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1. Introduction 

Let B = (B,)t> = o be the standard one dimensional Brownian motion process, and let 
px be the law of B under the condition B o =x,  xMR. It will be convenient to write P 
=pO. Let R = in f{ t :  B t =0} be the hitting time of 0. If t>0 ,  define 

(1.1) G t = s u p { s < t : B  =O}; D t = i n f { s > t : B  =O }. 

Then D t = t + R o O  t and it is well known that P [ O < G t < t < D , < o o ] = l .  The 
interval (G,,Dt) is called the excursion interval straddling t, and the process [Bsl, 
G t < s < D t is called the excursion process. Note that we follow Chung [3] in letting IB I 
be the excursion process rather than B as in [4]. This is more natural here. 

If a > 0 and e > 0 define 

De 

(1.2) S(t; a, e)= S lta, a+~l(IBsl) ds. 
Gt 

Thus S(t; a, e) is the amount of time the excursion process spends in the interval 
[ a , a + @  When a = 0  we write S( t ;e )=S( t ;O,e ) .  In [3], Chung showed that 
S(t; e)/e 2 has a limiting distribution under P as ~ +0, and he proposed the problem of 
finding this limiting distribution. The solution of this problem was the starting 
point of the present investigation. In Section 2 we prove that 

(1.3) limE {e-~S~t'~/~}=(cosh ]~fi)-  2. 
~ 0  

It is a standard fact (see p. 29 of [6], for example) that if R* =inf{s:  IB~I = 1}, then 

(1.4) E~ (e-r = (cosh ] /2f i ) -  1. 
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Thus (1.3) is the convolution of this first passage distribution with itself, and 
represents "independent" contributions from the two ends of the excursion. Our 
original proof of(1.3) was extremely computational in nature. However, after seeing 
how simple the answer was we were able to find a non-computational proof which 
clearly exhibits the "reason" behind (1.3). This proof is presented in Section 2. This 
method permits us to calculate the limiting distribution of 

Dt 

(1.5) ~-(~+2)~" IBI y 1Lo,~(iBsl) ds 
Ot 

as e+0 for 7> - 2 ,  and these results are presented in Section 6. 
If P(s) is the local time at a for [B] appropriately normalized, then 

a + 8  

(1.6) S(t; a,O= S [l~(D,)-lX(G,)] dx, 
a 

and so the continuity of l ~ implies 

def 
(1.7) e -~t S(t; a, e)--+la(D,)-la(G~) = Z(a, t) 

almost surely as e $ 0. Of course, Z (0, e) = 0. It is not surprising that a -  1 Z (a, 0 has a 
limiting distribution as a$0, and, in Section3, we show that this Hmiting 
distribution is the convolution of two exponential distributions each having 
parameter 1/2 (i.e. mean 2). The actual distribution of Z(a, t) seems more difficult. 
Formula (3.17) contains the distribution of Z (a, t) via a double Laplace transform 
so dear to the hearts of applied probabilists. Although we have been unable to 
invert (3.17) we are able to use it to find an explicit expression for P [Z(a, t) = 0]. See 
(3.19). If Mt = sup {]B,]: G t < s<Dt} is the maximum of the excursion straddling t, 
then it is clear that almost surely Z (a, t) = 0 if and only if M t < a. Thus (3.19) gives the 
distribution of M t and should be compared with Theorem 7 in Chung [3]. 

Our method for obtaining the limiting distributions in (1.5) involves certain first 
passage distributions for Bessel diffusions on ]R + =[0,  oe), just as the case 7 = 0  
involves a first passage distribution for ]B [. In Section 5 we present the distributions 
that we need as well as some related facts. Many of these results are known, and the 
techniques for obtaining them are more or less standard. We defer the actual 
calculations to Section 8. However, a number of curious facts and relationships 
emerge from these calculations. We shall describe some of the more striking ones 
here in an informal manner. Let X ~ be the Bessel process of index v as described in 
Section 5. If v = ( d -  2)/2, then X ~ is equivalent to the modulus of a d-dimensional 
Brownian motion, d>  1. Note d = l  corresponds to v = -  1/2. If a > 0  let 77 
= inf  {t: X~ =a} be the first passage time to a for X ~ and L~ =sup  {t: X~ =a} be the 
last exit time from a. We write px for the law of X ~ starting at x, but suppress the 
dependence on v. The following remarks are expanded upon in Section 5. See (5.9) 
and (5.11) in particular. 

(1.8) If v > 0, the p0 distribution of the total time X ~ spends in (0, a) is the same as 
the pO distribution of T] -  2. If v = ( d -  2)/2 and d > 3, this phenomenon was already 
observed by Ciesielski and Taylor [-2]. 
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(1.9) If v > 0, the pO distribution of L~ is the same as the pa distribution of T o ' .  

(1.10) Consider X ~ on (0, a] with a reflecting barrier at a, and let J(~ be this process 
(see Section 5 for a formal definition). If v < 0 the pa distribution of T0 ~ is the same as 
the pO distribution of T, -v 1. 

In the course of proving (1.10) we need an interesting fact about diffusions which 
is proved in Section 4. Let X be a regular diffusion on an interval I of IR for which 
killing can occur only at the endpoints of I. Let A = (At) be a continuous additive 
functional of X whose support is a compact interval J = [a, b] contained in the 
interior of I. Let 3? be the process obtained from X by a time change based on A. 
Then it is well known that 3? is a diffusion on J with the same scale as X and speed 
measure the measure f A  naturally associated with A. (See Section 4.) Thus to 
completely describe X as a diffusion one needs to determine the "boundary 
conditions" that the generator /~ of J( satisfies at the endpoints of J. These 
boundary conditions are given in (4.9) and (4.11). The interesting point is that if/~ A is 
continuous these boundary conditions depend only on the interval J and the 
original diffusion X and not on the particular form of A. 

Sections 2 and 3 require only basic facts about Brownian motion. In the 
remaining sections some knowledge of diffusion theory and Bessel functions is 
needed. We actually obtain the limiting distribution of functionals of the form (1.5) 
with IBI replaced by a Bessel process X v with - 1  < v < 0  in Section 6. 

2. Proof of (1.3) 

The notation is that of Section 1. In particular R = inf {t: B t = 0} is the hitting time 
of 0. We begin the proof of (1.3) with the following proposition. 

(2.1) Proposition. Let x > ~ > O. Let At(t) = i 1Lo. ~l(Bs) ds. Then 
0 

E x {exp [ - f iAt(R)]}  = (cosh e ] /2f i ) -  1. 

Proof. Observe that AS(R) is the amount of time the Brownian motion spends below 
the level e before hitting zero. Clearly if x > e 

(2.2) EX{exp [- f iAt (R)]}  =E~{exp [-fiA~(R)]}, 

and so we need only consider x = e. 
Let 

i (2.3) H ( t ) -  1[o ,~)(Bs) ds, 
0 

and let T--T(~)=inf{t :  Bt=e  }. Then the symmetry properties of the Brownian 
motion imply that the distribution of A~(R) under P~ is the same as the distribution 
o f H  (T) under P =p0.  Note that H(T) is the amount of time B spends above the level 
0 before hitting e. Next let 

(t) = inf {s: H (s) > t} 



86 R.K. Getoor and M.J. Sharpe 

be the right continuous inverse of H. Then it is well known that X t = Bin) under pO is 
the reflecting Brownian motion; that is, X and IBI are equivalent processes under 
pO. See for example Section 5.3 of [6]. This is also a special case of (4.8) in the 
present paper. But H(T) is just the hitting time of e by the process X. It is then 
immediate from (1.4) and the scaling property of Brownian motion [see also (5.7) 
(iv)] that 

E(e -pinT)) = (cosh e 1 /~-) -  1. 

