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Summary. Two statistics are proposed for the simple goodness-of-fit prob- 
lem. These are derived from a general principle for combining dependent test 
statistics that has been discussed elsewhere by the authors. It is shown that 
these statistics are relatively optimal in the sense of Bahadur efficiency and 
consequently, are more efficient than any weighted Kolmogorov statistic at 
every alternative. A curious pathology occurs: Under certain alternatives, 
the sequence of statistics has a Bahadur efficacy or exact slope only in the 
weak sense of convergence in lawl 

1. Introduction 

Goodness-of-fit statistics are presented here that are more Bahadur efficient 
than the corresponding (weighted) Kolmogorov statistics at every alternative. 
The statistics are obtained by applying the principle discussed in Berk and Jones 
(1978) and turn out to be relatively optimal combinations of the family of 
statistics {Fn(x): 0_<x < 1} where F n is the empirical distribution function of the 
sample. A combination of test statistics is relatively optimal if at each alter- 
native, the Bahadur efficiency of the combination is (at least) the maximum of 
the efficiencies of the component statistics. The goodness-of-fit statistics are 
given below, after some notation is introduced. 

We consider the usual reduced goodness-of-fit problem: X 1, X2, ... are iid 
observations in [0, 1] with common d fF  and under H o, F is uniform (on [0, 1]). 
We consider primarily the one-sided alternative: F(x)>x for some 0__<x<l, 
although as indicated below, our discussion applies to the two-sided case as well. 
Let F n be the empirical df  for XI,  ..., Xn. We let Po denote the null distribution 
of X~, X 2 . . . . .  PF, its distribution under F and let 

~.(f .  x) = Po (Fn(x) _-> t), 

L+~, x = ~ , , ( F . ( x ) ,  x )  
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and 

K + ( t , x ) = t l o g t - + ( 1 - t ) l o g ~ 2 ;  if 0 < x < t < l  
x 

=0  if O<_t<_x<l 
= ~ otherwise. 

Clearly L, +. x is the level attained by F,(x), large values being significant. We use 
the following basic facts about the binomial distribution: Let 

K,  + (t, x )=  - n  -1 log G,(t, x). (1.1) 

Then 

K.+ (t, x)> K + (t, x) (1.2) 

and 

lim K~ + (t, x )=  K(t, x). (1.3) 
n 

Cf. Chernoff (1952). As in Berk and Jones (1978), we describe (1.3) by saying 
K(., x) is the index (of large deviation) of {F,(x)" n > 1}. It follows that 

- n - ~  log  L+~, ~ ~ K + (F (x), x) [PF] ; (1.4) 

i.e., that {F~(x):n>l} has Bahadur efficacy K+(F(x),x) (or exact slope 
2K+(F(x), x)) under F. Note that G, is decreasing in t and increasing in x; by 
(1.1) and (1.3), the opposite is true of K ,  + and K § Moreover, it is clear that K § 
increases continuously to log 1/x as t T 1 and increases continuously to + oo as 
x $ 0 (on the range 0 < x < t < 1; the monotonicity is, in fact, strict). 

The goodness-of-fit statistics we consider are the (one-sided) minimum 
attained level statistic 

lnf Ln, x, 
x 

so that 

_ _  ? / - -  1 log M + = sup K + (F~(x), x) (1.5) 
x 

and the corresponding maximum index statistic 

R + = sup K + (F.(x), x) 
x 

+ [-1 -F , (x ) ]  log - - "  F~(x)>x . 
X 1 - - X  

(1.6) 

The motivation for studying these particular combinations of {F,(x): 0_<x_< 1} 
may be found in Berk and Jones (1978). It is not hard to see that these statistics 
are measurable. As shown below, these statistics are relatively optimal but they 
do not have (pointwise) Bahadur efficacies at every alternative. 
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The following considerations will be of use. Let X(1), . . . ,  X ( n  ) be the order 
statistics for X1, ..., X , .  We recall that 

G, (k/n, x) = Po (n F, (x) > k) = Po (X(k) < X). (1.7) 

