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Summary. Let X be a Markov process and M a homogeneous random set. 
For t>0 ,  we set G t = S u  p {s<t: seM}. The stochastic dependence between 
the past and the future of G r is investigated for certain stopping times T. 
This gives some insight to recent results of Getoor  concerning the excursion 
straddling t and the first excursion exceeding a in length. 

I. Introduction 

Let (f2,~, ,~,Xz,  0~,P x) be a strong Markov process and let M be a homo- 

geneous closed well measurable set (for instance M = { t :  XtsB}, where B is a 
Borel subset of the state space E). Set 

Gt=Sup{s<t: s~M}, A~=t-Gt, t>O. 

We will establish that if T is a stopping time of the family ( ~ ) ,  the past and 
the future relative to G r are conditionally independent given (At, XGT ). More 
precisely, there exists a family (P", x) of probabilities on f2 such that pO, x =px 
and 

E'[foOa~.IAr,~GT]=PAT'XG~'(f) a.s. on { T <  oo) 

for all ( ~ ) - s t o p p i n g  times T and all positive measurable functions f on 
O(pa, x(f) denotes ~fdP a' x). 

In particular if we set 

T a = I n f { t :  At>a }, G"=Gro, a > 0 ,  

one has Ar,=a on {G~< oo} and the preceding formula specializes as follows 

E'[foOG, I~o]=P"'XG~ a.s. on {G"< +oo}. 
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Therefore the past and the future of G ~ are conditionally independent given XGo. 
These formulas generalize and make more understandable the following 

result recently established by Getoor [1]: the distribution of the excursion 
straddling t, conditionally on A t = a, XG,=x, is the same as the distribution' of 
the first excursion exceeding a in length, conditionally on X ~  = x. 

We shall also give analogous results for conditioning on ~ , under 
somewhat stronger assumptions. The reader will find a lot of nice applications 
and explicit computations for the excursions from a point in Getoor's paper [1]. 

II. Notations and Preliminary Results 

We shall use the notations and assumptions of [3]. (f2, ~, ~~ Xt, Ot,P ~) is the 
canonical right continuous realization of a Markov semi-group (Pt) satisfying the 
"hypoth6ses droites" of Meyer. The state space E is Lusin; in E we distinguish a 
point 3. We assume that 3 is absorbing and that the lifetime (= inf{ t :  X~=b} is 
infinite px_  a.s. for each x 4 = b. 

M is a closed random subset of IR§ well measurable (or optional) and 
homogeneous in ]0, oo[: 

(M- t )~]O,  oo[=MoOt~]O, oo[, t>O. 

We associate with M the following notations: 

R = in f{ t>0 :  tEM}, Rt=RoOt, Dt=t+Rt,  t>O, 

Gt=sup{s<t: s~M}, O<t<oo, 

A t = t - G t ,  t>0 ,  Aoo = oo , 

G ={t>0:  Rt_=0, Rt>0 }, 

F ={x6E:  f X { R = 0 } = l } .  

The set G(co) is the set of the left endpoints in ]0, oo[ of the intervals that are 
contiguous to M(co). 

R is assumed to be ~*-measurable - ~ *  denotes the universal completion 
of ~-o= a {X s, s > 0}. Then one has the following result (see [3]). 

Theorem 1. There exists an "exit system" (B,F): B is a well measurable random 
measure, P is a kernel from (E, g*) to (~2, ~-*) such that 

E EZ [izs xs I d s ] 
s~G 

for all positive well-measurable Z and ~*-measurable f. 

In view of [3], one may and will choose the system (B, l 6) with the following 
properties: dBt=dKt+ ~ ~s(dt), where K is a continuous additive functional 

s ~ G  
XsSF 

carried by F, with 1-potential _-<1; fix.=px if x6F; P~{R--O}=O and /~(1 
--e-R)__<l for all x (which implies that f i X { R > a } < ~  for all x and all a>O); 
and finally (Xt)t> o is strong Markov with semi-group (Pt) relative to the measure 
l 6x, for all x. 
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lII. Conditioning on (At, ~ar ) 

For each positive random variable S, ~ denotes the a-field of the sets Ae ;~  
such that IA=Z s on {S< m} for some well measurable process Z. For example 
S, Xs(X~o = 6) are ~s-measurable. Here is a technical result. 

