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2. Introduction 

Let X=((2, Y, J~, Xt, 0,, px) be a "nice" Markov process; for definiteness a 
Borel right process, see [4], or more concretely a Hunt process. A random time 
R is an ~,~ measurable mapping from Q to IIY, + = [0, oo]. Associated with R is the 
o--algebra YR of "events occurring before R"  (see Section 2 for the precise 
definition) and the "post R process" (XR+ t, t>0)  defined on {R < oo}. In recent 
years there has been considerable interest in finding those times R such that: (i) 
the post R process is conditionally independent of ~-R given X R and, perhaps, 
some additional "auxiliary" variables, and (ii) the post R process is strong 
Markov. An excellent discussion of these and related questions is given in the 
recent survey [14] by Millar. Of course, if R is a stopping time, then (i) and (ii) 
are immediate consequences of the strong Markov property, and the post R 
process even has the same transition semigroup as X. In addition to stopping 
times there is another class of times for which (i) and (ii) are known to hold. Let 
M c IR + x • be optional and homogeneous. (Definitions are given in Section 2.) 
Let L(co)=sup{t: (t,o))eM} be the end of M. Again the post L process is defined 
on {L< oo}. It is by now a standard fact (see [3, 5, 8, 13], or [16]) that L satisfies 
(i) and (ii) above. In this case the post L process (Xr+,; t>0)  is a temporally 
homogeneous Markov process but its transition semigroup is not the same as 
that of X. Moreover, it was shown in [13] that the pre-L process Jr, J ( , = X  t if 
t < L, J~,= A if t > L is also a temporally homogeneous Markov process in this 
situation. 

Our emphasis in this paper will be on property (i). The post and pre-R 
processes will only be mentioned in passing. Therefore we shall call a random 
time R that satisfies (i) a splitting time with the given auxiliary variables. Thus 
stopping times and ends of homogeneous, optional sets are splitting times with 
no auxiliary variables. 

In [15], Millar observed that certain times R which are not the ends of an 
optional homogeneous set M for X may, nevertheless, be viewed as the ends of 
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an optional homogeneous set ~/ relative to an auxiliary process 2 .  Thus one 
may apply the above result to ~Y/ and 3? and obtain information about the 
original R and X. The present paper treats this idea in a systematic way in a 
general setting. Although the proofs are very easy given the theorem about the 
end of a homogeneous optional set, it seems to us that the framework of Section 
2 is a very natural setting for such results. 

In Section 2 we introduce the notion of a shift functional which provides the 
appropriate concept for our basic result. The identity (2.1) defining a shift 
functional up to regularity assumptions has appeared in numerous places. We 
mention some of them in Section 4. A particularly simple example which enables 
one to reduce the properties of L t = sup{s < t: s~M} when M is a homogeneous, 
optional set to the case of the end of such a set is given in Section 2. In Section 3 
we discuss two classes of examples. The first deals with the last minimum or the 
last minimum before a fixed t of a homogeneous functional of X. These are 
slight generalizations of the particular problems treated by Milnar in [15]. The 
second class of examples deals with the range of the process; for example, the 
+~ '+ point of increase of the diameter of {X,: u<s} before t. Such examples 
seem to be new. In Section 4 we discuss some of the connections between our 
results and semi-direct products and multiplicative kernels as discussed by 
Jacod [61, [7], and Meyer 1-11]. 

The expert will wonder, and rightly so, why we have restricted ourselves to 
Bore! right processes and assumed that shift functionals are jointly Borel 
measurable (2.4i) rather than, say, (9 x d measurable where (9 is the optional a- 
algebra. Especially since this causes some awkwardness in the example of the 
min-functional in Section 3. The point of this simplification is that it allows us to 
operate at the level of Borel sets rather than having to introduce Ne _ the a- 
algebra generated by excessive functions. See the discussion of branch points in 
Section 2, for example. It is our hope that this technical simplification will make 
the paper accessible to a wider class of readers and that it will not disturb the 
aficionados too much. 

2. Shift Functionals 

Let Q be a set and (Or)re o a semigroup of mappings from Q to D; that is, Ot+ s 
=OtO + for t,s>O. We refer to (Ot)t~ o as a shift on Q. Let A be another set. Then a 
family (I~)~>=o of mappings from Q xA to A is called a (O~)-flow on A 
provided. 

(2.1) It+s(e),a)=It(Osco, I~(o.),a)). 