Combining these observations completes the proof of (2.1). 
Replacing fi by file2, (2.1) may be written in the form 

(2.4) EX{exp[-fiA~(R)/az]}=(cosh]/2fi)-l; x>=e. 

(2.5) Corollary. Fix x > 0  and t>0 .  Let h be a positive increasing continuous 
function defined on [0, t) such that EX{h(R); R <t} < oo. Then 

EX[h(R); R<t] 
EX{h(R)e ~AE(R)/~2;R<t}~ cosh ] / ~ -  

as e$O. 

Proof Let T(e)=inf{s: Bs=e }. If x>0 ,  as e~,0, T(e)TR almost surely px. For 
notational simplicity let A(s)=e-2A~(s). For 0 < e < x ,  a.s. W A(R)=A(T(O ) 
+A(R) o Or(~)=A(R)o Or(~)because A is an additive functional and A(T(0)=0.  In 
what follows 0(e) will denote a quantity that tends to 0 as e + 0, but which may differ 
from one occurrence to the next. Now using the properties of h 

(2.6) E x {h(R) e-/~a(R); R < t} = E x {h(r(0 ) e -pA(R): r(e) < t} + 0(0. 

But B(T(e))=e, and so the strong Markov property and (2.4) give 

E ~ {h(r(e)) e-~A(R); r(e) < t} 
= E x {h(T(0) E ~ {e -~A(m} ; T(0 < t} 

= (cosh ] / ~ ) -  1 E ~ {h(T(e)): T(0 < t} 

-*(cosh ] / ~ )  -1 EX{h(R); n<t}  

as e+0, since W(R=t)=O. Combining this with (2.6) yields (2.5). 
We are now ready to prove (1.3). Fix t > 0 and recall that S (t; e) = S (t; 0, e) where 

S(t; a, ~) is defined in (1.2). Let f~(x)=~ -2 lro ' ~l(Ix[). Then 

(2.7) F(e)=E{e -~s(*;~/~a}=E exp - f i  ~f~(B~)ds . 
Ot 

t 

Writing A(s)= e -2 i lto, ~I(B,)du as before, and A(t)=exp [ -  fi yf~(Bs)ds] we have 
0 L Gt J 

= E {A(t) E 1"~1 (e-~A(m)} 

=E{A(t) E IBd (e-~A(m): IB,] >e} + 0(0, 
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because A(t) is Wt measurable .  Using (2.4) and int roducing one more  0(e) te rm this 
becomes  

{ 1= ex.[ 

We shall now use a " t ime  reversal"  a rgumen t  to evaluate  the limit of  the 
expecta t ion in (2.8) as e ~ 0. Let  px; ~, y be the usual "t ied down by B 0 = x and B~ = y"  
Brownian  probabi l i ty  on ~ o ;  that  is, px: ~. y is the unique probabi l i ty  on ~ o  with the 
following proper ty :  I f  0 < t ~ < . . .  < t, < t and E ~, . . . ,  E n are Borel subsets of  1R, then 

W: t'Y(BtjeEj: 1 < j<n)  

= ~... ~ P(tl, x, xl)  p(t 2 - t l ,  Xl, x2) . . . p ( t - - tn ,  x,, y) dx , . . ,  dx 1 
~, ~= p(t, x, y) 

where p(t,x,y)=(2"~zt)-l/2e -(x-r)2/2~ is the Brownian  t ransi t ion density. It  is 
immedia te  that  if Z ~ b ~ ~  then E x;t' y (Z) is a version E x {ZIB t = y}. Next  let r t be the 
reversal  f rom t opera tor ;  that  is, B= o t i =Bt_=, 0_<s_< t. The  following equat ion 
expresses the familiar  and easily checked t ime reversal  p roper ty  of  Brownian  
motion.  If  Z ~ b ~ t  ~ then 

(2.9) E ~; "y [Z]  = EY; t' ~ [ Z  o ~3. 

We leave it to the reader  to check the following lemma.  

(2.10) Lemma .  I f  r is an (~t~ stopping time and Zeb~~ then Z ltr <t)SWt ~ and 

EX{Zp(t - T, BT, y); r < t }  
E ~; t'Y[Z; T<t]  = 

p(t, x, y) 

Next  observe that  R = inf {t:B t = 0} is an (St ~ s topping time, and recall that  
(see Sect. 1.7 of [6], for example)  

(2.11) EX{e-PR}=e -1~172~. 

F r o m  (2.10), we have for x=t=0 

g ~ { p ( t - R ,  O, 0); R <t} 
(2.12) W : t ' ~  

p(t, x, O) 
t 

= [p(t, x, 0)] - 1 ~ [2zc ( t -  s)] - 1/2 px(REds) = 1, 
0 

where the last equali ty follows f rom (2.11) by direct computa t ion .  It  also appears  as 
fo rmula  (2.8) in [3]. We prove  the analogous  result for a general diffusion in L e m m a  
6.2. 

One easily checks that  

t t A R  

(2.13) j" f (Ss)  dsort= ~ f(U=)ds 
Gt 0 
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whenever f is a positive Borel function. Let 

t 

c(0= y L(B~) ds=~ - ~ i leo, ~(IB~I)ds. 
Or Gr 

Then using (2.9), (2.10), (2.11) and (2.13) we find 

(2.14) 
co 

E ~ {e -~c(~ = 2 ~ p(t, O, x) E ~ t, x {e-~C(0} dx 
0 
oo 

= 2 ~ p(t, O, x) E ~: t, o {e-~A(t~ RI} dx 
0 

oo 

=2 ~ E~{e-~A(a) p ( t - R ,  O, 0); R <t} dx 
0 

s 

since p(t, O, x)=p(t, x, 0). Here A(s)= ~f~(B,) du as before. Applying (2.5) with h(u) 
0 

= p ( t - u ,  O, 0)= [2n( t -u ) ]  1/2 on O<=u<t results in 

EX{e-~A(R) p(t--R,  O, 0); R <t} --+(cosh ] ~ )  -1 EX{p( t -R ,  O, 0); R <t} 

as ~$0. Moreover, as in (2.12), 

EX{e -~A(m p ( t - R ,  O, 0); R <t} <=E~{p(t-R, O, 0); R <t} 

- i  1 o 2]/~(t-s) P~(R6ds)=p(t,  x, 0). 

This estimate allows us to pass to the limit as e+0 in (2.14) and obtain 

E exp - f l  ~f~(Bs)ds ~ ( c o s h l / ~ ) - 1 2  ~ p(t, x, 0 )dx=(cosh l /2 f l ) - ' .  
L G t  0 

Combining this with (2.7) and (2.8) completes the proof of (1.3). 