Let sup denote supremum for X(k ) < x <X(k + 1)- Since F,(x)= kin on this range, 
xlk 

sup K + (F,(x), x) = K  + (k/n, X(k)), 
xlk  

so that 

R + = max K + (k/n, X(k)). (1.8) 
1 Gk<-n 

(Note that for x < X ( 1  ), F,(x)=O, so that K+(F,(x), x ) = 0  also.) Similarly 

M + = min G,(k/n, X(k)), (1.9) 
l<_k<_n 

or  

1 
- -  log M + = max K + (k/n, X(k)) > R +. 

n 1 <-k<--n 
(1.1o) 

We see from (1.7) that G,(k/n, X(k)) is the level attained by X(k ), small values 
being significant. Hence (1.9) shows that Mff is also the minimum attained level 
for the order statistics. (Note that rejecting for small values of X(k ) is plausible 
since our alternative includes all distributions stochastically smaller than the 
uniform.) 

2. Relative Optimality 

The theorem of this section establishes that {M~ +} and {R~ +} are relatively 
optimal for the family { F , ( x ) : O < x < l } .  This is then used in Section3 to 
establish that these statistics are superior in the Bahadur sense to the Kolmo- 
gorov statistics. We present first two lemmas. The first is actually a special case 
of a theorem of Hoeffding (1965), Theorem 2.1. As the proof is short, we include 
it. 

Lemma 2.1. For every integer n> 1 and integer k<n,  

K + (k/n, x) < K~ + (k/n, x) < K + (k/n, x) + (log 3 ~ n)/2 n. (2.1) 

Proof. The left inequality is (1.2). Also, 

hence 

K + ( k / n ' x ) < ~ l ~  x log 1-x1 n l l~  ' 
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An application of Stirling's formula for n ! shows that 

It is an immediate consequence of (2.1) that 

R+ <=-n-l  l~ <=R+ +(l~ [PF] (2.2) 

for every F. This relation implies that most aspects of asymptotic behavior of 
interest to us are the same for {R, +} and { - n - 1  logM+}. 

The next lemma is Theorem 7.4 of Bahadur (1971). 

Lemma 2.2. Let L be the level attained by a statistic. Then under any null 
distribution, P (L < u) < u, 0 <_ u <_ 1. 

Theorem 2.3. For r > 0 

lira [ - n  -1 logPo( -n  -1 logM~+ >r)] = l im [ - n  -1 logPo(R,+>r)]=r (2.3) 
n t l  

while 

l iminf [  - n - ~  l~  >supK+(f(x) ,  x) [Prl. (2.4) 
n n x 

Thus {M, +" n> 1} and {R,+" n> 1} are relatively optimal: I f  L, denotes the level 
attained by M, + and L,, the level attained by R, +, 

l i m i n f [ - n  -1 l o g L J = l i m i n f t - n  -1 logLn]>supK+(F(x), x) [PF]" (2.5) 
n n X 

Proof. Since K+(t, x) is continuous in t, for 0 < r < l o g  l/x, there is a unique 
=z(r, x) in (x, 1) for which K+('c, x)=r and {t: K+(t, x)>r} = [-z, ~).  Using also 
(1.8), we see that 

Po(M. + <=e-"~)> Po(R~ + >r) 
>Po(K+(F,(x), x)>r)=Po(F,(x)>z), x<e  -r. 

Since - n- 1 log Po (F, (x) > z) = K + (z, x) --, K + (% x) = r, 

lim sup I - n -  1 log Po(M + < e-nr)] 
n 

<lira sup [ - n  -~ logPo(R+>r)]<r, r>O. (2.6) 

Furthermore, using (1.8) and (1.7), 

Po(R + >r)<Po(M + <e-"r)<-_ ~ Po(G,(k/n, X(k))<e-"r)<ne "r. 
k = l  

The last inequality follows from Lemma 2.2 since G,(k/n, X(k)) is the level 
attained by X(k ). Thus also 

l i m i n f [ - n - ~  logPo(R+ > r ) ] > l i m i n f [ - n - l  logPo(M,+ <e-"r)]>r, (2.7) 
n n 
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which establishes (2.3). The pointwise relation (2.4) follows from (1.6) and (2.2) 
and then (2.5) follows from (2.2)-(2.4), cf. Lemma 2.5 of Berk and Jones 
(1978). [I 

It is shown below in Section 4 that there are alternatives for which {R~ +} and 
{ - n - l l o g M  +} do not converge pointwise or in probability. At such alter- 
natives these sequences do not have Bahadur efficacies in the usual sense. 