Here (2.1) is assumed the hold identically in t, s, a) and a. If ~ = D  x A and we 
define 

(2.2) OtCo=O,(co, a)=(O,m, It(o~,a)), 
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then it is immediate from (2.1) that (Ot)t>_o is a shift on SO. If ~z is the projection of 
SO = f2 x A onto ~, ~z(co, a )=  co, then clearly 

(2.3) Otrc=:rcO ~ for all t > 0 .  

Conversely let (0~) be a shift on SO satisfying (2.3). Let 7(co, a )= a be the projection 
of SO onto A. Then It(co, a )=7  Or(co, a) satisfies (2.1). Thus giving a (Ot)-flow on A is 
equivalent to giving a shift (t~) on (2 x A whose projection on s is (0t). 

Now let X=(f2,  ~,  4 ,  Xt, 0,, px) be a Borel right process [4] with state 
space (E,g). Here f2 is a U-space - s is homeomorphic to a universally 
measurable subset of a compact metric space - and ~,~o= a(Xs: s > 0) is the Borel 
a-algebra of Q. (The actual topology on f2 is not important, only the Borel 
structure of (f2,~~ is relevant.) There exists a distinguished point A sE  which 
acts as a cemetery and we assume without essential loss of generality that 
=inf{t:  X t = A  } is infinite almost surely. To say that X is a Borel right process 
means that X is a strong Markov process with right continuous trajectories, that 
(E, g) is a Lusing space (E is (homeomorphic to) a Borel subset of a compact 
metric space and that ~ is the Borel a-algebra of E), and that the transition 
semigroup (P0 of X maps Borel functions into Borel functions. 

Let (A, ~ )  be a Lusin space. 

(2.4) Definition. A shift functional (It)=(It(co, a)) on A is a (Ot)-flow on A which 
satisfies: 

(i) (t, co, a ) ~  It(co, a ) is .~(IR +) x ~-o x sur measurable. 

(ii) co~  It(co, a ) is Ytt measurable. 
(iii) t ~ I~(co, a) is right continuous. 

(2.5) Remarks. We emphasize again that we are assuming that (2.1) holds 
identically in the appropriate variables. It follows from (ii) and (iii) of (2.4) that 
(t, co)~ I,(co, a) is optional (i.e. well measurable) relative to the filtration (4) .  

We adopt the following notational conventions. If H(co, a) is defined on sO 
=f2 xA, then H" denotes the map co--,H(co, a). If H(co) is defined on s it will 
sometimes be convenient to identi~ H with H o u, that is, we will also use H for 
the map (co, a)--,H(co) defined on s Thus It is the map co-,It(co, a ). If R and T 
are random times, then IR(OT, a) denotes the map co ~ In(o,)(OT(o) ) CO, a) defined on 
the set {R < o% T< oo}. With these examples in mind the reader should have no 
difficulty deciphering our formulas. 

If g is a positive # x ~ measurable function on E x A, we define 

(2.6) Kt (x ,a ;g )=E~[g (X t ,  I~)]. 

It is an easy consequence of (2.4) (i) and the fact that (P~) maps Borel functions 
into Borel functions that for each t > O, K t is a Markov kernel on (E x A, C x d ) .  

The following elementary result is basic. 

(2.7) Proposition. (i) (Kt)t> 0 is a semigroup of  Markov kernels. 
(ii) For each initial measure t~ on E and a~A the process XT=(Xr ,  I7) is a right 
continuous strong Markov process with respect to pu having (Kt) as transition 
semigroup. 
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Proof. From the definition of I, X a =(X~) is right continuous and (~t) adapted. 
u~-it Let T be an (~t )  stopping time. We shall need the following form of the strong 

Markov property for X (see I-(8.16) of [1]). Let G(c~,w) be a positive ~ "  x ~ r  
measurable function on s x ~2 and let H = G(O T, .) - that is, H(co)= G(OT~o, ) co, Co) 
- on { r <  ~}.  Then on {T< ~},  

(2.8) E ~ ' [ H l ~ . ] = ~  G( ' ,w)pX(r) (dw) .  

Now let g be a positive C • d measurable function on E • A. Then for each t >= 0 
one has, making use of (2.8), on {T< ~}  

(2.9) E~{g(Xt+.T, I t + r ) I ~ { } = E ' { g [ X ,  oOT, I,(OT, I~ ) l lY~}  

= ~ g [X~(w), I t (w, I))] px(T)(dw) = K , ( X  T, I}.; g). 

If T=--s and # = ~ ,  then taking expectations with respect to W in (2.9) one 
obtains Kt+ ~ g = K~K t g proving (i). But (ii) is now immediate from (2.9). 

