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Summary. Let X o , X 1 , . . . , X  n be r.v.'s coming from a stochastic process 
whose finite dimensional distributions are of known functional form except 
that they involve a k-dimensional parameter. From the viewpoint of statisti- 
cal inference, it is of interest to obtain the asymptotic distributions of the 
log-likelihood function and also of certain other r.v.'s closely associated with 
the likelihood function. The probability measures employed for this purpose 
depend, in general, on the sample size n. These problems are resolved 
provided the process satisfies some quite general regularity conditions. The 
results presented herein generalize previously obtained results for the case of 
Markovian processes, and also for i.n.n.i.d.r.v.'s. The concept of contiguity 
plays a key role in the various derivations. 

1. Introduction 

For n_->0, integer, let X o , X  1 . . . .  , X  n be the first n + l  r.v.'s from a stochastic 
process each defined on the probability space ( f ,  ~ ,  Po). The joint probability 
law of any finite set of such r.v.'s is assumed to have known functional form 
except that it depends on the k-dimensional parameter 0. The set of all possible 
values of 0, that is, the parameter space O, is assumed to be an open subset of 
IR k, k => 1. Under these and some additional suitable regularity conditions, one 
may write down the likelihood function of the above r.v.'s. Then, as is well 
known, it is of great importance, from statistical inference point of view, to 
determine the asymptotic distribution of the log-likelihood function. Also, the 
same for some other r.v.'s associated with the likelihood function. In both these 
cases the determination of the asymptotic distribution is required under se- 
quences of probability measures which, in general, vary with the sampe size n. 

For  the special case that the above r.v.'s are coming from a stationary 
Markovian process which satisfies certain regularity conditions the problems 
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stated have been dealt with in the monograph Roussas (1972). Also, the same 
problems have been resolved for the case that the r.v.'s under consideration are 
assumed to be independent but not necessarily identically distributed. This has 
been done in Philippou and Roussas (1973). In both these cases the concept of 
contiguity plays a key role in the discussions involved. 

The results obtained herein are the natural extensions of those proved in the 
above cited two special cases. 

This paper consists of seven sections. The necessary notation and the 
assumptions used throughout the paper are introduced in Sect. 2. Some com- 
ments on the assumptions, as well as some auxiliary results, are given in Sect. 3. 
The main results of the paper, Theorems 4.1-4.6, are given in the next section, 
whereas their proofs are deferred to Sect. 6. In Sect. 5, a series of lemmas 
required for the proofs of the main results, is presented. In the closing section, 
three examples are mentioned, where the assumptions made in this paper hold 
true. The last two of these examples, also provide some justification for 
undertaking this investigation. 

Of the most recent works on the subjects the paper Prasad (1973) is 
especially noteworthy. Other papers dealing with the same problem are those of 
Rao (1966), Prakasa Rao (1974) and Crowder (1976). Also, the following papers, 
discussing related problems, are of interest, namely, Bhat (1974), Basawa, Feigin 
and Heyde (1976), Basawa and Scott (1977), (1978). 

The methods used there, however, follow the classical line. At this point, it 
should also be mentioned that the new CLT for martingales obtained in Brown 
(1971) was very useful here. 

In order to avoid unnecessary repetitions, it should be noted that all limits 
are taken as n tends to inifinity unless explicitly otherwise stated. 

2. Notation and Assumptions 

For n>0,  integer, let Xo, X1,. . . ,X, be r.v.'s defined on the probability space 
(X, d ,  P0), where the k-dimensional parameter 0~O, an open subset of IR k, k >  1. 
Let d ,=o- (X0,X 1 . . . . .  Xn), the a-field induced by the r.v.'s Xo,X ~ ..... X,, and 
let P,. 0 be the restriction of P0 to d , .  It will be assumed in the sequel that, for 
each n>0,  the probability measures in the family {P~,0; 0sO} are mutually 
absolutely continuous. Then, for 0,0*eO, let 

dPn o. 
qn(O;O*)=q,(X~; 0, 0 " ) = ~ ,  n>0,  (2.1) 

be specified versions of the Radon-Nikodym derivatives involved, where X, 
=(Xo, Xt,.. . ,X,). Set 

q, (0; 0") 
2 . ~ _ _  2 . q~.(O,O )--q~.(X.,O,O*)=q._l(O;O.) 