(2.15) Remark. The argument leading from (2.4) to (1.3) is quite general. Suppose 
for example that for each ~ > 0, AS(0 is a continuous additive functional satisfying 

(2.16) E X { e - l ~ a ~ ( R ) } = g ( f i )  for x>e>O 

where g is independent of x and e. Thus A ~ is now playing the role of e- 2 A ~ in (2.4) 
and what follows. Then (2.5) remains true with (cosh ] / ~ ) -  1 replaced by g(fl). If, in 
addition, A ~ satisfies 

(2.17) [A~(t)-A~(G,)] o r t =A~(t/x R), 

then the above argument may be repeated word for word to obtain 

(2.18) l imE ~ {e - B[A~(o(t)) A~(G(t))]} =(g(fl))2. 
~$0 



Excursions of Brownian Motion and Bessel Processes 89 

We shall make use of this remark in Section 6. Moreover, it follows from (2.131 
and standard approximation theorems for additive functionals of Brownian 
motion that (2.17) holds for all finite continuous additive functionals of Brownian 
motion. 

3. The Case a > 0 

In the introduction we pointed out that if a > 0, then 

d e f  

(3.1) lime ~ S(t; a, e)=l~(Dt)- l"(Gt)  = Z(a,  t), 
~$0 

where l" is the local time at a for IBI; that is, the local time for the reflecting 
Brownian motion. We normalize l" so that for x > 0, a > 0, and e > 0 

9O 

(3.2) EX~ e ~ d l~=u~( l x -a l )+u~(x+a) ,  
o 

where for e > 0 

oo 

1 e_lXlVTg=~e_,~(2~s)_a/2e_X~/2~ds (3.3) u " ( x ) = ~  0 

is the a-potential kernel for B. Of course, the right side of (3.2) is just the a-potential 
kernel of ibm, the reflecting Brownian motion. 

In this section we are going to study the distribution of Z(a, t) under pO. We 
begin with the following elementary lemma which will also be used in the next 
section. 

(3.4) Lemma.  L e t X b e a H u n t p r o c e s s a n d l e t T b e a t e r m i n a l t i m e f o r X .  L e t A b e a  
continuous additive fimctional of  X with A T < co. Define for e, fl >= O. 

(o(x) = ~o(x; fl, e )=EX{e -aA(T) e-~r}. (3.5) 

Then 
T 

(3.6) (p(x; fl, e)=cp(x; 0, e ) - f i  EX ~ e ~s (p(Xs; fi, e) dA s. 
0 

In particular if ~(x)=qo(x; fl, 0), then 

T 

(3.7 t $ ( x l = l - f i E  x~ $(Xs)  dAs. 
o 

Proof  Since A is continuous and A t <  oo, one has 

T 

e -~A(T)= 1 - f l  ~ e -MA(T)-A(s)) dAs 
0 

T 

=1 - f l ~  e -BA(T)~ d A  s. 
0 
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If we multiply this by e -~r which is equal to e -~Cs+r~176 on { s < T }  and take 
expectations, we obtain (3.6). 

We shall now apply (3.4) with X = IN I, A = l% and T =  R = inf {t: IB, I = 0}. Let  

(3.8) q)(x)=~0(x;fl, c~)=EX{exp[-flP(R)-c~R]}.  

If x > 0 it is well known that  

(3.9) O(x; 0, c~)=E~{e -~R} =e -~r 

and so from (3.6) we obtain for x > 0 

R 

(3.10) (t)(x)=e-Xg2~ S e -~s q)(Xs)dl~ 
0 

R 

= e  -~V2~ - t ip (a )E~5  e -~'~ dl~. 
0 

But (3.2) and (3.9) imply that  for e > 0 

(3.11) EX ! e-~S dl~= [e-V2~lx-al-e- /~(~+~ll .  

Substitute this into (3.10), set x = a, and solve to find 

] ~  e -a l /~  
(3.12) ( p ( a ) = ]~ +f l [ l _e_2av , 2~] .  

Finally substituting (3.11) and (3.12) into (3.10) we have 

(fi + ]/27) e -Xg~- -  /3 e - r  (a+ l:'-al) 
(3.13) q)(x; fl, c t)-  

1/5  - e  -- '~ 

In deriving (3.13) we assumed ct>0. If we let e--+0 we find 

(3.14) q)(x; fl, 0)=EX{e -zl~162 

1 + 2 a f t '  if x > a  

1 -  -~ - -  i f  x < a .  
a 1 +2aft '  

Hence we have established the following well known results. I f x  > a, then la(R) has 
1 

an exponential  distribution with parameter  ~aa under  px, while if 0 < x  < a the 

distribution of P(R) under px is a mixture of unit mass at the origin and this 

exponential  with weights 1 -  x_ and x_ respectively. 
a a 
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Recalling the definition of Z(a, t) in (3.1), the following limit theorem is an 
immediate consequence of (2.18) and (3.14) 

(3.15) limE{e-~Z(a'~ 
aS0 

The limiting distribution in (3.15) is the convolution of two exponential distri- 
butions with parameter 1/2 and should be compared with the limit theorem of(1.3). 

We are now going to look at the distribution of Z(a, t). Let 

H (a, t; fi)= E {e -~z(a' tl}. 

Then, arguing as in Section 2, 

H(a, t; fi)=E {e -prlalt)-zaIG'~l e-~Z~ ~176 

= E  {e -ptl~(t)-la(Gt)l (p(Xt; fl, 0)} 

where (p(x; fi, c~) is defined in (3.8). Using the reversal argument which led to (2.14) 
we obtain 

~o ( e-~lolm ) 
H(a,t;fl)=2 s O ) E ~ l ~ R ) ; R  <t~ dx. 

Taking the Laplace transform in t yields in light of (3.8) 

2 
(3.16) ~ e-~ 'H(a' t ; f i )dt=~ ~ o 

Finally substituting (3.13) and (3.14) into the above, one obtains after a straightfor- 
ward but tedious calculation 

(3.17) ~e =tE~ 
0 

1 ] ~ + f i ( 1  +e  2ar ]/2fi 

-a  ] / ~  + fi(l_e- 2.7 2~) (1 + 2afl)  c~ 3/2" 

This formula contains the distribution of Z(a, t) via a double Laplace transform. 
However, it does not seem to be easily invertible. On the other hand letting fi -~ m in 
(3.17) gives 

J ~e_~tp[Z(a,t)=O]dt= cosh a]ff~. 1 (3.18) 
o c~ sinh alff2~ l~ao: 3/2" 

But Z(a, t)=Ia(Dt)-l"(Gt)=O if and only if Mr= sup {IBsl: G,<s<Dt} <a. Also the 
right side of(3.18) can be inverted explicitly - see for example pp. 136, 98, and 99 of 
[7] - to obtain 
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(3.19) P[Z(a,t)=O] =P[Mt<a] 

2 e n2rr2 t/2ae S en21r2s/2a2 ds 
= ~a2n_l 0 

- / 2 t  4an ~e_2~2n2sds 
: l-- V ~nt-n~>=l ~ l/t i/s" 

The last equality in (3.19) is obtained using the Poisson summation formula or the 
theta function identity at the bottom of p. 99 of I-7]. This formula should be 
compared with Theorem 7 in [3]. 

Thus the distribution of Z(a, t) has an atom at the origin whose mass is given by 
(3.19). If we subtract offthis atom what remains of the double Laplace transform in 
(3.17) can be inverted in fl as the difference of two exponentials. However, the 
dependence on cr seems to be too complicated for explicit inversion. 

(3.20) Remark. Once again the argument leading to (3.16) is quite general. Let A be 
a continuous additive functional of ]B[ with A t < oo for t < c~. Define 

(p(x; fi, c 0 = E  x {exp [ - f lA(R) -c~R]}  

where R=in f{ t :  ]Bt[} =0. Then exactly as above one finds 

2 
(3.21) ~o e-=tE{e ~taW')-a'G"l} d t = ~  ~o q)(x;fi, O)p(x;fl,~)dx. 