We now introduce a canonical representation of the family of processes (Xa). 
Let ~ - -Q  x A. On ~ define Xt(c5 ) =)~t(co, a)=(Xt(co), It(o), a)) and 0tch=0t(co , a) 
=(0 too, I,(e), a)). Then X t o Os=2~+ ~. Next define P~'~ on ~- .x d_ by_ W "~ _ W x  ~ 
where eo is unit mass at a. Now consider the process X=(Y2, ~,, ~ ,  X~, 0,, px,~) 
with state space/~=E • A. Then Jf is a right continuous strong Markov process 
with transition semigroup (K~) because (Xt) under /~'~ is equivalent to (X~) 
under W. Here ~ and ~ are the usual a-algebras associated with the Markov 
process 2 .  See [1]. 

The process 2 has all the properties of a Borel right process except that it 
may have branch points because 2o=(X,I~o) almost surely P~'" and we are not 
assuming that Io(oo, a)=a.  However, these branch points are of a very simple 
nature; they are degenerate branch points in the usual terminology. To see this 
note that since I~ is ~0 measurable the zero-one law for X implies that I~ is 
constant almost surely W. Let b(x,a) be the point in A such that Po=b(x,a)  
almost surely px. It is immediate from (2.4)(i) that ( x , a ) ~ b ( x , a )  is N •  
measurable. Now the set of branch points /3={(x,a): b(x,a)4=a} and the 
nonbranch points D = {(x, a): b(x, a)= a} are B orel subsets of t2 = E  • A. Clearly 
from (2.6) 

ex, bt~,a~ = Ko(x,  a ; " ) = ~ Ko(x,  a; d(y, b)) Ko(y, b; ')  

= K o ( x , b ( x , a ) ; ' ) ,  

and so b(x, b(x, a))=b(x,  a). It now follows that 

(2.10) px ,a=px ,b (x ,a )=px  • ~b(x,a) 

on ~ 0  c ~ o  • ~r If v is a probability measure on E x A, then, as is customary in 
Markov processes, one defines 

_P~ (H) = ~ ~x,a (H) v (dx, da) 
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on .~o. If /): (x,a)~(x,b(x,a)),  then (2.10) extends to / sv=p ,  where #=/~(v). 
Hence ~ v =  ~ u  and ~t v=.~u. Finally it is a standard fact that 

P~'a[2teB for some t > 0 ] - - 0  

for all x, a. That is, almost surely the process 2 never is in the set of branch 
points. Hence 2 restricted to set of nonbranch poin ts / )  is a Borel right process 
and that if (x,a) is a branch point, then under P~'" the process starts from (x, 
b(x, a))eD. Therefore the possible presence of branch points causes no difficulty 
and we may treat 2 as a Borel right process and apply the theorems about 
Borel right process to 2 provided we exercise a modicum of caution. Having 
said all this we shall ignore the fact that strictly speaking 2 is not a Borel right 
process in the sequel. 

For  our applications we shall need some trivial, but important, measurability 
facts. Recall that n: (2xA--+~ is the projection of f a x A  on s and let p: E 
x A --+ E be the projection of E x A on E. It is immediate from the definitions of 

px,~ and P" that PP<~)=n(P ~) for all v on E x A. This is just a fancy way of saying 
that PP(~)(A)=P~(A x A) for all Ae~, ~. Recall that a process Z=(Z~(co)) is said to 
be optional (previsible) over ( 4 )  if for every initial measure/x on E there exists a 
process Z"=(Z,U(co)) which is optional (previsible) over (~2, ~ u  p,)  in the usual 
sense of general theory [2] such that Z and Z u are P~ indistinguishable. 
Optionality (previsibility) of a process 2~=(2~(co, a)) over (~)  is defined similar- 
ly. 

The following lemma lists some trivial, but important, facts that we shall 
need. Its proof is routine and omitted. 

(2.11) Lemma. Let ~ ~ 1 7 6 2 1 5  and ~ ~ 1 7 6  {~f,A}. Then ~ ~ 1 7 6  and 
c~t~ c ~ t  ~ I f  v is an initial measure on E x A, let .~,~ (resp. ~') be the a-algebra o,7 (2 
=s x A generated by ~o (resp. .#o) and all P~ null subsets of ~ .  Let #=p(v).  
Then 

(i) ~t" x {~J,A} c ~?~' c~g, ~. 