3.  T h e  K o l m o g o r o v  S t a t i s t i c  

We compare the statistics discussed above with the Kolmogorov statistic D~ + 
=sup  (F,(x)-x). It follows from results of Abrahamson (1967) (see also Bahadur 

X 

(1971), (5.23) and Example 8.2) that the Bahadur efficacy of {D +} at F is 

b + (F)=inf K + (d+ (F) + x, x), 
X 

where d+(F)=sup(F(x)-x). Taking F right continuous, d+(F)=F(y)-y  for 
X 

some ye[0,  11. Thus 

b + (F) = inf K + (F (y) - y + x, x) < K + (F(y), y) < sup K + (F(x), x) 
X X 

(3.1) 

and we see from (2.5) that {R~ +} and {M~ +} are at least as good in the Bahadur 
sense as {D~+}. Regarding the possibility of equality in (3.1), note that K+(d 
+ x, x), considered as a function of x, is the sum of a convex decreasing function 
[(d+x)log(l+d/x)] and a convex increasing function [ - ( 1 - x - d ) l o g ( l - d /  
(1 - x))] and is therefore convex. Thus h(x) = K + (F(y)-  y + x, x) attains its mini- 
mum at x = y iff 0 < y  < 1 and h'(y)= 0, which is to say, iff 0 < y < 1 and 

F(y) 1-y_F(y)_~ 1-F(y)  2. (3.2) 
lOgl_F(y~ y y 1 - y  

This is then necessary and sufficient that the first inequality in (3.1) be an 
equality. 

Clearly only for certain alternatives will (3.2) hold. Assuming it does, let us 
check whether the second inequality in (3.1) can also be an equality. Assume 
that F has a continuous derivative f. Then K--(F(x), x) is non-negative and 
vanishes at 0 and 1, thus if it attains its maximum at y, its derivative vanishes 
there. That entails 

F(y) y f(y) l - f 0 , )  
- -  - ( 3 . 3 )  f(y) log 1 -F(y)  1 - y  y 1 - y  

Since y maximizes F(x ) -x ,  f ( y ) =  1, thus (3.3) and (3.2) imply that F(y)=y, i.e., 
that d+(F)=0.  Thus, at least for smooth alternatives, 

b+(F)<supK+(F(x), x) if d+(F)>0.  (3.4) 
x 
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That is, {M, +} and {R, +} are more (Bahadur) efficient than {D~+}. 
It is not hard to see from Abrahamson (1967) that this conclusion persists for 

the weighted Kolmogorov statistics D,+w=SUp(Fn(X)-X)W(X), w>O. See also 
Section 5 below, x 

4. Pointwise Behavior 

We study in more detail the pointwise behavior of {R~+}. 

Theorem 4.1. If  for some 7>0,  

F(x)<[ log l  (log2 x] ] ,  x < ,  (4.1) 

and 

1 - F ( x ) <  l O g l ~ x  log21~-x]  _l ' x > l - 7 ,  (4.2) 

then 

lim R + = lira [ - n- i log M + ] = sup K + (F (x), x). (4.3) 
n n x 

Before proving this theorem, we establish some preliminary results. In the 
following lemmas, as in Theorem 4.1, there is no assumption of continuity for F. 
However, results for discontinuous F are consequences of those for continuous 
F, because of the following. Let U1, ..., U, be iid uniform random variables and 
let H ,  be their empirical df. Then X*=F-I (Ui )~F and the empirical df of 
X*, ..., X* is Hn(F(x) ). Below we consider certain "distribution-free" statistics, 
as for example D, + (f)  = sup (F,(x) - F(x)) or 

X 

Vn = sup F, (x)/F (x). (4.4) 
X 

These quantities are distribution-free only when F is continuous, of course. 
However, in general 

sup V, (x)/F (x) ~ sup H, (F (x))/F (x) < sup H, (x)/x. 
x X X 

Thus an upper bound for a probability such as P(V,>v) established for 
continuous F is afort iori  an upper bound when F is discontinuous. Keeping this 
remark in mind, we will be able to assume in the sequel, if necessary, that F is 
continuous (or even uniform). 

