Zeitschrift fiir

7. Wahrscheinlichkeitstheorie verw. Gebiete Wahrscheinlichkeitstheorie
47, 61-67 (1979) und verwandte Gebiete

© by Springer-Verlag 1979

On the Structure of Certain Excursions
of a Markov Process

B. Maisonneuve*

Université de Grenoble II, LM.S.S. 47X-38040 Grenoble Cédex

Summary. Let X be a Markov process and M a homogeneous random set.
For t=0, we set G,=Sup {s=t: se M}. The stochastic dependence between
the past and the future of G, is investigated for certain stopping times T,
This gives some insight to recent results of Getoor concerning the excursion
straddling ¢ and the first excursion exceeding a in length.

1. Introduction

Let (Q, % #,X,,0,,PY) be a strong Markov process and let M be a homo-

geneous closed well measurable set (for instance M ={t: X,eB}, where B is a
Borel subset of the state space E). Set

G,=Sup {s=t: seM}, A,=t—G, t=0.

We will establish that if T'is a stopping time of the family (%), the past and
the future relative to Gy are conditionally independent given (4, X ). More
precisely, there exists a family (P**) of probabilities on Q such that P% *=p*
and

E[folg,|As, Fg 1=PA%er(f) as on {T<oo}

for all (%)-stopping times T and all positive measurable functions f on
Q(P“*(f) denotes | fdP*~).
In particular if we set

T*=Inf{t: A,>a}, G°=Gr., a>0,
one has A;.=a on {G°< o} and the preceding formula specializes as follows
E[fo04u Fza] =P“%*6*(f) as. on {G*< + oo}
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Therefore the past and the future of G* are conditionally independent given X ..

These formulas generalize and make more understandable the following
result recently established by Getoor [1]: the distribution of the excursion
straddling ¢, conditionally on 4,=a, X; =x, is the same as the distribution of
the first excursion exceeding a in length, conditionally on X .=x.

We shall also give analogous results for conditioning on %;  _, under
somewhat stronger assumptions. The reader will find a lot of nice applications
and explicit computations for the excursions from a point in Getoor’s paper [1].

II. Notations and Preliminary Results

We shall use the notations and assumptions of [3]. (€, % %, X,,0,, P¥) is the
canonical right continuous realization of a Markov semi-group (P) satisfying the
“hypothéses droites” of Meyer. The state space E is Lusin; in E we distinguish a
point 6. We assume that 4 is absorbing and that the lifetime { =inf {t: X, =0} is
infinite P*—a.s. for each x 4.

M is a closed random subset of R, well measurable (or optional) and
homogeneous in 0, co[:

(M—t)n]0,0[=M0o0,n]0,0[, ¢=0.
We associate with M the following notations:

b

R =inf{t>0: teM}, R,=R-06,, D,=t+R, t=0
G,=sup{s<t:seM}, 0=t=o0,
A,=t—G,, tz0, 4, =00,
G ={t>0: R,_=0, R,>0},
F ={xeE: P*{R=0}=1}.
The set G(w) is the set of the left endpoints in J0, co[ of the intervals that are
contiguous to M(w).

R is assumed to be F*-measurable —F* denotes the universal completion
of #°=0{X,,5s=0}. Then one has the following result (see [3]).

Theorem 1. There exists an “exit system” (B, P): B is a well measurable random
measure, P is a kernel from (E, &%) to (Q, F*) such that

EUY 20-00=E [} 2P()ap, M
0

seG
for all positive well-measurable Z and F *-measurable f.

In view of [3], one may and will choose the system (B, P) with the following
properties: dB,=dK,+ ) ¢(dt), where K is a continuous additive functional
seG
Xs¢F
carried by F, with 1—poiential <1; P*=P~ if x¢F; P{R=0}=0 and P*(1
—e¢~R)<1 for all x (which implies that P*{R>a} <o for all x and all a>0);
and finally (X,),. o is strong Markov with semi-group (P) relative to the measure
P>, for all x.
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IT1. Conditioning on (A4, %T)

For each positive random variable S, % denotes the o-field of the sets AeF
such that I, =Z on {S<co} for some well measurable process Z. For example
S, X5(X ,=9) are Fy-measurable. Here is a technical result.

Proposition 1. 1) The family (97;):(9761) is increasing.
2) For each (#)-stopping time T, one has %Tc,%c%.

Proof. 1) Let (Z,) be a right continuous adapted process. The process (Z;) is
adapted, since G,<t, and right continuous, since (G,) is increasing and right
continuous. Therefore (Z;;) is well measurable for each well measurable (Z,). Let
uz0, set Zi =7 ; the process (Zy),, is still well measurable and the equality
Zs =Z% ,u<v, shows that # <% if u<v.

2) Let T be a stopping time of the increasing family (%). We have already
observed that, if (Z,) is (%)-well measurable, (Z;) is (#)-well measurable;
therefore 7, =, for all ¢, and (Z;) is (F)-well measurable, which implies that
Zg, 18 T measurable (set Z,=0) and that F;_ .