(ii) I f  Z = (Z~) is optional over (J~), then Z o ~ = (Z t o rr) is optional over (~). 
(iii) I f  Z is optional over (~), then 2~" = (2~')is optional over (~,) for each aeA. 

I f  ICle~, then I2Pe@ for each aeA. 

Remarks. In fact, if Z is optional over (Y,), then Z o ~ is optional over (~,). The 
process X is a semi-direct product of X in the terminology of Jacod [6]. 

We are now going to state the basic result on exit systems in form that is 
convenient for us. Its proof is an immediate corollary of (4.1) in [8] and is 
omitted. In [8], Maisonneuve assumes the existence of killing operators (kt), but 
the following portion of his results is valid without this assumption. For 
notational simplicity we state the result for the process X, but, of course, the 
analogous statement is true for any Borel right process. In particular, we shall 
use it for the process 3?. Let IR + =[0 ,  ~).  A set M c l R  + x f2 is closed if for each 
co the co-section, M(co), of M is closed in IR +. M is homogeneous (on (0, oo)) if t 
+seM(co)<:~seM(O, co) for s>0 ,  t_>0, and co. It is important to note that we do 
not require this for s = 0. We say that M is optional provided it is optional over 
(a~). If R: f2 -+ [0, oo] is o ~ measurable, then ~R is defined by saying that an @ 
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measurable H is ~R measurable provided there exist an optional (over (~)) 
process Z with H = Z  R on {R< ~}.  For typographical convenience we shall 
sometimes write ~(R)  in place of ~R, and similarly for processes. 

Let M be a closed, homogeneous, optional set. Define R(co) 
-- inf{t>0:  t~M(c9)} and L(ce)-=sup{t: t~M(e))}. By convention inf~=oo and 
supS=0.  Thus L(co)=sup{t>0: teM(co)} also. Since M is homogeneous it is 
easy to see that R is a terminal time and L is co-optional. We call R the debut of 
M and L the end of M. We shall suppose that R is @* measurable where i f*  is 
the a-algebra of universally measurable sets over (f2, if0). Meyer [101 has shown 
that this is not a real restriction. We now state the facts that we need as a 
theorem. As mentioned at the beginning of the previous paragraph its proof is 
omitted. 

(2.12) Theorem. Let M be a closed, homogeneous, optional set and let L be the 
end of M. Then there exists a Markov kernel F from (E, g*) to (f2, ~ * )  such that 

(i) E"{FoOLI~LI=F(XL,F ) on {L<oo} 

for all initial measures # and F s b ~ * .  Therefore the post L process (XL+t,t>O) 
defined on {L< oo} is conditionally independent of .~ L given X L. Moreover, it is a 
strong Markov process relative to the fields ( ~-f L +t) with transition semigroup (QL) 
given by QL f ( x ) =  Qt(f~p)(x)/O(x) if O(x)> 0 and QL f ( x ) = 0  if O(x)=0 where q/(x) 
=PX(R = oo)=px(L=O), and where (Qt) is the semigroup of X killed at R; that is, 
Qt f (x)- -EX{f(Xt);  t<R} .  Also the pre-L process X, X t = X t  if t < L  and X t = A  if 
t>L,  is strong Markov with transition semigroup (Qt) given by O_tf(x) 
=Pt(fc)(x)/c(x) if c(x)>0 and (~tf(x)=0 if c(x)=0 where c (x )=W(L>O)  
= PX(R < oo). 

Remark. If x is not regular for R, that is, if W ( R = 0 ) - 0 ,  then F(x,F)=EX(F; R 
= oo)/O(x). This is why (2.12)0) holds on {L=0}. The assertion about the pre-L 
process is proved in [131. 

Our main purpose is to apply this theorem to sets 57/ which are homo- 
geneous for (0t). Let us establish the necessarily somewhat cumbersome notation. 
If /~ is a function defined on f2= f2 x A, then we shall write H a for ~a for 
typographical simplicity. Let iV/c IR + x f )=lR + x f2 x A be closed, homogeneous 
with respect to (03), and optional over (_~). Let/~ and L be the debut and end of 
~/. It follows from I-T32 of [2], that L is ~ measurable, and consequently by 
(2.11) (iii), /2 is ~- measurable for each aeA. It is easy to see using (2.11)(ii) that if 
HE@(/2) for a fixed a, then there exists/]~o~(L) such that H~=H. Let ff(x,a; .) 
be the Markov kernel from (E x A, (E x ~')*) to (f2, ~*)  appearing in (2.12)(i), 
and let F(x, a ; .  ) = n [/~(x, a ;.  )]. Thus if A ~.fi*, F(x, a; A) = F* (x, a; A x A), and 
note that for each aeA, x ~ F ( x , a ;  A) is g* measurable. Now if F~b~, ~*,  then 
from (2.12)(i) we obtain for each fixed a~A and # on E (let/? = F o n, v = # x ~) 