Lemma 4.2. For V, as defined in (4.4), 

PF(Vn>=v)<=l/v, v > l  (4.5) 

while if F is continuous, 

PF(V,,>=v)=I/v, v > l .  (4.6) 
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That is, for continuous F and every n, V,~ 1/U, where U is a uniform random 
variable. 

Proof. Robbins (1954) gives a proof of (4.6); (4.5) is a consequence of the remarks 
made above. 

The next lemma is a sharpened two-sided version of results given by Lai 
(1975), Theorem 1. 

Lemma 4.3. For e > O, 

Pe(sup F,(x)/ F (x) > v) < exp { - n K + (ev, e)}, 
F > e  

PF( inf Fn(x)/F(x)<=u)<ex p { - n K +  (1 - e u ,  1 -e)}. 
F > e  

Consequently, 

(4.7) 

(4.8) 

( 1-F.(x) ) 
PF sup >v < e x p { - n K + ( e v ,  e)}, (4.9) 

\F__<I-~ 1 - F ( x )  = 

( 1 -F , (x )  ) 
PF inf <u < e x p { - n K + ( 1 - e u ,  e)}. (4.10) 

\F<l--e 1 - F ( x )  = = 

Proof of Lemma 4.3. For F continuous, Kiefer (1973) has noted that for each n, 
[ 1 - F , ( x ) ] / [ 1 - F ( x ) ]  is a martingale in x. An equivalent statement is that 
Fn(x)/F(x) is a reverse martingale in x: 

EF(F,(x)/F(x)IF,(u): u>y)=F,(y) /F(y) ,  y > x .  

We may establish (4.7) as follows. For s>0,  exp{esH,(x) /x}  is a reverse 
submartingale, thus 

Po (sup F, (x)/F (x) > v) < P (sup H, (x)/x > v) 
F> e  x > e  

__<E exp {sHn(e ) -s~v},  s >0. 

Thus a bound for the left hand side of (4.7) is infE e x p { s H n ( e ) - s e v } =  
S>0 

exp { -nK+(~v ,  e)} (Bernstein's inequality). Relation (4.8) is proved similarly, 
by considering the reverse submartingale e x p ( - e s H , ( x ) / x } .  The remaining re- 
lations follow on replacing F,(x) by 1 -F , (1  -x ) ,  which is the empirical df for 1 
- X  1 . . . .  , 1 - X ,  and which have df 1 - F ( 1 - x ) .  II 

We note in passing that Lemma 4.3 provides a quick proof of the Glivenko- 
Cantelli theorem. As remarked above, we may suppose that F is uniform. Then 

sup IF,(x)-xl  <sup  IF,(x)-xl  +sup  x iF,(x)/x - 1/ 
x x<8 x>8 

< F,,(e) + e + sup IF,(x)/x - 11. 
x > e  

By Lemma 4.3, P(sup IF,(x)/x-11 >6  i.o.)=0 for 6>0 ;  thus sup IF,,(x)/x - 11 ~ 0  

wpl. Since also Fn(e)-~ wpl, 

lim sup sup IF , (x ) -x l  ~2e, wpl. 
n x 
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Since ~ is arbitrary,  the result follows. 

Proof of Theorem 4.1. For  0 < cr < 1 and 6 > 0, let 

A,=(sup{lF,(x)-f(x)l / f(x)[1-f(x)J: n - ~ < f ( x ) < l - n  ~}<6). (4.11) 

On A,, F,<(1 +6) f  and 1 - F , < ( 1  +6)(1 - F ) ,  so 

K+(F,(x), x)<(l+6)[K+(F(x), x ) + l o g ( 1  +6) ]  on A,. 