Proposition 1. 1) The family ( ~ t ) = ( ~ )  is increasing. 

2) For each (~)-stopping time T, one has ~ T  c Yr  ~ Yr. 

Proof. 1) Let (Z,) be a right continuous adapted process. The process (ZG,) is 
adapted, since Gt<t, and right continuous, since (@) is increasing and right 
continuous. Therefore (ZG~) is well measurable for each well measurable (Zt). Let 
u >0, set Z~' = ZG~.; the process (Z~),> o is still well measurable and the equality 
ZG~ = Z ~ ,  u < v, shows that ~ ~ ~ if u__< v. 

2) Let T be a stopping time of the increasing family (~t). We have already 
observed that, if (Zt) is (~)-well measurable, (ZG~) is (~)-well measurable; 
therefore ~ ~ ~ for all t, and (ZG,) is (~t)-well measurable,, which implies that 
ZG~. is ~r-measurable (set Z ~ = 0 )  and that ~ T c J ~  r. 

Remark. The variable A T is fiT-measurable, since (At) is right continuous and 
(~)-adapted, but not necessarily YGT-measurable. 

Theorem 2. For all positive S*-measurable functions f on f2 and all (~)-stopping 
times T one has 

pAT'X~:v(1)>0 a.s.  on {GT<T<c~} ,  

E'[foOa~]~r]=PA~'x~T(f)  a.s. on {T<oo}, 

where we set 

(2) 
(3) 

pa, x(f) =fiX(fl{R>a} ) if a>0 ,  

W ' x ( f ) - f i ~ , , ~  if a > 0  = 0  , 

pO, x(f) = px(f).  

Remarks. a) If a > 0, fia' x(1)=_P~ {R > a} < 0% as already observed. 
b) (a, x ) ~  fia' x(f) is measurable on ]0, oo[ x E due to the right continuity in 

a, and (a,x)--*P~'X(f) is measurable on [0, ooE x E. 

c) X6T is ~T-measurable.  Therefore equality (3) implies the following: 

E" [fo O~.lAr, :~T] = pAT, X~.(f) 

d) Let us set, for a positive h on E 

Qa(x, h) = fiX(h o X a l { R  > a}), a > 0, 

qa(x,h ) -~Qa(x'h) if a > 0  (~=0) ,  
Qa(x, 1) 

=h(x) if a=O, 

a.s. on {T< oo}. (3') 
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like in [3]. We have Qa(X,h)=pa' X(ho X~), qa(x,h)=P a' X(hoXa) and formula (3) 
implies 

E'[hoXTI~r]=qA~(XG~,h)  a.s. on {T<oo}. 

Hence Theorem 2 is a direct generalization of Theorem (7.10) of [31. 

Proof. Condition (2) was already established in [3], in the form QA~.(XGT, 1)>0 
a.s. on { G r < T < ~  }. On the set { G T = T <  oo}, equality (3) follows from ~TC~T 
and from the Markov property at time T. One can reduce the proof of (3) on the 
set {GT< T <  co} to the case T =  t constant by the argument of [31. So we have 
to establish that, for each positive well measurable Z, 

E" [ Z s f  o 0~ I{G ~ < t}] = E" [Zs~ pat, Xot (f) I{~ < t}]- (4) 

Let us firstly give the following extension of formula (1): if we set GO= G if R 
= 0, G ~ {0} if R > 0 and dB ~ = I{R > O} eO (&) + dBt, one has 

E'[ ~, Z~F(s,X~,O~)]=E'[ ~ Z~(a))dB~ ~ F(s,X~(a)),a)')~fxs('~ (5) 
se O ~ [0. oo[ 

for each positive universally measurable function F on/R+ • E • f2. 
Now the basic observation is that s = G t < t  iff sEG ~ and O < t - s < R o O  r 

Therefore the left side of (4) equals 

o Z~P ' s(f) dB s] 
[o, t[ 

(take F(s, x, a))=f(a))I~o <t_~<m(a)) in (5)) and the right side of (4) equals 

E'[ S Z~Pt-S'xs(f)Pt-s'xs(1) ds~ 
[0, t[ 

(take F(s,x, co)=P t . . . .  (f) I~o<t_~<m(a)) in (5)). This yields (4). 