4. Distributions of Additive Functionals 

In the preceding two sections, we solved two particular problems of the following 
general type. Given a regular diffusion X with state space a subinterval I of the real 
line, and given a continuous additive functional A of X and a terminal time T for X, 
determine the distribution of A r under px. 

In most cases, the terminal time T will be a first passage time, and we shall 
always use the notation T, = inf {t: X t = a} for a eI. We shall always suppose that 
death occurs only at the endpoints of I. That is, if ( denotes the lifetime of X, then 
a.s. on { (<  oo}, X~_ is an endpoint o f / .  

As before, let 

(p(x) = q~ (x) = E  x exp { -flAt}. 

According to (3.7), if A r < c~ almost surely px, then 

T 

(4.1) 1-(p(x)=flE~ q)(Xt)dAv 
0 

IfdAt=f(X,) dr, and we let V denote the potential operator for the process X killed 
at time T, then (4.1) leads to 

(4.2) 1--~o(x)=flV(fq))(x) 
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at any x for which pX(Ar= oo)=0. For  bounded continuous f, knowing the 
generator for X, we could then write down a differential equation for (p. For a 
complete solution we would need boundary conditions. Proposition (4.6) could 
provide them in certain cases. 

We shall not, in fact, follow this direct path. One reason is that for the examples 
we have in mind, the differential equations require awkward substitutions and 
unwieldy calculations. The other, more important,  reason is that we wish to point 
out that within the classical framework of Bessel processes, some rather interesting 
facts can be observed when one computes first passage time distributions, and these 
computat ions lead to formulas for (p(x) in particular cases. 

With X and A as above, let (zt) denote the right continuous inverse of A and let 
J(t = X~I o denote the process obtained from X by a time change based on A. If T is a 
terminal time for X, then A r is a terminal time for 2 .  If T = T o and a is in the support  
of A, then A r is just the first passage time to a for the process 3?. This reduces the 
calculation of the distribution of Aro to the calculation of a first passage 
distribution for the time changed diffusion )?. In order to apply the standard 
techniques for calculating first passage distributions for 2 it is necessary to describe 
Jf in terms of its differential generator and appropriate boundary conditions. Such 
boundary conditions are written down in (4.7) and (4.11). 

We now fix a scale function s = s(x) for our regular diffusion X on I. Thus s is a 
strictly increasing function on I such that if a < x  < b  and a, be I  ~ (here I ~ is the 
interior of I), then 

s (b ) - s ( x )  
P~ [T~ < Tb] = s(b) - s(a)" 

l d d  
We shall write the generator F of X in the form F -  2din ds together with 

appropriate  boundary conditions. The measure m is a Radon measure on I and is 
called the speed measure of X. Note that our definition is slightly different from that 

d d 
in [6]. Ito and McKean write the generator in the form dmmdss so that their speed 

measure is twice ours. For  example, our m for Brownian motion in natural scale is 
Lebesgue measure. This normalization is more convenient for the applications we 
have in mind. 

I f J  is a subinterval o f / w i t h  Y c i 0  then the potential operator for the suprocess 
T(J) 

obtained by killing X at T = T(J) = inf {t: X t ~J} is given by Vjf(x)  = E x ~ f (Xt )  dr. 
o 

It is well known that Vj has a symmetric density vj(x, y) with respect to m so that 
V j f ( x ) = ~ v j ( x , y ) f ( y ) m ( d y ) .  Under our normalization, if J=(~,/~), then for 
~<_x<y<fi ,  

2 Is(x)- s(~)] Is(B)- s(y)3 
vj(x,  y) = 

s ( f l ) - s ( ~ )  

For each y~I  we denote by It y the local time at y normalized so that it is a density for 
the occupation time relative to m. That  is, almost surely simultaenously for all 
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subintervals J c I and t one has 

i 1j(Xs) ds = ~ lYm(dy). 
0 J 

If, in addition, J c I then 

(4.3) Vs(X,y)=E~(l)(j)) 

for all x, y e J  where, as before, T(J) is the hitt ing t ime of Jq  It  is a s tandard  fact that  
every addit ive functional  A of X that  is finite on [0, ~) is cont inuous  and has a 
unique representa t ion 

(4.4) At=~l~'t~A(dy) 
I 

where ~A is a R a d o n  measure  on I. In part icular,  if dA, = f ( X t )  dt then d[l A =fdm. 

(4.5) L e m m a .  Let a be an interior point of I. Then there exist two non-negative 
numbers K+~ , K 2 such that 

(i) for x s l c ~ ( - o o ,  a), Px{ra=oo}=K2(s(a) -s (x ) )  , 

(ii) for x~Ic~(a, oo ) ,  W{Ta= oo} =K+a (s(x)-s(a)). 

Proof The function ~ (x) -= W { T, = oo } for x e I c~ ( - 0% a) is ha rmon ic  for X killed at 
T a in the sense that  if xe(e ,  f i ) c  I c~ ( -  ~ ,  a) then, by an obvious  appl icat ion of the 
strong M a r k o v  proper ty  

, s ( x ) )  . . . .  ( s ( x ) -  
" 

Thus ~ is an affine function of s on every subinterval  (e, f i ) c I c ~ ( - c o ,  a) and 
consequent ly  on I c~ ( -  0% a) also. Since ~(a) = 0, (i) is immediate .  The  p roof  of (ii) is 
exactly the same. 

We remark  that  K2 and K + can be determined f rom s alone provided  the 
endpoints  of I are not  elastic boundaries .  

(4.6) Proposition. Let [a, b] be a subinterval of I such that a is an interior point of I. 
Let A t be an additive functional of X such that ~ A is carried by [ a, b ]. I f  h (x) = E~ A ~ is 
finite, it satisfies 

(4.7) l im (h(c) - h(a))/(s(c)- s(a)) = K 2 h(a)-  2#A({a}). 
c ; a  

Proof For  sufficiently small y>a, there exists a unique x~Ic~( -oo ,  a) with s(y) 
- s(a) = s(a) - s(x). Let  J = (x, y) and T = T(J~). We may  assume y chosen so close to 
a that  x and y are interior points  of  I. One has T < ~, W a.s. and so 

h(a) = E~A ~ = E~AT + E~A~ o 0 T 

=E~AT+Eah(XT). 
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Because of the choice of x and y, this leads to 

h (a) = E ~ A T + l(h (x) + h (y)). 

Since A is carried by [a,b] and x<a, A(T,)=0, a.s. W, and so 

h(x)=EXA~ =E~A(To)+ E~A o OTo=W {T~ < oo} E~A~. 

Substituting in the preceding equation gives 

(,) h(y)-h(a)-h(a)W{T~= oo} + 2 E a A r = 0 .  

In view of (4.3) and (4.4) 

E a A T -  - ~ ~ a l ~ A ( d z ) =  ; ~ j ( a , z ) # A ( d z )  
[a. y) [a, y) 

-= ~ 2(s (y)  -- S(Z)) (s(a) -- S(X))/(s(y)  -- s (x))  ~A (dz) 
[a, y) 

= ~ ( s ( y ) - - S ( Z ) ) # A ( d Z )  
[a, y) 

by the choice ofx  and y above. Using the dominated convergence theorem one sees 
that E~AT/(s(y)-s(a))~ ~t A {a} as y $ a. The relation (4.7) is then apparent from (,), 
using (4.5) and the fact that s(y)-s(a)=s(a)-s(x).  