For  , < 1 ,  L e m m a  4.3 shows that  PF(A~ i .o . )=0 for all 6 > 0 .  Thus 

lim sup sup {K + (F, (x), x): n-  ~ < F (x) < 1 - n-  ~} 
n 

<supK+(F(x), x) [Pv]. (4.12) 
x 

We consider next F(x)<n -~. Inverting (4.1), we see that  for small x, 

log 1Ix < 2/F (x) [-log 1IF (x)] 1 +,, (4.13) 

thus for large n and F(x)<n -~, 

g + (rn(x), x) ~ r,(x) log 1/x <= 2F,(x)/F (x) [-log I/F (x)] 1 + 7, 

hence 

sup K + (F,(x), x) <= 2 V,/(ot log n) 1 +7. (4.14) 
F < n - :  

We show that V./(logn)~+~O [-PF], using a device discussed by Kiefer 
(1972). Let  {b,} be a sequence of constants for which nb, (ultimately) increases 
with n and let 

B.=(V.>=b.), C.=(2V2~+,>b2. ). 

Since nF.(x) and consequently nV. also increase with n, if for some k between 2" 
and 2 "+1, B k occurs, then C. occurs as well. Thus 

PF(B. i.o.) <PF(C . i.o.). 

Taking b ,=~( log  n) 1+~, by L e m m a  4.2 

Pv C, < 2/e (log 2") 1 + ~ < 4/e n 1 + 7, 

so that Pv(C, i .o . )=0 and consequently PF(B, i .o.)=0. That  is, 

(logn)-tl+~)supF,(x)/F(x)~O [Pv]. 
x 

F r o m  (4.14) we see that  this entails 

lira sup K + (F,(x), x)=0 [PrJ- (4.15) 
. F < n  - ~  
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A similar argument shows that 

lira sup K+(F,(x), x ) = 0  [PF] (4.16) 
n F > l - n  ~ 

which, together with (4.12) and (4.15) shows that 

lim sup R + __< sup K + (F,(x), x) [Pp]. 
n x 

In view of (2.4) and (2.2), the theorem is proved. I1 

Remark. It is clear from an examination of the above proof that it goes through 
if the right-hand side of (4.1) is replaced by 

1/log 1/x log 2 1/x... log k 1/x(logk+ 1 1/x) 1 +~ 

for some ? >0, with a corresponding expression in (4.2). The right-hand side of 
(4.13) becomes 

2/F log 1/F... log k_ 1 1/F(l~ l/F) 1+7 

and in (4.14), the right-hand side is a multiple of 

V,/log n ... log k_ 1 n(1ogk n) 1+ ~ 

The same argument, with the same choice of b, shown that this last quantity 
tends to zero wpl. That is, for integer k > 1 and 7 > 0, 

log 2 n + . . .  + log k n + (1 + 7) 1Ogk + 1 n 

is an upper class boundary for log sup F,(x)/F(x). 
x 

We show next by example that (4.1) cannot be entirely dispensed with in 
Theorem 4.1. We consider 

V(x) = [1 +log 1/x]- 1 (4.17) 

for which sup K + (F(x), x)=  1, the maximum occurring at x = 0. Since (4.2) holds, 
x 

it follows from the proof of Theorem 4.1 (cf. (4.12) and (4.16)) that 

lira sup sup K+(F,(x), x) 
n F > n  - ~  

< sup K + (F(x), x) = 1 [PF]. (4.18) 
x 

Also, wpl 

sup K+(F,(x), x)=  sup Fn(x)log 1/x+o(1) 

= sup F,(x)/F(x)+o(1)= V,+o(1), (4.19) 
F < n - ~  



56 R.H. Berk and D.H. Jones 

where, to obtain the last equality, we use (4.7) to conclude that 

sup F,(x)/F(x)~ l [PF]" (4.20) 
F > n - ~  

Since V,~ 1/U for every n and this random variable is never less than one, (4.18) 
and (4.19) show that R + and consequently also - n  -1 logM,  converge in law 
under F to 1/U. 