=q.(X.IX._I;O,O*), n>l. (2.2) 
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The likelihood function, based on X,, is given by 

L,(O; 8*)= L,(X,; 8, 8*)= q,(0; 8*) 

=qo(0; 8*) leI 0.), 
j = l  

so that 

(2.3) 

A,,(0; O*)=logL,(O; O*)=logqo(O; 8*)+2 ~ log ~oj(0; 0"). (2.4) 
j = l  

Clearly, A,(O; 0") is well defined with P0 - probability 1 for all 0EO. 
It will be assumed in the following that, for each 0~O, the random functions 

qoj(0;.), j > l ,  are differentiable in quadratic mean (q.m.) when the probability 
measure P0 is used. Let ~bj(0), j > 1, be the derivatives in q.m. involved evaluated 
at 8. Next, set 

n 

Fj(0)=4g0[-(pj(0)qo~.(0) ], j > l ,  /~(0)=nj~lF~(0),.= (2,5) 

and 

A,(0)=2n -~ ~, 0j(0), 
j = l  

Assumptions 

n > 1. (2.6) 

(A1) For each n>0,  the (finite dimensional) probability measures {Pn.o; 0~0} 
are mutually absolutely continuous. 

(A2) (i) For each 0sO, the random functions q~(0;.) are differentiable in 
q.m. [P0] uniformly in j > 1. That is, there are k-dimensional random vectors q~j(0) 
- the q.m. derivatives of ~oj(0; 0") with respect to 0* at 0 - such that 

1 
I[(pj(0; 0 + 2h) - 11 - 2h' 0j(0)l ~ 0 (2.7) 

in q.m. [P0], as 2--+0, uniformly on bounded sets of h~IR k and uniformly in j >  1. 
(ii) For j > l ,  0~(0) is s~cj x%measurable,  where cg is the a-field of Borel 

subsets of O. 

(A3) (i) For each 0eO and each teIR k, [t'qS~(0)~ 2, j > l ,  are uniformly inte- 
grable with respect to Po. That is, uniformly in j > 1, 

[t'(oj(O)j2dPo--+O, as a-+c~. (2.8) 
{[t' &~(0)] a > a} 

(ii) For each 0~O and n>  1, let the k x k covariance matrix/~(0) be defined 
by (2.5). Then/~(0)--, f(0) (in any one of the standard norms in 1R k) and/~(0) is 
positive definite, 0~O. 
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(iii) For each 0~O and for the probability measure Po, the WLLN's holds for 
the sequence of r.v.'s 

{[t'~bj(0)]2}, j > l ,  for each t~IR k. 

(iv) For each 0~O and each t~IR k, 

1 " 
j=~l [~'~0 { [~" (Pj (0)'12 I-~Jj_ 1 } -- It' 0j(0)] 2] ~ 0 (2.9) 

in Po-probability, 

(A4) For each 0~O, let qo(0;.) be defined by (2.1). Then qo(0;.) is ~/o xCg- 
measurable and continuous in Po-probability. 

3. Some Comments on the Assumptions 

In the first place, assumption (A3)(iii) means that, for each 0e O and each t~lR k, 

1 ~ {[t, ipj(O)]2 go[t,(pj(O)]2}__, 0 (3.1) 
H j=l 

in P0-probability. Then, on the basis of assumption (A3)(ii) and relation (2.5), 
relation (3.1) may be reformulated equivalently as follows: 

(A3)(iii') For each 0~O and each t~IR k, 

1 ~ [t'0j(0)] 2 -,�88 t in P0-probability. (3.2) 
Hj=I 

Next, on the basis of relations (2.9) and (3.1), it is clear that assumption (A3)(iv) 
may be reformulated equivalently as follows: 

(A3) (iv') For each 0~O and each r~lR k, the r.v.'s 

{gO{[t'~gj(O)]2]dj_l}}, j> l ,  

satisfy the WLLN's when the probability measure Po is used. 
Also, from relations (2.9) and (3.2), another equivalent reformulation of 

assumption (A3)(iv) is the following: 

(A3) (iv") For each 0aO and each rEIN k, 

1 ~ Eo{[t,(pj(O)]ald j ~}---~�88 in P0-probability. (3.3) 
/~j=l 

In the next section, a result regarding the asymptotic normality of the r.v. 
A,(O), defined by relation (2.6), will be formulated. For this purpose, a certain 
martingale CLT (Theorem 2 in Brown (1971)) will be appropriate (see also 
Scott (1973)). 
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This theorem applies without the assumption that the underlying martingale 
sequence is stationary and ergodic. Both of these conditions are assumed in the 
more familiar martingale CLT (see, for example, Billingsley (1961) and Ibraginov 
(1963). Also, Roussas (1972), Theorem 2.2A, pp. 205-223.) 