(2.13) E"{F o OLolff(/g)} =/~*{P o Ozl~(L)} 
=r(x(I~) , I~ on {/~<oo}. 

where we have written In(t) for I~ for typographical reasons. It follows from 
(2.13) that /g is a splitting time with auxiliary variable P(/~). Also the second 
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part of (2.12) implies that 

(2.14) E~[f oX(If +s+t)[~(La+s)] =rs(X(l~ +t), P(If +t);f) 

on {/2 < oo}, where 

/~x'a{f(Xs) (p(Xs, Is): s </~} 
(2.15) F~(x,a;f)- 

qo (x, a) 

with cp(x,a)=Px'~(R= oo). In general (X(U+t) ;  t>0)  is not a temporally homo- 
geneous strong Markov process on {/f < oo} relative to W, but of course, (X(/Y 
+ t), P ( / f  + t)) is. 

Let us give a very simple example in order to illustrate the ideas before 
passing to more interesting examples in the next section. Let A = IR and I~(co, a) 
= a - t .  Then ff,(co, a)=(Xr(co),a-t ) is just the familiar space-time process. Of 
course, 0r(co, a)=(0rm, a - s ) .  Now suppose that M is a closed, homogeneous, 
optional subset of IR + xf2 for the original process X. Define M by M(co, a) 
= M(co)c~[0, a]. Thus teM(co, a) if and only if teM(~o) and t<a. It is evident that 
~r is (~ )  optional and (0,) homogeneous. Moreover for each a > 0 

(2.16) L~ tzM(@}, 

and applying (2.13) we obtain 

(2.17) E"[Fo OLol~'(La)] =F(X(L"), a - I f ;  F) 

which is essentially the result given in [5]. In particular, tf  is a splitting time 
with auxiliary variable/Y. 

Given a general shift functional It(m,a ) on A, we may apply (2.17) to a (0 r) 
homogeneous set M. If t > 0, let 

(2.18) Lr(o),a)=sup{s<=t: s~/(o) ,a)}.  

Then combining (2.17) and (2.13), there exists a kernel F(x,s,a: .) from (f2,Y*) 
to (E x IR x A, (& x NOR) x d)*)  such that 

(2.19) E"[F o 0L~Jy(/~) ] =F(X(/Y,), t--l~r, P(/Y~); F). 

Therefore/~ is a splitting time with auxiliary variables ( ,, P(/2r)). 
One can also write down the analog of (2.14) and (2.15), but we shall not 

bother. The reader should just keep in mind that the process 

Y~= [X(Ur + s), t -12, -s ,  Ia(IZ*t+s)], s > 0  

is strong Markov and that its transition semigroup may be obtained by 
deciphering (2.14) and (2.15) in the present case, or, equivalently, from (2.19). 
There are analogous results about the pre-/2 or /2~ processes which may be 
obtained from (2.12). For example, ~=(X(s) ,  t - s ,  P(s)) for s<IY r and Ys=A for 
s>/2, is a temporally homogeneous strong Markov process whose transition 
semigroup is obtained from the last sentence in (2.12). 
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In many examples/Y will be infinite with probability one in which case (2.13) 
and (2.14) give no information. But /~< t ,  and so (2.19) always contains useful 
information. 

3. Examples 

In this section we shall give some examples of shift functionals and some 
corresponding splitting times. We begin by describing a general class of shift 
functionals. All of the examples of this section are of this type. 

Let X be a Borel right process with state space (E, g) as in Section 2 and let 
A be a Lusin space with Borel a-algebra d .  Let " * "  be an associative operation 
on A such that a* b is separately continuous in a and b. Then (a, b ) ~  a* b is 
jointly Borel measurable. Let J=(J~(co)) be a map from IR + x t2--*A such that 

(3.1) (i) Jt is right continuous, ( 4 )  adapted, and (t, co)~Jt(co ) is (.~(IR +) 
x ~ ~  measurable. 

(ii) Jt + s(co) = Js( Ot co) �9 Jr(co) identically. 

Let us call such a functional J a ,-functional. Now define 

(3.2) It(co, a)=Jt(co)*a. 