It then follows that 

Pv(lim infR~ + = 1, lim sup R, + = oe) = 1 (4.21) 
n 

(and the same is true of - n - 1  log M,): For  example, for v > 1 

0 < 1 - 1Iv = lim PF(R, + <__ v) 
n 

__< PF(R, + _--< v i.o.)= PF(lim infR,  + < v) 
n 

and by the Hewitt-Savage zero-one law, this last probability must be 0 or 1; 
thus it is 1. It follows from (2.3) that for L, 

PF(lim inf [ -- n-  1 log L,] = 1, lim sup [ - n- 1 log L,] = oo) = 1 (4.22) 
n 

and likewise for L,. Thus for this F, R + and M + have no exact slope in the 
pointwise sense. 

It is easy to see that they do not converge in probability either. In view of 
(4.18) and (4.19), it suffices to show that {V,} does not converge in probability. 
But Fzn=�89 where F* is the empirical df for X,+D. . . ,X2 , .  Thus 
V2n~l(Vn @ Vn* ) where V,* =sup  F*(x)/F(x) and thus V2,-  V,>�89 

X 

-V,,)~�89 where U* and U are independent uniform random vari- 
ables. It follows that {V2,-V,} does not converge to zero in probability, hence 
that {V.} does not converge in probability. It follows from (2.3) and the 
foregoing that { - n  -* logL,} converges in law but not in probability to 1/U 
(and likewise L,). It is not clear in general how one is to compare (or obtain 
efficiencies from) Bahadur efficacies that are random and only limits in law of 
{ -  n-1 log L,}. In the present case, making a comparison with D + presents no 
problem, since by (3.1), the Bahadur efficacy of the latter does not exceed one, so 
that (4.22) shows R + to be more efficient in the Bahadur sense for almost every 
sample sequence. 

This example is a somewhat delicate but natural example of a statistic 
sequence that does not have a pointwise Bahadur efficacy. Similar behavior is 
exhibited by the smallest (resp., largest) order statistic sequence, small (resp., 
large) values being significant: Under H0, the index of nX<l ) is easily computed 
to be p(t)=log(1-e-'),  while under a continuously differentiable (at zero) 
alternative F, nX(,) converges in law to an exponential random variable with 
parameter f(0). 

To complete the discussion of pointwise behavior, we note that if 1/F does 
not exceed (log l/x) 1-~ near zero, where ~< 1 (and similarly for x near one), or 
more generally, when supK+(F(x),x)=o~, (2.3) shows that the Bahadur ef- 
ficacy of {R, +} is oe. x 
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5 .  T w o - S i d e d  S t a t i s t i c s  

It is clear that the above reasoning similarly provides "lower" one-sided 
statistics" M 2, the minimum attained level for {Fn(x): 0_< x < 1} with small values 
being significant and R2, the corresponding maximum index. Letting K 2 (t,x) 
=K+(1 - t ,  1 - x )  and similarly for K - ,  

1 
- -  log M2 = sup K;  (F.(x), x) 

/2 x 

and 

R~- = sup K -  (F. (x), x) 
X 

=sup{ F.(x) IOgF'(x)+[I-F~(x)]IOgl-F~(x) } - - :  v . ( x ) < x  . 
x 1 - x  

In analogy with the two-sided Kolmogorov statistic D . = m a x  {D.+,D2} we get 
the two sided statistics 

M. =min  {M +, My} 

and 

R. = max {R +, R;  } = sup K (F~ (x), x), 

where K(t, x) = t log t/x + (1 - t) log (1 - t)/(1 - x )  if 0 < t, x < 1 and is oo otherwise. 
(A poor analogy with D .=sup  IF.(x)-xl would be the minimum attained level 

x 

and maximum index statistics for {lF.(x)-xl: 0 < x < l } .  This is because IF.(x) 
- x[ is a suboptimal combination of F,,(x) - x and x - F. (x).) 