The applicability of the martingale CLT given by Brown is based on two 
conditions (expressed by relations (1) and (2) in Brown (1971)), the second of 
which is a familiar Lindeberg-type condition. It will be shown that these 
conditions hold true here on account of assumptions (A1)-(A4). 

For each 0~O and each telR ~ (both arbitrarily chosen and kept fixed 
thereafter), set 

j>_l, 

z = g0(VZ), n > 1. (3.4) v , ? =  s.  = 
j ~ l  

Then the following results hold true. 

Lemma 3.1. Under assumptions (A 1)-(A4), 

V, 2 s ,  2 ~ 1 in Po-probability, (3.5) 

z defined by (3.4). where V~ 2 and s, are 

Proof From relations (3.4), (2.5) and assumption (A3)(ii)0 

s,7=~tF,,(O)t and t'~(O)t--.t'!Y(O)t. 

This result, along with relation (3.3), provides the desirable convergence in (3.5). 
The lemma below provides the required Lindeberg condition for the mar- 

tingale CLT. For its formulation, it will be convenient to set 

Zj=t'(pj(O), j >  1, (3.6) 

with 0 and t being as above. 

Lemma 3.2. Under assumptions (A1)-(A4) and for every e>0,  

s;  2 S Z dP0- 0, t3.7) 
j = l  (]Zjl _> es~) 

where s~ and Zj are defined by (3.4) and (3.6), respectively. 

4 z 
Proof As was seen in the proof of Eemma 3.1, ~+s~ ~t'F(O)t, so that s , ~ .  

n 

Now, for e>0,  let a=a(e)  (>0)  be sufficiently large so that 

Z~dPo<e, j>=l. 
(Z~ >al 
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This is possible by assumption (A3) (i). Next, there exists N(e) such that n > N(e) 
implies 2 2 e s n > a and hence 

Z dPo= S Z deo<-_ S Z dPo< , j>=l. 
(IZJI ~es~) (z~ >-ds~) (z 2 >a) 

Thus, with 4zn=t'1~(O)t and 4z=t'ff(O)t (t nonzero), it follows that, for all 
sufficiently large n, 

4 8 

j= 1 (IZjl >_--esn) n'C n Z" 

The proof of the convergence in (3.7) is completed. 

4. M a i n  Resu l t s  

In this section, the main results of the paper are stated. Their proofs are deferred 
to a later section (Sect. 6) after some auxiliary lemmas have been established. 
These results provide an asymptotic expansion (in the probability sense) of the 
appropriate log-likelihood function, and its asymptotic normality. Also, they 
give the asymptotic normality of the r.v.'s An(O), n>  1, as they are defined by 
(2.6). 

It is to be noted that said results generalize Theorems 4.1-4.6, pp. 53-54 in 
Roussas (1972) which hold true for certain Markovian processes. Also, they 
generalize Theorems 3.1-3.6, pp. 457-458 in Philippou and Roussas (1973) 
which hold true for the i.n.n.i.d, case. As was the case in establishing the proofs 
of the theorems just cited, contiguity concepts and results will also play a central 
role here. 

With 0dO, let 

On=O+h,n --~-, hn---~h~lR k, (4.1) 

and let An(O ) be defined by 

An(O ) = An(O; 0,), (4.2) 

where A,(O;O,) is given by (2.4) with 0* being replaced by 0 n. Then the log- 
likelihood function An(O ) assumes of the following expansion in P0-probability, 
namely. 

Theorem 4.1. Let An(O ) and An(O ) be defined by (4.2) and (2.6), respectively (with O, 
given by (4.1)). Then, under assumptions (A1)-(A4) and for each 0~0,  

An(O)-h'An(O)-'+ -�89 h in Po-probability. 