Corollary 1. I f  a>O, let Ta=inf{t :  At>a},  Ga =Gra. Then 

E'[foOGo]~a]=na'Xa~ a.s. on {Ga<oo} (6) 

for all positive ~*-measurable f .  

Proof. T ~ is an (~t)-stopping time since 

{ T a < t } = { A t = a }  U( U {A~>a}) 
r < t  

r r a t i o n a l  

and (At) is (~)-adapted. Notice als0 that ATo=a on { G a < ~ } = { T ~ < ~ } .  
Therefore applying (3) to T =  T" yields (6). 

Remark. (6) can also be established directly by observing that s=Ga<os  iff 
s~G ~ R o O~ > a and s < T a, and by using equality (5) with Z t = I~t__< T~}, like in the 
proof of (4). 

From Theorem 2 one obtains the distribution of the excursion straddling T, 
conditionally on AT, XG~ (this was proved by Getoor for T = t). 
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Corollary 2. Let T be an (~)-stopping time. I f  O<a<r, x~E, 0 < t  1 < . . .  < t , < r ,  
one has (symbolically) 

P ' {O~ {Xt~ ~dYl, . . . ,  X t E d y , ,  e > r} ] A  = a, X ~  = x} 

= (~,(x, 1) -z Q,x(x, dyl)Qt:_t~(yl,dy2)... Q,._t._~(yn_~,dy,)PY"{R>r-t,} 

= P'{O~2 {Xt~ ~dy 1 .... , X t ~ d y , ,  R > r} IXa~ = x} 

where 

Qt(x, dy)=/5~{Xtedy, R>t} ,  Q~(x, dy)=P~{Xtsdy,  R>t} .  

Proof By the Markov property of the measure/6~, one has 

Pu" ~ {Xt~ ~dyl , . . . ,  Xt ~dy ., R > r} 

=/6,, ~(1)- ~/3~ {Xtl ~ dy~ R > t 1 } pyl {Xt~_ r~ Ed y2, R > t 2 - ta } 

... PY"-~{X~,_t. ~ d y , , R > t , - t , _ l } P Y " { R > r - t , } .  

Hence Corollary 2 follows from Theorem 2 and Corollary 1. 

IV. Conditioning on (At, .~r_ ) 

For each positive random variable S, ~ s -  denotes the a-field of the sets Ae~" 
such that I A = Z  s on {S< ~}  for some predictable process Z. For example S is 
~,% -measurable. From now on we shall assume for simplicity that (Xt) is a Hunt 
process. Then X s_ is Ys -measurable (we set X~_ = 6). 

In the sequel we shall also assume that M has (a.s.) no isolated point, which 
implies the equivalence Gt<u <=> t<D u for all t, u>0. It follows that the process 
(ZG~) is predictable for all predictable Z. In fact if Zt=I~t<v~, where U is a 
stopping time, ZG=I~t<D~:~ is a predictable process, since D v is a stopping time. 
This observation leads to the following result, whose proof is entirely analogous 
to the proof of Proposition 1. 

Proposition 2. 1) The family ( 4 ) = ( ~ - ) i s  increasing. 
2) For each (~t)-stopping time T, one has ~ T -  ~ ~r ~ ~ r .  

In this paragraph we shall further assume that there exists a "predictable exit 
system" (B, P): B is a predictable random measure and/5 is a kernel from (E, ~*) 
to (~2, J * )  such that for all positive predictable Z and ~*-measurable f 

E" [ ~, Z s f  o Os] = E" [ i  Zs/sX~(f) dB~]. 
s ~ G  

Furthermore /sX(R=0)=0 and /5~(1--e-R)<l for all x, and the process 
(X0t> o is strong Markov with respect to (Pt) for each measure fix. The existence 
of such a system is not always satisfied as Getoor and Sharpe showed in [2]. 
The reader will find sufficient conditions for this existence in the appendix. 