(4.8) Corollary. Let A and X satisfy the hypotheses of(4.6) except for finiteness of 
EXAm. I f  the support of# A is precisely [a, b] then the diffusion X obtained from X by 
time change based on A has the same scale function as X, its speed measure is ~A, and 

can die only at the endpoints of[a, b]. The endpoint a is a reflecting or elastic barrier 
for X at which death is possible, as summarized by the boundary condition (4.9)for a 
function u in the domain of the generator 1? of f ( :  

(4.9) lira u(x) -u(a)_K~ u(a)+ 2#A({a})!Pu(a), 
+, s(x)-s(a) 

where K j  is as defined in (4.5). 

Proof. All assertions except those in the last sentence are standard facts in diffusion 
theory. The boundary condition at a is the same for )? as for )? killed at a point ~, 
with a < ~/< b. If ~', denotes the potential operator for this killed subprocess, then u 
= l?,f for a bounded, positive continuous f implies that Fu(a)= -f(a).  On the 
other hand 

Tn 

fz, f (x )=E ~ ~ f(X,)dAt. 
o 

The additive functional f(Xt)dAt corresponds to the measure fd#A. Since #A is a 
Radon measure, ~ fd~A<OO. This shows, by (4.3) and (4.4) that 

T n [a, ;1) 
E x ~ f(Xt) dA t < ~ for all x ~ [a, r/). Thus f(Xt) dA t satisfies the hypotheses of(4.6) for 

0 
the process X killed at T~. We now apply (4.7) to obtain (4.9). 
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(4.10) Remark. Trivial changes apply in the statements of (4.6) and (4.8) if one 
wants to consider the boundary condition at b, an interior point of / .  One gets, for u 
in the domain of the generator/~ of )? 

(4.11) l imU(X)-u (b ) -  K;u(b)_2#A({b})~u(b) 
xtb s(x)-s(b) 

where K + is as defined in (4.5). 
We turn now to the specific problems that we wish to solve. The solutions are 

written down in (5.14). 

(4.12) Problems. Let (B,) denote a standard Brownian motion on the line and let 
a__> 0. Let 7 be a real number. We wish to find formulas for the px distributions of 

To 

(a) ~ ]Us]~ ds, 
0 

To 

(b) S lBsV l(o,a)(Bs)ds, 
0 

Ta 

(c) ~ ]Ss[~ ds (a>0). 
0 

The method is clear, following the outline provided above. Let A t = i [Bsl ~ ds 
t 0 

(cases (a), (c)) or ~ IBsl ~ 1(0 ' a)(B s) ds (case (b)). Let )( t be the process obtained from IBtl 
0 

by the time changed based on A. Then as explained earlier the quantities of interest 
in (a), (b), and (c) are just first passage times for X. We identify X as follows: 

(4.13) In (a) and (c), X has state space [0, oo) or (0, oo), scale function s(x)=x and 
speed measure x~dx. In (b), X has state space [0, a] or (0, a], scale function s(x) =x 
and speed measure x ~ l~o,a)(x)dx. The endpoint a is a reflecting barrier: for c > a, 
PC{T,= ~}  =0, and so in (4.11), K + =0, and of course ~A({a})=0. 

(4.14) Remark. For these diffusions one knows ([6], p. 130) that the endpoint 0 is 
Y 

an exit point if ~ s(x) m(dx) < ~ for sufficiently small y and an entrance point if 
y 0 

m [0, x] s(dx) < ~ for sufficiently small y. In this particular case we see that 0 is an 
0 

exit point if 7 + 2 > 0 and an entrance point if 7 + 1 > 0. That is, problems (4.12) (a) 
and (b) are trivial unless ? + 2 > 0. 

5. Bessel Processes 

Throughout this section, X will denote a Bessel process with index v: the state space 
is either [0, ~ )  or (0, oo) and the generator F agrees on (0, oo) with the differential 
operator 

1// d 2 2v+1  d \ 
(5.1) A=2|dx2\ -+ x dx)" 
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The index v may be any real number. Sometimes X is described in terms of another 
parameter 

(5.2) d = 2 v + 2 .  

With the index v as in (5.1), the modulus of a d-dimensional Brownian motion is a 
Bessel process with v =�89 

The scale function s and the speed measure m, restricted to (0, oo), are determined 
from the obvious formulas s '(x)  = K x - ( 2 v  + 1), m ( d x )  = K -  ~ x 2~ + 1 dx  where K is any 
convenient positive constant. For  application to the problems listed in Section 4, we 
normalize so that 

(5.3) s ( x ) = ( -  sgnv)(21vl)Z~x -2~ if v ~ 0  

= l o g x  if v = 0  

and 

m(dx)=[x/(21vl)32~+ldx if v4=0 

= x d x  if v=0.  

The classification of boundary points in terms of properties of the product 
measure s ( d x ) m ( d y )  as set out in [-6], p. 130, gives the following information: 

(5.4) (i) The endpoint oo is a natural boundary; 

(ii) v > 0 : 0  is an entrance but not exit point; 

- 1  < v < 0 : 0  is an entrance and exit point; 

v < - 1  0 is an exit but not entrance point. 

In the case - 1 < v < 0, we complete the definition of X by requiring that 0 be a 
reflecting point. Thus for all v > - l ,  0 is an entrance point, and if u is in the 

x 

domain of the generator F, the quantity ( u ( x ) - u ( O ) ) / ~ s ( O m ( d t )  converges to 
0 

Fu(O) as x ~ 0 .  The boundary conditions that we shall need for u in the domain 
of F are then 

(5.5) (i) v < - l "  u ( 0 + ) = 0  

(ii) v >  - 1 ,  v=~0: ( u ( x ) - u ( O ) ) / x  2 has a finite limit as x$0. 

Given e>0,  let T~=inf{t: X, =e} and let f l>0.  Let 

(5.6) ( p ( x ) = c p ~ ( x ) = E X e x p ( - B T ~ ) .  

This gives, of course, the Laplace transform of the distribution relative to P~ of 
the first passage time through e. We obtain the following explicit formulas for (p, 
involving the usual modified Bessel functions I,. and K~. The proofs are deferred 
until Section 8. 

(5.7) Proposition. (i) L e t  e = 0 and v < O. Then 

cp (x) = V(Ivl)-  i 2 ~ +1 ( ] / ~  x ) - "  K~ ( 1 ~  x). 
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An explicit formula for the density is given in Remark (5.9)(ii). 

(ii) Let e>O. For arbitrary v and for x>e  

(iii) Let e>0. For 0 < x < ~  and arbitrary v 

(iv) Let e > 0 and v > - 1. Then 

where 0={-11 /f v = < - I  
/f v > - l .  

(0) = r ( v  + 1)]. 

Let v>0. Let ~(x)=EX~exp[- f i~ l (o ,~ , (Xs ,  ds]~ denote the (5.8) Proposition. 
{ . L -  J J  0 

Laplace transform of the W distribution of the total time X spends in (0, ~). Then 
for 0 < x < ~ ,  

(i) 6 ( x ) = [ 2 v ( ~ ] / ~ )  ~ - ~ ( x ] / ~ )  ~I~(x]/ /~)] / I~_x(e]/~)  

and 

(ii) 6 (0)=(a l /~- )  ~- 1/[2 * ~ r ( v ) L -  l(e]/2fi)] �9 

(5.9) Remarks. Certain very curious facts are evident from the formulas above. 
(i) The total time spent by a Bessel process with index v>0  in the interval 

(0, a) has the same distribution, starting from 0, as the first passage time through 
e for the Bessel process with index v - 1 .  This fact was noticed by Ciesielski and' 
Taylor [2] in the special case where X t = IBt[,  the absolute value of a d- 
dimensional Brownian motion with d_> 3. 