The asymptotic distribution of the all important r.v.'s An(O), n > 1, is provided 
by the following 
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Theorem 4.2. Let A,(O) be given by (2.6). Then, under assumptions (A1)-(A4) and 
for each OeO, 

~e[A,,(o)JPo] ~ N(O,F(O)). 

The asymptotic distribution of the log-likelihood A,(O) is also of interest. It 
follows from the two theorems just formulated. More precisely, 

Theorem 4.3. Let A,(O) and A,(O) be as in Theorem 4.1. Then, under assumptions 
(A1)-(A4) and for each 0~0, 

~[A,,(O)IPo] ~ N(-�89 h'F(O)h). 

The following three results are versions of the three preceding theorems when 
the probability measure Po is replaced by the probability measure Po,. Their 
proofs rely heavily on contiguity results. 

Theorem 4.4. Let A,(O), A,(O) and O, be as in Theorem 4.1. Then, under assumptions 
(A1)-(A4) and for each 0~0, 

A,(O) - h' A,(O) --* - a  h' ff(O) h in Po#probability. 

Next, the appropriate version of Theorem 4.3 is as follows. 

Theorem 4.5. Let A~(O) and O, be as in Theorem 4.1. Then, under assumptions 
(A1)-(A4) and for each 0~0, 

SEA,(O)tPo,] ~ U(�89 h'F(O)h). 

Finally, under P0,, the asumptotic distribution of A,(O) is given by 

Theorem 4.6. Let A,(O) and O, be as in Theorem 4.1. Then, under assumptions 
(A1)-(A4) and for each OEO, 

L#[A,(O)tPJ ~ g(F(O)h, F(O)). 

As has been already stated the proofs of the preceding theorems are 
presented in Sect. 6. 

5. Some Auxiliary Results 

In this section, those lemmas necessary for the proofs of the main results, 
Theorems 4.1-4.6, are gathered together. Most  of these lemmas are the appropri- 
ate versions of Lemmas 5.1-5.5 in Roussas (1972) and/or Lemmas 4.1-4.6 in 
Philippou and Roussas (1973). 

To this end, it would be advisable to introduce the following simplifying 
notation. Consider the quantity 2 . _ 2 . (p, (0, 0") 0, replace X, by Xj - (p , (X, ,  0") and 
and 0* by 0, defined by (4.1). Thus, (p~(0; 0,)=cpz(xj; 0, 0,) which is denoted by 
cp~i(0 ) or even ~o~ for simplicity. That is, 

~o,,j = (p,j(0) = ~o~(xj; 0, 0,). (5.1) 
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Next, the quantities ~bj(0), A,(O) and F(0) are defined in assumption (A2)(i), by 
relation (4.2) and assumption (A3)(ii), respectively. Again, for convenience, set 

0 j=0j(0) ,  A,=A,(O), F=F(O), l <j<n, n> l. (5.2) 

The following simple proposition is formulated and proved below for easy 
reference. 

Proposition 5.1. For l <j<n, consider the r.v.'s Zj and Z,j defined on the 
probability space (f2, d,  P) and suppose that 

max(d~ l<j<n)--*O, gZ~<M(<o~), j>l .  

Then 

max (g 2 [Z , j -Z~[ ;  1 < j < n ) ~ O .  

Proof. It is an immediate consequence of the boundedness assumption and the 
Minkowski and Hglder inequalities. 

In all that follows, the quantities ~o,j=q),j(0), 4~j=~bi(0), A,=A,(O) and F 
=F(0)  are defined by relations (5.1) and (5.2). All results to be dealt with in this 
section are understood to hold under assumptions (A 1)-(A4) and for every 0e O. 
Finally, for convenience again, the expression max c~,j will be used rather than 

J 
the more complete expression max (~,j; 1 < j  <n) for several quantities denoted 
here by c~j. 

Lemma 5.1. max [g0 [n(qo,j- 1) 2 -(h' (~j)2]; 1 Nj<n] ~0. 