Under all previous assumptions, one has the following results (the proofs are 
analogous to the proofs of paragraph 3 and left to the reader). 
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Theorem 3. Let T be an (~)-stopping time. For all positive ~*-measurable f, 
/sA~'x~- (1)>0 a.s. on { 0 < G r < r < o o  } and 

E ' [ foOG~, [~r]=PA~ 'x~ - ( f )  a.s. on { 0 < G r < T < o e  } (7) 

where we set 

fi"'x(f)=P~(fI{R>a}) /f a>0 ,  

p~.x(f) po, x(f)  
PO, ~(1) 

Remarks. A r is O~r-measurable since (At) is (~)-adapted and right continuous. 
Proposition 2, equality (7) and the fact that XoT_ is ~oT_-measurable imply 

A ~ ~Xr X~ r- {O<Gr<Y<ov  }. (7') E" I f  o OaT I T, ~-~r-3 = ' (f) a.s. on 

Corollary 3. With the notations of Corollary 1, one has 

E'[foOGol~oo_]=P~'X~~ a.s. on {0<G"<oe}.  (8) 

Remarks. 1) Corollary 3 follows from Theorem 3 by observing that T ~ is an (4)- 
stopping time, and that Aro=a on {G"< or}. It can also be established directly 
along the lines of the remark following Corollary 1 (notice that, Z t = I~tz to} is 
predictable). This method has the advantage that it does not require that M has 
no isolated point. 

2) In the case where M = { t : X t = x 0 } , X G ,  =x o a.s. on {0<Ga<oo}, since 
M has no isolated point; therefore the strict past of G ~ and the future of G ~ are 
independent, as a consequence of Corollary 3. 

Finally Corollary 2 can be rephrased for an (~)-stopping time by replacing 
XGT, XGo, O.t by XG~_, Xa , - ,  t~t, where Q_.t(x, dy)=P~{Xt~dy,  g > t } .  

V. Appendix 

In this section, we shall give sufficient conditions for the existence of a 
"predictable exit system". We assume for simplicity that (X~) is a Hunt process, 
and that there exists a universally measurable subset S of F c such that if ssG, 
X s_ EU, Xs~F c then 

Xs_ ~=X~<=~Xs ~S. 

Then one has the following. 

Theorem 4. Under the previous assumptions, there exists a predictable exit system 
(B, P) such that /SX(R=0)=0, PX(1-e -R) < 1 and (Xt)t> o is strong Markov with 
semi-group (Pt) relative to F ~, for all x. 

Proof The set G is the union of the following sets: 

1G= {ssG: XseF}, 

2G={seG:Xs ~F,X~eFC}, 
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3G= {sc-G: Xs_ES , XseFC}, 

4 G = {seG:Xs_ ES~c~F ~, XseFC}. 

It is known that 1Gc~[T] = g  a.s. for each stopping time T, whereas G \  ~G is a 
countable union of graphs of stopping times. 

For each positive, bounded, ~*-measurable function f, define 

iuf=E'[ ~ e-S(1--e-R~)f oOs], i=1,2,  3. 
s~iO 

For each predictable stopping time T, one has IG~[T] =fJ a.s., i= 1, 2, 3, since 
X s_ 4=X~ for s62GuaG. Hence the functions ~u/are regular 1-potentials. By the 
argument of [3], Theorem (4.1), there exist continuous additive functionals iK 
and kernels iN such that 

iu/=E" e-SiNXs(f) diKs , i=1, 2, 3 

for all f ~K and ZK are carried by F, whereas 3K is carried by S. Let td, 2d be 
densities of 1K, 2K with respect to ~K+ 2K and set 

/sx(f)= ~ id(x) igx ( f / l_e -R)  if x~F, 
i = 1 , 2  

=3NX(f/1--e-R) if xeS, 

=px(f )  if xeSCc~F c, 

i= 1, 2, 3 s~4G 

The random measure/~ is predictable, since X s_ = X s for se4G. By the same 
arguments as in [3], one shows that, except for x in a /~-null set No, one has 
fi:~{R=0}=0, fix(1--e-g)<=l and the strong Markov property of /5~ with 
respect to (Pt). If we change the definition of/5 by setting/sx = 0, if x~N0, (B, P) is 
a predictable exit system with all the desired properties. 

[i ] Remark. By construction E" e-sfixs(1-e-R)dBs __<1. Therefore the process 

t / \ 

{[.fiX~(1--e-R) dB~} is a predictable additive functional with 1-potential < 1. 
\ 0  / 
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