(ii) It was shown in [5] that if X is a Bessel process with index v > 0 and if L~ 
=sup{ t :X ,=e}  then the distribution of L~, starting from 0, has Laplace 
transform 

E ~ exp [ - fiLe] = [2 ~- '  F(v)] 1 ( e ] /~ ) "  K,(e] /~-)  

and that the pO distribution of L~ had density e-=f~(t/e 2) where 

f , ( t )=[2~F(v )V+l] - l e  -1/=t, t>0.  

In view of (5.7)(i), the pO distribution of L~ is identical to the pc distribution of 
To for a Bessel process with index -v .  Recall that K~=K_~ for all v. We point 
out the obvious fact that the above density gives an explicit inversion of the 
formula (5.7(i). 

In [5] it is likewise proven that for a Bessel process with index v>0, if 
0 < a < b, then the pO distribution of L b -  L a has Laplace transform 

E ~ exp [ - fl(L b - La)] = b ~ K , ( b l / ~ ) / [ a  ~ K, ( a l ~ ) ]  
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and therefore, by (5.7)(ii), the pO distribution of L b - L  a for a Bessel process with 
index v > 0 is identical to the pb distribution of T a for a Bessel process with index 
- v .  

The second group of results on Bessel processes involves a modification by 
means of a reflecting barrier. More precisely, let 7~ be the diffusion on (0, e] or 
[0, e] that has generator given by (5.1) on (0, e) and has a reflecting barrier at e. 
The boundary condition at 0 is to be the same as for the original Bessel process 
X. We suppose that the index v<0.  Making use of (5.3) one sees that for c>e,  

s(c)-s(~) 
pC{T= oo} = x~oolim s(x)_ s(e)=O. 

In view of (4.8), X may be considered as the process X subjected to time change 

i via the additive functional A~- llo,~)(X~)ds. 
o 

(5.10) Proposition. Let T=in f{ t :  )~t =0} and let v<0.  Then for 0 < x < e ,  

(i) EX exp [-fiT]=F(lvl)-12~+1(xl/~)-~[K,,+1(e]/ 2/~fi)I v(x]/~fi) 

+ I - , , - l ( g l ~ - )  Kv(x]/~)]/I_,, 1 ( g ~ ) '  
In particular 

(ii) E~exp[-fi~=F(Ivl)-12*+ l(g]/~)-'*+ l)/I_~_l(e]/~). 

The proof is given in Section 8. 

(5.1l) Remarks. Once again, the distribution that first appeared in (5.7(iv) and 
(5.8)(ii) recurs in (5.10)(ii). That is, the P~ distribution of T for the Bessel process 
with index v < 0  and with a reflecting barrier at e is identical to the pO 
distribution of T~ for a Bessel process with index - ( v + l ) ,  and to the po 
distribution of the total time spend in (0, e) by a Bessel process with index - v .  

In our applications of the formulas of this section to problems (4.12), we 
require only a change of scale. If X is a Bessel process with index v with scale 
function and speed measure normalized as in (5.3), the process Y~=s(X,) is a 
process in natural scale, the state space being the positive half line if v <0, the 
real line if v = 0 and the negative half line if v > 0. The speed measure, m r for Y is 
given, in case v # 0, by 

(5.12) mr(dy)=(-ysgnv ) 2-a/*dy=lyl-2-1/"dy. 

It follows that if a diffusion Z on (0, oc) or [-0, oo) is in natural scale and its speed 
measure is zTdz with 7 + 2 > 0  and 0 a reflecting point if 7 > - 1 ,  then we may 
compute the P-- distribution of T,=inf{t :  Z,=a} from the formulas in (5.7) by 
making the substitutions 

(5.13) v = - ( 7 + 2 )  - ~  

x = 2lvl z -  1/2~ =(1 + � 8 9  1 z 1 +~, 

e=(1 +�89 I a l+~ .  



100 R.K. Getoor and M.J. Sharpe 

The same procedure is valid if Z is modified so that the point a is a reflecting 
barrier. Taking (4.13) and (4.14) into account we make the substitutions (5.13) in 
(5,7) and (5.10) and obtain the following result. We write down only the most 
interesting cases. 

(5.14) Proposition. The solutions to problems (4.12) are as follows: For a stan- 
dard Brownian motion on the line, for a > 0  and 7 + 2 > 0 ,  one obtains, setting 
2=(7+2)  -1 , 

(a) EZexp [ - f i r f  lBsl'ds] 
0 

=2F(2)-  1 ( 2 ~ ) ~  K ~ ( 2 2 ~ )  (z+0); 

(b) Eaexp [ - f l  i'~ l(o,a)(IB~l)ds] 
0 

= r(2)-1 (2 ~ ) . ~ -  ~/I~_~ (2 2 ~ ) ;  

(c) E~ exp [--flTf lBsl' ds] 
0 

= F ( 1 - 2 ) - 1 ( 2 ~ ) - ~ / 1 ~ ( 2 2 ] / 2 f l a  1/2) 

provided 7 + 1 > 0 (that is, 0 < 2 < 1). 

6. Applications to Excursions 

We now possess all the necessary preparations to obtain the limiting results on 
distributions of additive functionals over excursions. Firstly, recall that (Bs) denotes 
a standard Brownian motion on the line. 

(6.1) Theorem. Fix t > 0  and 7 > - 2 .  Recall that Dt=inf{s>t: Bs=0 } and G t 
= sup {s < t: B S -= 0} denote the endpoints of the excursion interval straddling t. Let 2 
=(7+2) -1. Then as a~O, the limiting distribution of a -1~+2) S IBs] ~ l(o,a~(lBsl)ds 

(Gt, Dt) 
under pO exists and the limiting distribution is the convolution square of the 
distribution having Laplace transform tp(fi)= F(2)-1 ( 2 ] / ~ ) x -  1/i z- x ( 2 2 ] / ~ ) .  

Proof. Use (2.18) with the result of (5.14)(b). 

We point out here that results of the same type can be obtained, at least in 
principle, for excursions of quite general regular diffusions. As is known ([6], p. 149) 
a regular diffusion on an interval I has a transition density p(t, x, y) relative to the 
speed measure m that is symmetric in x and y, is jointly continuous on (0, oo) x I x I, 
and satisfies the Chapman-Kolmogorov equation identically. 

Let 0 be the left endpoint o f / a n d  assume that 0 is in I and is a regular point for 
the diffusion X. In applying the discussion in Section 2 to this case we need a general 
argument for the validity of (2.12) 

(6.2) Lemma. Let R=inf{s :  Xs=0}. Then for all x > 0  and t > 0  

p(t, x, O)=E~[p(t-R, O, 0); R < t]. 
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Proof We derive this f rom s tandard  facts abou t  dual  M a r k o v  processes. If  the 
potent ia l  opera tors  of  a pair  of  dual  processes (Y, f) are given by U(x, dy) 
= u(x, y) ~(dy) and (J(dx, y) = ~(dx) u(x, y) with u excessive in x and coexcessive in y, 
then the potent ia l  opera tors  for the pair  of  subprocesses obta ined  by killing at T 
= T B where T B is the hit t ing t ime of a Borel set B, are given by a density v(x, y) that  
satisfies 

(6.3) u(x,y)=v(x,y)+gx[u(Yr,y); r < o o ] .  

