant c, such that if {Mt ,~ , t e lR~}  is an n- 
parameter separable strong martingale and 2 >0,  then 

2P {max IMp[ > )~} <= c, sup E {]M~I}. (5.4) 

Proof. First assume I is finite and discrete and that M vanishes on the axes. Let 
L be the first hitting line of the set {[Mt] > 2}. If M t exceeds )~, it must do so 
somewhere on L, and if it exceeds 2 on L, one of the 2 " - 1  processes on the 
right-hand side of (5.3) must exceed 2 /2"-1 .  Note that each value of MI ~'''k is a 
value of one of the ( n -  1)-parameter martingales M r, where [= 1, 2 . . . . .  i -  1, i 
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+ 1 . . . . .  n. Then 

2 P { s u p l M , l > 2 } < ~ 2 P ,  sup [M~[ > . 

Since M ~ has final element M I ,  we can write, if d,,_, is the constant  occurr ing in 
(5.4) for ( n - 1 ) - p a r a m e t e r  s t rong mart ingales  which vanish on the axes: 

< ( 2 " - l ) n d , _ l E { [ M ~ l } .  

If  M does not  vanish on the axes, we m a y  reparameter ize  and extend it to be 
constant  on the axes by an extension of L e m m a  3.1. If  a=lE{Mo}[ and N , = M ,  
-E{Mo} 

E{INzl} 
P { s u p l M , l > 2 }  < P { s u p l N t l > R - a  } < d ,  2 - a  

<2d,,E{lMj.]} 

This inequali ty is only useful if the right hand  side is smaller than one, which 
2dna 2~ 

only happens  if ~ - - <  1 or a N - - .  Setting a equal to this, we get 
z - a - 2d,, + l 

2 P  {sup IM,[ > 2} < (2d~ + 1) E {]Mfl}, 

proving  (5.3) in this case with c , = 2 d , , + l .  One then passes to the case where I 
= IR+ by taking I n to be a finite discrete set, and letting I n increase to a 
separabi l i ty  set for {M,}. qed. 

Remark. d 1 = 1; since d n =n (2  ~ -  1)d n_ 1, the c, in (5.4) grow roughly as e n-~. 
The convergence theorem for n -paramete r  s t rong mart ingales  follows exactly 

as before:  

Theorem 5.3. Let 11 . . . . .  I n be subsets of 1R which are unbounded both above and 
below, and put I = I  1 x ... x I,,. I f  { M , , ~ , t ~ I }  is a separable strong martingale, 
then 

i) l im M t exists a.s. and in L1; 
t t r  ec 

ii) I f  supE{[Mt l}<  oo, then lira M, exists a.s. 
t t~oO 

t e I  

The regulari ty propert ies  of n -paramete r  mart ingales  now follow from this as 
before: fix n - 1  of the parameters ,  and show that  in the i th parameter ,  t i + M ,  is 
right cont inuous along the rationals,  uniformly for all values of  the other  n - 1  
pa ramete r s  which fall in any bounded  countable  set. We conclude f rom this as 
before that  

Theorem 5.4. Let {M~,~,t~IR"+} be a strong martingale. Then it has a version 
which is a.s. right-continuous. 
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The  a n a l o g u e  of  the  sec to r i a l  c o n v e r g e n c e  ( C o r o l l a r y  4.3) l o o k s  s l igh t ly  
different .  W i t h  n >  2 p a r a m e t e r s ,  the  u n i f o r m  r igh t  c o n t i n u i t y  on ly  a l lows  us to  
c o n c l u d e  t h a t :  

Corollary 5.5. Let {M t, ~ ,  t~lR"+} be a right-continuous strong martingale. Then 
for a.e. e) and each i= 1 . . . . .  n, 

l im {Mr: t j>s j  i f j~:i ,  and ti<s~} exists a.s. 
t ~ S  
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