It is immediate that I is a shift functional as defined in (2.4). Thus to each 
*-functional, (3.2) associates a shift functional 

If A =IR and * is addition (resp. multiplication), then a ,-functional is a 
perfect additive (resp. multiplicative) functional in the usual sense - perfect since 
we are assuming (3.1) (ii) holds identically. Also (3.1) (i) is stronger than the usual 
regularity assumptions on such functionals, but that does not concern us here. 
We shall say no more about this class of examples except to point out that if * is 
addition and Jr(co)= - t  we obtain the example which led to (2.16) and (2.17). 

Suppose that A --- IR and a * b = a/x b. Then we obtain the examples discussed 
by Millar in [15]. Let us sketch his results. Let H=(Ht )  be a real valued, 
optional, homogeneous (that is, H s o 0~ = Hs+t for s > 0 nad t >0) process which is 
NOR +) • measurable. For  example, H t = f ( X t ) ,  or, if left limits exist, H t 
=g(X~_,X~), where f (resp. g) is a continuous function on E (resp. E x E). (The 
expert will realize that by passing to the Ray-Knight compactification the 
assumption of left limits here is a mere convenience.) For  t > 0  define jo  
= inf H~ and suppose that Jr~ - o o  for all t>0 .  Clearly jo  is left continuous 

O<s<t 
and decreasing. We assume that jo  is ~(IR +) • ~,~o measurable and (~ )  adapted 
- this is certainly the case in the two particular examples mentioned above. 
Finally for t > 0, define 

J, = lim jo  = sup {jo; q > t, q rational}. 
s t t t  
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Then Jt is right continuous, decreasing, adapted to (~t), and measurable relative 
to ~(IR +) • y o .  If t>0 ,  s>0,  then using the homogeneity of H 

J,+s(co)= lim J?+s+q(co) 
q~o 

= lim [( inf Hr(co))/x ( inf H,.(co))] 
q $ ; 0  O < r < t + q  t<r<t+s+q 

= lim j Oq(co)/x J~ t co) =Jr(co)/x Js(Ot co). 
qJ,$O 

Therefore J is a min-functional, and, hence, It(co, a )=  J~(co)/x a is a shift function- 
al. 

We shall give several examples of splitting times associated with J. Suppose 
first of all that t ~Ht(co ) has right limits, and let H~ + =Ht+. This assumption is 
certainly valid in the two specific examples mentioned in the fourth sentence of 
the previous paragraph. Then Ht + is a right continuous, homogeneous, (~t)- 
optional process. Let 

(3.3) M~ a)={t:Ht(co)=J~(co)Aa or H2=Jt(co)Aa}, 

and let 2f/ be the closure of 2f/~ Clearly ~/o is (~ )  optional and (Or) homo- 
geneous. It is easy to see that the closure of a homogeneous set is homogenous, 
and it is well known 1-2] that the closure of an optional set is optional. Thus we 
can apply (2.13) to )~r. Let 

L=sup{t :Ht=J t or H~=Jt} 
(3.4) 

/g = sup {t: t6~I(co, a)} = sup {t: t ~ /~ a)}. 

If r > t > 0 ,  then J~ and so Jt<Ht and J~<Ht +. Consequently/~__<L an d /g  
= L for a sufficiently large, for example, a > Jo. If F~bff* and Z is a bounded (~)  
optional process, then (2.13) gives 

EUlF o OLa ZLa ; Iff < o0~ = E" 1-F(XL. , J(I~,) A a; F) ZL~ ; Iff < 00], 

and letting aTc~ we obtain on {L< co} 

(3.5) E~1-F o 0~1~3 =r(NL, JL,F). 

Let J =  inf H~ be the ultimate infimum of H. Clearly JL>=J. We claim that JL=J 
s > O  

on {L< oo}. To see this suppose L <  oo. Then JL > -- oo. Let u=sup{t :  Jt>JL-e } [ 1) 
where e > 0  and suppose u is finite. Then for every n there exists s ,e  u ,u+  n 

with H~<J,.  But Ju+l/n~.Jsn~Ju, and letting n ~ ,  the right continuity of J 
implies that either H ,  = J, or H, + =J,. Since u > L this contradicts the definition 
of L. Combining this with (3.5) we see that L is a splitting time with auxiliary 
variable J. We may also apply (2.19). For  that define 

Lt=sup{s~t:H~=d s or H+=Js}  
(3.6) 

I~t=sup{s<t: s~l(co, a)}, 
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and observe that/2t=sup{s__<t; s~G/~ a)} since G/~ is closed from the right. 
Hence ISt=L t for large a, and so applying (2.19) and letting al"oo we find 

E ~ [F o OL~I~(Lr = F(XL~, t - Lt, JL~; F). 