Moreove r  v(x, y) = 0 if either x is regular  for B or y is coregular  for B. We apply  (6.3) 
to the space t ime process Yt = (r~, Xt) on IR x I where r t is uniform mot ion  to the 
right at speed one. This process is in duali ty with !?t-- (r Xt) relative to the measure  

= l x m on IR x I where I is Lebesgue measure,  m is the speed measure  of X, and ~ is 
uni form mot ion  to the left at speed 1. Let  B = IR x {0}. Then T B = inf {t: X t = 0} = R. 
Moreove r  u((r,x),(t,y))= l(~,~,(t)p(t-r,x,y) and so 

E~, x) [u (('OR, XR)  , (t, y)): R < oo] = E x [u ((r + R, 0), (t, y)); e < oo)] 

=EX[p(t-r-R,O,y); r + R  < t ] .  

N o w  specializing (6.3) to the case r = 0 ,  y = 0  gives 

p (t, x, 0) = v ((0, x), (t, 0)) + E x [p ( t -  R, 0, 0); R < t] 

for all t > 0. But (t, 0) is regular for B = 1R x {0} for I7" = (f, X) and so v((0, x), (t, 0)) = 0, 
establishing (6.2). 

We illustrate this by examining the excursions away  f rom 0 for a Bessel process 
X with index v. - 1 <  v < 0 ,  as described in Section 5. We cont inue to use the 
no ta t ion  (G t, Dr) for the excursion s traddl ing t. Because of(2.15), as modif ied above,  
the p rob lem reduces to calculating 

(6.4) ~o(a;fi)=Eaexp [ - f i i~  l~o.~(X~)ds]. 

The compu ta t i on  is based on the results of  Section 5. Let  K=(2 lv l )  ~ and 

t 

At=K ~ X~ l(o, al(X~)ds. 
0 

Under  t ime change via A, X t ransforms to a diffusion )~ with scale function 

s(x)--(2rvJ)a~x -2~ on (0, a) 

and speed measure  r~, where 

,5 (dx) = (2 l v I ) - '  x ~ l i o, ~j(x) Ix/(2 Iv I)] 2,. + 1 dx. 

Moreover ,  the poin t  a is a reflecting point  for J~. Let  Y~ = s ( ~ )  be this latter process 
in na tura l  scale. Its speed measure  is 

my(d),) = 1~o ' ~(~))(y) y -  2 -(~ + 21/2,, dy. 
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Then 

(p(a; fl) = E" exp [ - i lK-1 Aro] = ~(s(a);  fiK - 1) 

where 0(Y; ~)=  EY exp [--c~ To] , the bars  now referring to the process Y The  te rm 
[ - 2 -  (7 + 2)/2 v] now plays the role formerly  played by 7 in (5.13). We substi tute this 
for 7 in (5.14) and obtain  finally, as in (6.1), 

(6.5) Proposition. Let )~ = 2 Ivl/(7 + 2) where 7 > - 2 and - 1 < v < O. Then 

(i) o(a;fl)=F{2)-1(~lvl~) ~ 1/I,~ a ( ~ v ] ~ ) ,  

(ii) ,-01imE~ a,+Zfi ~ X, ' l ,o, ,)(X,)ds ] 
(Gt, Dt) 

=(F(A)-'(2@~);'-/I'.-1(~vl~fi)) 2" 

7. Area of an Excursion 

It  would be interesting to be able to compute  the distribution, over  the excursion 
straddling t, of an addit ive functional  of the type considered in Sect ion 6. Explicit  
formulas  are available for the par t icular  case of  the length of an excursion (e.g. [3-1), 
and in Section 3 we examined the local t ime at a point, obtaining the Laplace  
t ransform in t of their distributions. 

s 

If  one tries to imitate  the methods  of Section 3 in case A s=  ~ IB, Vdu, where 
7 > - 2 ,  one obtains  f rom (3.21) o 

oo 2 oo 
(7.1) ~ e-~'E~ ~ ~o(x;fl, c~)ep(x;fl, O)dx 

o V2c~ o 

where 

(7.2) (p(x; f i ,~)=EXexp { - f iAn-c~R}  

with R = inf {s: B s = 0}. 
For  general 7 > - 2 ,  we are unable  even to calculate explicit formulas  for 

~o(x;fl, c O. In the case 7 = 1, cor responding to the " a r e a "  additive functional,  we can 
compute  (p(x; fl, e) but  the integral in (7.1) does not  seem tractable.  

The  calculat ion of (p(x; fl, ~) can be based on L e m m a  (3.4), but  it is s impler to give 
an a rgument  that  relies only on the spatial  homogene i ty  of  Brownian  motion.  

Fix x and y > 0, and let T = inf {t: B~ = y}. The  px + y distr ibution of (A r - y  T, T) is, 
by spatial  homogenei ty ,  the same as the px distr ibution of (A R, R). Therefore  
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(0(x +y ;  fi, 0 )=E x+' exp {--fiAR} 

=E x+y exp { - f i A  r-flARo Or} 

=EX+y exp { - f iA t}  E 'exp { --fiAR} 
= E  ~+y exp { - f i ( A r - y T ) - f i y T }  (p(y; fl, 0) 

= ~o(x; p, fly) q)(y; fi, 0). 

We obtain then, for fl > 0 

c~ 0 ~ 0 (7.3) (o(x;fi,~,)=(p(x+~;fi,)/~o(fi;fi, ). 

However, (p(x;fi, O)=E~exp {-fiA~} has been computed in (5.14). Setting 7= 1, 
and hence 2 = 1/3, in (5.14)(a) we have 

f f f l  t/3 ~ 2 3/2 I 3 (7.4) (p(x;fl,0)=2 ~ ]  Ka/a )/I-( / ) .  

Substituting this in (7.3) gives, for ~>0  and fl>O 

The argument given above breaks down if 7 4 = 1, but application of (3.6), for 
general y, leads to a differential equation for (p(x;fi,~). We have been unable to 
solve this equation explicitly. 

8. Calculations 

We collect in this section the calculations necessary to derive the formulas listed in 
(5.7), (5.8), and (5.10). Let X denote the Bessel process of index v as described in 
Section 5. Let qo(x)= qoB(x ) =EX(e -pr(~l) where r (0  = T~ = inf {t: Xt = e}. If T~ < oo, it 
follows from (3.7) with A, = t that 1 - (p is in the domain of the generator of X killed 
at T~. In particular 

2 v + l  
(8.1) ~o"(x) + ~o'(x)- 2fl,p(x) = 0 

X 

on any open subinterval of (0, oo) not containing the point e and on which 
W(T~ < oo) = 1. 

We shall use [lJ has a handy reference for the properties of Bessel functions 
needed here. Using 9,1.52 and the remarks preceding 9.6.41 of [1] the following 
three functions are solutions of (8.1) on (0, oo) 

(8.2) (pl(x)=x-~Iv(xl/~), 

~o 3(x) = x - v  U x  1 / ~ ) .  
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If  v is not  an integer any pair of these functions is linearly independent.  If  v is an 

integer ca 1 = ca3. Also K v = K v for all v and so ca2 (x) = x -  ~ K ~ ( x l / - ~ ) .  Of course, I~ 
and K~ are the usual modified Bessel functions of  the first and third kind. We 
summarize  some of the properties of these functions that  we shall need. 