Remark. The variable A; is JT-measurable, since (4,) is right continuous and
(#,)-adapted, but not necessarily ;. _-measurable.

Theorem 2. For all positive F *-measurable functions f on Q and all (#)-stopping
times T one has

pAr¥er(1)>0  as. on {Gy<T <o}, (2)
E'[fobg,|F]=P*mXex(f) as. on {T<oo}, (3)

where we set

Pex(f)=P*(f1 ®>a) I a>0,

Pa X
P =g Fax0 (5=0)
PO (f)=P*(f).

Remarks. a) If a>0, P**(1)=P*{R>a} < o0, as already observed.

b) (a, x) = P**(f) is measurable on J0, oo x E due to the right continuity in
a, and (a, x)— P*~(f) is measurable on [0, oo x E.

©) Xg, is ;. -measurable. Therefore equality (3) implies the following:
E'[folg |Ap, Fg =P " ¥er(f) as on {T<ow}. (39
d) Let us set, for a positive h on E

0,06 )=P*(ho X, Iig, o) a>0,

2 Qale ) 0_
q.(x, h) =000 1) if a>0 (0_0),

=h(x) if a=0,
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like in [3]. We have Q,(x,h)=P%*(ho X ), q,(x,h)=P**(ho X,) and formula (3)
implies

EThoX;|%]=q,,Xg,.h) as. on {T<ao}.
Hence Theorem 2 is a direct generalization of Theorem (7.10) of [3].

Proof. Condition (2) was already established in [3], in the form Q ar( X6 1)>0
a.s. on {Gr<T < oo}. On the set {Gr=T < w0}, equality (3) follows from ﬁc%
and from the Markov property at time 7. One can reduce the proof of (3) on the
set {Gp<T <} to the case T =t constant by the argument of [3]. So we have
to establish that, for each positive well measurable Z,

E'[Zgfo05 1, n]=E[Z P¥6(f) g 4] 4)

Let us firstly give the following extension of formula (1): if we set G°=G if R
=0, Gu{0} if R>0 and dBY =1 y_ o,,(dt)+dB,, one has

ELY ZF(sX,01=E[ | Z(0)dB)()|F(s, X (0),0) P da)] (5)

seGO [0, ol

for each positive universally measurable function F on R, x Ex Q.
Now the basic observation is that s=G,<r iff seG® and 0<t—s<Ro#f,.
Therefore the left side of (4) equals

E'L{ 2P+ (f)dB]
[0, 1
(take F(s,x,w)=f(0) 5 .,_,.g(w) in (5)) and the right side of (4) equals
E[ | ZPs%s(f) P> %(1)dBS]
0, 1
(take F(s,x,0)=P~**(f) Iy .,_;.r() in (5)). This yields (4).
Corollary 1. If a>0, let T*=inf{t: A,>a}, G°=Gy_. Then
E'[fo Ogal Fonl =P ¥64(f)  as. on {G*< o0} (6)
Sor all positive F*-measurable f.
Proof. T¢ is an (%)—stopping time since

Tz ={A,=a}u( | {4,>a})
rr;ti<0tnal

and (4) is (#)-adapted. Notice also that Agj.=a on {G°<oo}={T"<0}.
Therefore applying (3) to T=T* yields (6).

Remark. (6) can also be established directly by observing that s=G%<oo iff
s€G°% Rob;>a and s<T* and by using equality (5) with Z,=1I . 1a, like in the
proof of (4).

From Theorem 2 one obtains the distribution of the excursion straddling T,
conditionally on A, X, (this was proved by Getoor for T =t).
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Corollary 2. Let T be an (g'f)-stopping time. If 0<a<r, xeE, O0<t,<...<t, <r,
one has (symbolically)

P {0} {X, edy,,...X, edy,, R>r}|A, =a,X; =x}
=0, )70, (x,dy) @y, (71545 - Qi 1,3, P {R>1 =1}
=P {0z {X, edy,,....X, €dy ,R>r}|Xge=x}
where
0,(x,dy)=P*{X,edy,R>1t}, Q,(x,dy)=P*{X,edy,R>t}.
Proof. By the Markov property of the measure P*, one has
P“*{X, edy,,...., X, edy,, R>r}
=P**(1)"' P*{X, edy, R>1,} P {X
s Pre{X

,2ﬁ,1edy2,R>t2—t1}
edy,R>t,~t,_;} P""{R>r—t,}.

tn—in-1

Hence Corollary 2 follows from Theorem 2 and Corollary 1.

IV. Conditioning on (A}, ./WGT_)

For each positive random variable S, % _ denotes the o-field of the sets 4eF#
such that I ,=Z; on {S< o0} for some predictable process Z. For example S is
F5_-measurable. From now on we shall assume for simplicity that (X,) is a Hunt
process. Then Xg_ is #_-measurable (we set X _=J).