Arguing as before one sees that JLt=Jt, and sd L t is a splitting time with 
auxiliary variables (L,, Jr). 

If we drop the assumption that H has right limits and define L = s u p { t :  H t 
=J~}, then the same argument shows that L is a splitting time with auxiliary 
variable JL" In this situation JL may be strictly larger than J = inf H S. Similarly 

s > 0  

L t -- sup {s < t: H s = Js} is a splitting time with auxiliary variables (L,, JEt)" 
We turn now to another class of examples. For these we need some facts 

about the space of compact subsets of a locally compact  space with a countable 
base (LCCB). Let E be an LCCB space and let d be a metric on E compatible 
with the given topology. Let :/fo be the class of all non-empty compact  subsets of 
E and define for K, LeCf  o 

(3.7) p(K, L) = max [sup d(x, K), sup d(x, L)], 
xEL xcK  

where d(x ,B)=infd(x ,y)  is the distance from x to B E E .  Then p is a metric on 
y~B 

Yo and the corresponding topology is called the Hausdorff topology on ~o.  Let 
X(f be all compact  subsets of E. Then X = S o ~ { f l  }. Define a topology on X by 
saying that a set • c Y is open if ~ r  is open in Y0, Hence g is an isolated 
point in o~(( and the topology on ~ - { ~ }  =J((0 is just the Hausdorff  topology. 
Following [9], we shall call this the myope topology of ~ff. In the myope 
topology 2/g is a LCCB space. This fact and all other facts cited below may be 
found in [9]. If (K,) is a sequence in Y and K,~K,  then K , - ~ K  in Y ;  if K,  TA 
then K ,  ~ A in X4( if and only if ~{ is compact. The map x ~ {x} is an isometry 
from (E,d) into (JC~o,P)- The map (K,L)- -+KwL from g ( x X  to X is con- 
tinuous. If E = 1R d and c(K) denotes the closed convex hull of K, then the map 
K --, c(K) from X to c f  is continuous. 

We now fix a Borel right process X with state space (E, d ~ which is a LCCB 
space and we assume that t ~ X t has left limits in E on (0, oo) for all co. This 
implies that (the bar " - "  denotes closure in E) 

0.8) J~ s<t}- 

is compact  for each t~IR + and co. Hence jo:  f2 --, 2//. F rom the properties of the 
maps x ~ {x} and (K, L) ~ K u L  cited above, it is clear that if F is afinite subset 
of [0, t) then the map co ~ {Xs(co): seF} from O to : f  is Ytt~ measurable 
where N ( S )  is o-algebra of Borel sets in ;U. If {F,} is a sequence of finite subsets 
of [0, t) which increase to a dense subset of [0, t), then 

(U {Xs: _jo 
n 
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and hence {Xs: sEFn} _...(o in 2(  as n ~oo,  Therefore Jt ~ is Yt~ measurable 
for each t > 0. Clearly t ~ j o is increasing and so defining 

(3.9) (3 Js~ 
s > t  

it follows that t-*Jr(co) is right continuous and adapted to ~o (~*t+). In particular, 
(t, co) ~Jt(co) is (N(IR+)•176 measurable. It is immediate that if r>0 ,  
then Jt~176176 and so letting r$0 we obtain 

(3.10) J~+~=J~WJsoO ~ for s,t>O. 

Consequently (Jr) is a "'union" functional with values in 24#. 
We shall now give some examples of splitting times based on this functional. 

Let ~o: f ~ IR be increasing (K c L  ~ (p(Yf) < (p(L)), and descending 
(K,J.K ~p(K,)$~o(K)). For example, (p(K) might be the diameter of K, or any 
Choquet capacity relative to the paving 2//. Then according to (1.4.2) of [9], the 
map K--* (p(K) is usc (upper-semicontinuous). Consequently ~o(Jt) is right con- 
tinuous, increasing, and adapted to ~0 (~t+). In our present notation f~=f2 x X 
and Or(o) , K) = (0 t ~o, Jt(co)uK). Let 

(3.11) rht(co, K)=~o(JtuK ). 