(8.3) cal and ca3 approach  infinity as x-~ 0% 

while ca2 is decreasing and vanishes at oo. 

(8.4) If  v > 0 ,  ca2 is unbounded  at 0, while if 

v<0, ca~(x)--,F(Ivt)2-r as x ~ 0 .  

(8.5) If  v 4= - 1, - 2, . . . ,  then 
x 2 

F(v + 1)(x/2)-~ Iv(x ) = 1 + ~ + 0(x 43 as x --, 0. 

(8.6) If v < 0 ,  cal(x)--,0 as x ~ 0 .  

(8.7) I f v > - l ,  c a 3 ( x ) ~ 2 V F ( v + l ) a s x ~ 0 .  

(8.83 c a i ( x ) = ] / ~ - x  ~I_~_l (x] /2 f i ) ;  c a ' 2 ( x ) = - ] / ~ x - V K _ , _ l ( x ] / 2 f i ) .  

We now turn to the p roof  of  (5.7). We begin with (5.7)(ii). i f  x > e > 0 and v < 0, 
pX(T~ < oo)= 1. Since the only solutions of (8.1) that  are bounded  at infinity are 
multiples of ca 2, ca(x) = c ca2(x) i fx > e. Since ca(e + )  = 1 we obtain ca(x) = ca2 (x)/ca2 (e) 
proving (5.7)(ii) when v < 0. If  v > 0, thenPX(T~ = oo) > 0 if x > e, and so one can not  
apply (8.1) directly. However,  if r > x and T = T~/x T~ we may apply (3.7) to T. Thus 
tpr(x)=E~(e -r  is a solution of  (8.1) on (~, r) satisfying 0 r ( e + ) =  1 and 0 r ( r - ) =  1. 
Consequent ly  ~ (x) = A 2 ca 2 (x) - A 1 ca i (x) wh ere 

A j = [ c a j ( r ) - c a j ( e ) ] [ c a l ( r ) c a 2 ( e ) - c a l ( e ) c a 2 ( r ) ]  - 1  , j =  1,2. 

But T~ T oo as r--, oo, and by (8.3), A 1 --~ [ca 2 (e)] - 1 and A 2 --* 0 as r --~ oo. Therefore we 
obtain for x > e 

ca (x) = lim ~'r(x) = ca2(x)/ca2 (e). 

Thus (5.73(ii) is verified in all cases. 
I fv < 0 and we let e ~,0 in (5.7)(ii) we obtain, using (8.4), the result stated in (5.73(i). 
N o w  consider (5.7)(iii). If  v > - 1 and 0 < x  < e, then PX(T~ < oo) = 1. Thus ca is a 

solution of  (8.1). But ca (0 + )  > 0 in this case. If  - 1 < v < 0, ca 1 and ca 3 are linearly 
independent,  and hence, (8.6) implies that  ca = cca 3. If v > 0, ca2 and ca3 are linearly 
independent,  and (8.4) implies ca=cca 3. In either case c a ( e - ) = l ,  and so ca(x) 
= ca a(X)/ca3(e) establishing (5.7)(iii) when v > -  1. If  v < -  1, 0 is an exit but  not  
entrance point  and so PX(T~ = o o ) > 0  i f 0 < x < a  But [ and ~/x T~ are finite, and so 
~(x )=EX(e  -a~) and O,(x)=E~{e -~(r to)} satisfy (8.13 on (0, e). A simple calculation 
shows that 

ca (x) = (~p~ (x) - g, (x))/( 1 - tp (~)) 
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and so cp satisfies (8.1) on (0, e). Clearly (p(0 + ) =  0 and (p (e - )  = 1. Hence (8.4) and 
(8.6) imply that  ~o(x) = (Pl (x)/qg~ (e) complet ing the proof  of (5.7)(iii). 

Finally if v >  - 1 and we let x+0  in (5.7)(iii) we obtain (5.7)(iv) because of (8.7). 
Thus Proposi t ion 5.7 is completely established. 

We turn next to the p roof  of(5.10). Now T <  Go because v < 0  and so the solution 
(p satisfies (8.1) on (0, e). Since v < 0, the endpoint  0 is an exit point  and we have the 
boundary  condit ion 

(8.9) ( p ( 0 + ) =  1. 

Moreover ,  at the endpoint  e, the reflection condit ion is 

(8.1o) r 

F r o m  (8.6), % ( 0 ) = 0  so (8.9) implies that  

(8.11) 

where 

(8.12) 

(,o=A(,Ol q-B(o 2 

B - 1 = ~o 2 C0 ) = Fflvl) 2-cv + 1)(2fi)v/2 

Making use of (8.8), one sees that  (8.10) leads to 

A r  = o. 

B u t K v = K  ~ and so 

A =BK~+ , ( ~ 1 / ~ ) / 1 ~ _  ~(el~f i ) .  

Substi tut ion of this last formula and (8.12) into (8.11) yields (5.10)(i). Lett ing x 1" c in 
(5.10)0) and using the Wronskian  relation ([1], 9.6.15), we obtain (5.10)(ii). 

We turn finally to the proof  of (5.8). Here  X is a Bessel process with v > 0. If we 
t 

t ime change X by means of the additive functional  A t = y l~o,~)(Xs)ds we obtain a 
o 

diffusion 2 on [0, e] whose generator  on (0, c) is given by the differential opera tor  A 
defined in (5.1), having 0 as an entrance but  not  exit point, and, as we shall show, 
satisfying the boundary  condit ion at e 

(8.13) u ' ( ~ ) = - 2 v e  -1 u(e) 

for u in the domain  of the generator  of X. To see this, observe that  for c >e  one has 
(here T a denotes the hitting t ime of a by X) 

PC(T~ = oo) = lim U(T~: < T~) 
x~oo 

s(c)-s(e) s(c)-s(e) 
= lira 

x~oS(X)-~(c) - s ( e )  ' 
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because s(x)-..-> 0 as x-~ oe. (See (5.3).) Recalling the definition of K [  in (4.5)(ii) we 
have K~ + = ( - s ( ~ ) )  -1, and so from (4.11) 

lim u ( x )  - u ( e )  _ u ( e )  
, ~  s(x)-s(e) s(e) 

du d u d s  and so " "  s'(e) if u is in the domain  of  the generator  of Jr. But dx - ds dx u (~) = ~ u(e). 

Finally f rom (5.3), s'(e)/s(e)= - 2 v / e  establishing the boundary  condit ion (8.13). 
N o w  the p roof  of  (5.8) is easy. The function O ( x ) = E  ~ {exp [ - f i A ~ ] }  satisfies 

(4.2) since Ao~ < oe and consequently 0 is a solution of(8.1) on (0, e). Since v >0 ,  (8.4) 
implies that  0 ( x ) =  A93(x).  In the present si tuation (4.2) may be written 

1 -  0(x)  (XOdA,=E x S 00(2) 
o o 

where U is the potential  operator  for 2 .  Thus 1 - ~b is in the domain  of  the generator  
of  J~, and so from (8.13) 

(8.14) ~vv O'(e) + O(e)= 1. 

N o w  tp'(x)=A(p'3(x ) =A]/2- f ix -"I , ,+ l ( x l /~ f i )  according to ([ lJ ,  9.6.28). Substitut- 
ing this into (8.14) and using the recurrence relation ([1], 9.6.26) leads directly to 
(5.8)(i). Lett ing x ~ 0 and using (8.7) we obtain (5.8)(ii). 
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