In the sequel we shall also assume that M has (a.s.) no isolated point, which
implies the equivalence G, =u < t=<D, for all t,u=0. It follows that the process
(Zs,) is predictable for all predictable Z. In fact if Z,=1,.y,, where U is a
stopping time, Z; =1, ., , is a predictable process, since Dy, is a stopping time.
This observation leads to the following result, whose proof is entirely analogous
to the proof of Proposition 1.

Proposition 2. 1) The family (%) =(%;_) is increasing.
2) For each (%,)-stopping time T, one has T e Fy.

In this paragraph we shall further assume that there exists a “predictable exit
system” (B, P): B is a predictable random measure and P is a kernel from (E, &%)
to (2, #*) such that for all positive predictable Z and #*-measurable f

ELY Zf-0]=E [[ 7, B¥(f) dEs].
seG 0
Furthermore P*(R=0)=0 and P*(1 —e~®)<1 for all x, and the process
(X,),. o is strong Markov with respect to (P) for each measure P*. The existence
of such a system is not always satisfied as Getoor and Sharpe showed in [2].
The reader will find sufficient conditions for this existence in the appendix.
Under all previous assumptions, one has the following resuits (the proofs are
analogous to the proofs of paragraph 3 and left to the reader).
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Theorem 3. Let T be an (F,)-stopping time. For all positive ﬁ**-measmable 1,
P4t X6r-(1)>0 as. on {0<G,<T< o0} and

E'[fo0g,|Fr]=P4 ¥~ (f) as.on {0<Gp<T<ow} (7
where we set

P (N)=P(flg.a) ¥ a>0,

5 PX(f)
Pll. x ==
(f) P x(l)
Remarks. Ay is Zp-measurable since (4,) is (%,)-adapted and right continuous.
Proposition 2, equality (7) and the fact that X, _is %, _-measurable imply

E'[fo0g,|Ag, Fo, 1=P*"¥or-(f) as.on {0<Gp<T<oo}. (7)
Corollary 3. With the notations of Corollary 1, one has
E'[fo0g| Foa 1=P4%c*=(f) as.on {0<G°< 0} (8)

Remarks. 1) Corollary 3 follows from Theorem 3 by observing that T* is an (%,)-
stopping time, and that A;.=a on {G°<co}. It can also be established directly
along the lines of the remark following Corollary 1 (notice that, Z, =1, _ 14 is
predictable). This method has the advantage that it does not require that M has
no isolated point.

2) In the case where M ={t: X,=x,}, Xg._=x, a.s. on {0<G*< w0}, since
M has no isolated point; therefore the strict past of G* and the future of G* are
independent, as a consequence of Corollary 3.

Finally Corollary 2 can be rephrased for an (#, 7)- -stopping time by replacing
X6 Xga Q, by X¢.,. s Xga-, Q,, where Q,(x, dy)=P*{X,edy, R>1}.

V. Appendix

In this section, we shall give sufficient conditions for the existence of a
“predictable exit system”. We assume for simplicity that (X,) is a Hunt process,
and that there exists a universally measurable subset S of F° such that if seG,
X, _eF¢, X €F° then

X, =X, X, eS.

Then one has the following,

Theorem 4. Under the previous assumptions, there exists a predictable exit system
(B, P) such that P*(R=0)=0, P*(1—e ®)Z1 and (X)), o is strong Markov with
semi-group (B) relative to P*, for all x.

Proof. The set G is the union of the following sets:

1G={seG: X,eF},
*G={seG: X, eF, X eF},
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*G={seG: X,_eS, X eF},
*G={seG: X, eS°nF, X eF°}.
It is known that 'Gn[T]=¥ a.s. for each stopping time T, whereas G~ 'G is a

countable union of graphs of stopping times.
For each positive, bounded, & *-measurable function f, define

iusz'[Z e S(l—e Ryfol], i=1,2,3.

seiG

For each predictable stopping time T, one has ‘Gn[T]=0 as., i=1, 2, 3, since
X, *X, for se>?Gu>G. Hence the functions ‘u, are regular 1-potentials. By the
argument of [3], Theorem (4.1), there exist continuous additive functionals ‘K
and kernels ‘N such that

iuf=E'[je‘SiNX‘(f)diKs], i=1,2,3
0

for all . 'K and 2K are carried by F, whercas *K is carried by S. Let 'd, 2d be
densities of 'K, 2K with respect to 'K + 2K and set

P(f)= Y d(x)N*(f/l—e~®) if xeF,

i=1,2
=3N*(f/1—e™ K if xe§,
= P*(f) if xeS‘nF,
dB, = Y dK,+ ) efdo)
i=1,2,3 setG

The random measure B is predictable, since X, =X, for se*G. By the same
arguments as in [3], one shows that, except for x in a B-null set N,, one has
P*{R=0}=0, P*(1—e ®)<1 and the strong Markov property of P* with
respect to (P). If we change the definition of P by setting P*=0, if xeN,, (B, P) is
a predictable exit system with all the desired properties.

Remark. By construction E’ [f e S PXs(1—e k) dgs] <1. Therefore the process
0

t .
(IP—XS(l —e R d§S> is a predictable additive functional with 1-potential <1.
0
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