Then tr~ t is increasing, right continuous, (-~t) adapted, and (Or) homogeneous. Let 
be the support of the measure drh t. Then the results of Section2 may be 

applied. If L = s u p { t ~ r } ,  then LK=L( ., K) is a splitting time with auxiliary 
variable j(LI;)uK. IfK=Jg,  we see that L = L  ~, the "last" point of increase of 
(P(Jt), is a splitting time with auxiliary variable JL" Of course, JL is essentially the 
range of the process on [0,L]. We may also apply (2.19). For example, if L t 
=sup{s__<t: s ~ / ( . ,  ~)} is the "last" point of increase of PUs) before t, then Lt is 
a splitting time with auxiliary variables (L t, JL,)" 

If E=IR  a, then (p(K)=tp(c(K)) where c is the convex hull of K is increasing 
and descending whenever ~ is. For example, if 0 is Lebesgue measure in IR e, 
then L ,  the "last" time the volume of c(J,) increases before t is a splitting time 
with auxiliary variables (Lt, JL~)" 

4. Concluding Remarks 

Let X be a Borel right process with state space (E, o ~) and let (A, sJ) be a Lusin 
space. A raw multiplicative kernel (abbreviated RMK) on A is a family q 
=(%0,; t~iR+, cocO) of sub-Markov kernels on (A, .M) satisfying 

(4.1) qt+s,o~(a,B)=Sqt,~o(a, db)qs, o~(b,B ) 

identically in t,s, co, a6A, and B~sr A rnultiplicative kernel (MK) is a R M K  
subject to appropriate measurability and regularity conditions. See E6] and [11]. 
In E6] and [11], (4.1) is only assumed to hold almost surely where the 
exceptional set may depend on s, t, a and B, and a good portion of these papers 
is devoted to showing that (4.1) may be assumed to hold in a stronger sense 
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under various supplementary hypotheses. Since we want to emphasize shift 
properties and point out the relationship with (0t)-flows, the present definition is 
convenient for us. 

The relation (4.1) may be written, using the usual composition of kernels, in 
the form 

(4.2) qt +s,~=qt, o~ q~,o~o~. 

Let A be the collection of all positive measures 2 on (A, d )  with ~,(A) < 1. If d is 
a totally bounded metric on A compatible with its topology, then the topology 
on A generated by the functions 2 ~ 2 ( f )  as f ranges over all bounded d- 
uniformly continuous functions on A is a Lusin topology on A. Let ~(A) be the 
Borel o--algebra in A. It is known that N(A) does not depend on the choice of d, 
and is, in fact, the a-algebra generated by the maps 2 ~2(B),  B e d .  Define for 
2~A 

(4.3) It(co, 2) = 2 qt, o~- 

Obviously I is a (0t)-flow on A for which 2~It(co,2 ) is N'(A) measurable and 
satisfies 

(4.4) It(co, 2) = ~ It(co, e a) )L(da). 

Observe also that I is right continuous if and only if t ~qt ,  o~(a,.) is right 
continuous. Conversely if It(co, ,~) is a (0~)-flow on A satisfying (4.4) - in particular 
with 2 olt(co, ,~) being N(A) measurable - then % co(a,-)= It(co, ca) defines a R M K  
on A. Thus there is a one to one correspondence between (0t)-flows on A 
satisfying (4.4) and RMK's  on A given by (4.3). 

Let q be a R M K  on A such that for each aeA,  qt, o~(a, .) is unit mass at a 
point Jr(co, a) in A. One easily checks that J=(Jt(co, a)) is a (0t)-flow on A. 
Conversely if J is a (0t)-flow on A, then qt,~o(a, .) defined to be unit mass at 
Jr(co, a) is a R M K  on A. 

Suppose we are given a shift functional on I on A. Then we have already 
pointed out that the process 2 is a semi-direct product as defined in [6] by 
Jacod. However, it is a very special type of semi-direct product since I t is ~t 
adapted. In [6], Jacod associates a MK with any semi-direct product. In present 
case qt.o(a, .) is just unit mass at It(co, a). 

There are many possible generalizations of the theory we have presented. 
What we have developed might be called an algebraic theory since we have 
assumed that (2.1) holds identically. An important generalization is to relax this 
assumption and to allow exceptional sets. What needs to be done is clear in 
outline following the course of [6] and [11]. In fact passing to the associated 
MK, most likely one can apply the results of these papers directly to the 
problem at hand. An important example of a (0t)-flow with exceptional sets is 
the prediction process ZtU(co) as defined by Meyer in [12]. 

We have based our main theorem in Section 2 on the product spaces s s 
xA and E = E x A .  Following Meyer [11] one can build a theory based on 
spaces ~ and /~ and given surjections ~ and p of ~ and /~ onto (2 and E 
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respectively subject to appropriate conditions. The interested 
consult [12]. 

reader 
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