The previous discussion on relative efficiency carries over to R. and M. vis- 
a-vis D." Letting d(F)=sup IF(x)-xl, the Bahadur efficacy of {D.} is (cf. Abra- 

hamson (1967), Bahadur (1971)) 

b (F) = inf K (d (F) + x, x) =< sup K (F (x), x) 
X X 

and the last quantity is the (pointwise) Bahadur efficacy of {R.} and {M.} when 
such exists. More generally, Abrahamson (1967) showed that the Bahadur 
efficacy of the weighted Kolmogorov statistic 

D.w=suplF.(x)-xlw(x), w>O 
X 

is 

b~ (F) = inf K (d.,(F)/w (x) + x, x), 
x 

where dw(F ) = sup IF(x) - x Iw(x). Supposing that d~(F) = (F(y)- y) w(y) for some 
0__<y<l, x 



58 R.H. Berk and D.H. Jones 

b~,(F) = inf K ((F(y) - y)w(y)/w(x) + x, x) 
x 

N K (F (y), y) N sup K (F (x), x), 
x 

so that R n and M n are better than the weighted statistics as well. This is to be 
expected since F,(x) and (F~(x)-x)w(x)  have the same attained level (if w(x)>0).  

Abrahamson (1967) showed that the Kuiper statistics D * = D  + +D 2 has 
Bahadur efficacy inf K (d* (F) + x, x), where d* (F) = d + (F) + d- (F); consequently 

x 

that it too is at least as efficient as the two-sided Komogorov statistic at every 
alternative. No conclusive comparison between D* and R n can be made; one 
does not dominate the other as regards Bahadur efficacy. For  example, if F is 
the point mass at ye(0, 1), d*(F) = 1 and the Bahadur efficacy of {D*} is ~ ,  while 
that of {Rn} is log 1/y. On the other hand, if F is stochastically larger (or smaller) 
than the uniform distribution, d*(F)=d(F) and consequently the Bahadur 
efficacy of {Rn} is typically the larger. It seems plausible that {R~} is more 
efficient at most alternatives of interest. Also, it is not clear that D* dominates 
the weighted Kolmogorov statistics as does R n and, of course, there are no 
onesided versions of D*. 

6. Limiting Null Distribution 

We note also that the limiting null distribution of R n may be found. By 
expanding K(F,(x),x) in a Taylor series about F(x), one sees that under Po, 

R n = �89 sup (F. (x) - x)2/x (1 - x) [ 1 + 0p (n- ~)]. 
x 

The limiting null distribution of 

2 1 A n = 5 sup (F n (x) - x)2/x (1 - x) 
x 

has been obtained by Jaeschke (1977), whose results may be paraphrased as 
follows: Under P0, 2 nA n - l o g z n - � 8 9  3 n converges in law to Z, where 

{ - 2 ~  2e }, - o o < z < o o .  P ( Z  < z ) = e x p  1- z 

Consequently, 

Po(nR ,< log2n+�89  - o o < z < o o .  (6.1) 

The corresponding one-sided result is 

P o ( n R + < l o g 2 n + � 8 9  - o o < z < o o .  (6.2) 

Unfortunately, (2.2) is not sharp enough to give a corresponding result for 
M n. However, for its "approximate version" Mn = exp { -  n Rn}, we have 

P o ( M ~ ( l o g 2 n ) ~ l o g n > t ) ~ e x p { - 2 ~ - ~ t } ,  t > 0  (6.3) 

P o ( I ~ + ( l o g 2 n ) & l o g n > t ) ~ e x p { - ~ - Q } ,  t>0 .  (6.4) 

These latter limiting distributions are simple exponential distributions. 
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We note finally a paper by Tusn/tdy (1977), which discusses a sequence of 
goodness-of-fit statistics that for testing a simple null hypothesis is Bahadur 
optimal against every alternative. The statistics are based on (increasingly finer) 
finite partitions of the sample space and are, in fact, likelihood ratio statistics for 
the corresponding multinomial distributions. This result supports Karl Pearon's 
principle of partitioning the sample space, but not use of the chi-squared 
statistic. Unhappily, Tusn~tdy's results shed no light on how to partition the 
sample space. 
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