Proof. By Proposition 5.1, it suffices to show that 

maxgoln~(~o,j-1)-(h'(oi)]2~O , ~o(h'i@2<M(<oe), j>l .  (5.4) 
J 

The second part of (5.4) follows immediately from assumption (A3)(i). That is, 

g0 (h' ~bj) 2 _< M, j > 1. (5.5) 

From this inequality, it follows that 

g0 ]l~bj[12 < M, j > l ,  

where I[. ]] is the usual norm in IR k and M is a generic constant. Next, on account 
of the previous inequality, 

go [(h, - h)' ~bjl 2 < l] h, - h 112 M ---~ 0. (5.6) 

Thus, 

max go ] n~ (qo,j - 1) - (h' ~)j)l  2 ~ max go I n* ((P,j -- 1) -- (h', ~bj)] 2 
J J 

+ max go ](h,, - h)' 4~jl 2 ~ 0 (5.7) 
J 
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by means of (5.6) amd also (2.7) applied with 2 and h replaced by n-} and 
h , ~ h e l R  k, respectively. This is the first relation in (5.4) so that the proof of the 
lemma is completed. 

This lemma has the following corollaries. 

Corollary 5.1. ~ (~o, j - l )2-  1- ~ (h'~j) 2 ----~0 in Po-probability. 
j = l  H j = l  

Proof For every e > 0, 

" 1 " ] < 1  + Po =~l(~~ 2 (h'~bj) 2 > g  z_, Eotntq~nj-1)Z-(h'(~ (5.8) 
J-  j = l  =r /g  j = l  

But, on account of the lemma, there exists N =N(e) such that n > N implies 

max C 0 jn(cpn j - 1) 2 - (h '  ~bj)2 r <e 2. 
J 

Then, for n>_N, the right hand side of (5.8) is bounded by 1 _ - -  ne 2 =e which 
establishes the corollary, ne 

Corollary 5.2. ~ (~p,a-1)2~�88 in Po-probability. 
j = l  

Proof. It is immediate from Corollary 5.1 and relation (3.2). 

As has already been mentioned elsewhere most of the lemmas to be discused 
in this section are suitable versions of lemmas in Roussas (1972) and/or lemmas 
in Philippou and Roussas (1973). This fact implies that there will be many 
similarities in the proofs of the corresponding lemmas. However, all lemmas will 
be supplied with a proof for reasons of completeness. Some of these proofs will 
be reduced to only an outline. Having this in mind, let us consider the following 
lemma. 

Lemma 5.2. max (I (P.j- 1[; 1 <j < n) -+ 0 in Po-probability. 

Proof Set Rnj = n~(~o.j-1)-(h' ~bj) and let e > 0. Then working as in the proof of 
Lemma 4.3 in Philippou and Roussas (1973), one has 

P~176176 . j +P~ max'h q)J[>T)" (5.9) 
But 

< 4 _  ~ ~olR~jl-, P0 (max,R~ > 2 )  ;he z 
\ J j = l  

and by means of (2.7), applied with 2 and h replaced by n -+ and h,, respectively, 

"~ g3 
g o l R , j ] - < ~  for n> some N = N ( e )  and l < j < n .  
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Thus, 

P0 (max ,R,i[ > ~ )  <2, n > N .  (5.10) 
j 

Next, on the basis of assumption (A3)(i) and working as in the proof of the 
latter part of Lemma 4.3 in Philippou and Roussas (1973), one has 

(max ' ~n~ \ ]h 0 j I > T )  <e _ fo =~, n>N.  (5.11) 

Then relations (5.9)-(5.11) establish the lemma. 

Remark 5.1. At this point let us recall the following simple fact. Namely, if I1, 
and Z,, n > 1, are r.v.'s defined on the probability space ((2, d ,  P) and such that 

Y,,-Z, e 0 and { 11,} is bounded in probability, 

then {Z~} is also bounded in probability, as follows from the inequality 

P(lZ, I > 2M) __< P(] Y,-  Z,I > M) + P(I Y,] > M). 

We now proceed with the following lemma. 

Lemma 5.3. A , - 2  ~ ((p,j-1) 2 ~ 0  in Po-probability. 
j=  j = l  

t t Proof. From (5.5), it follows that n ~" (h' 0j) 2 is bounded in P0-probability. 
k j=l j 

This fact, along with Remark 5.1 and Corollary 5.1, implies that (q)~j-1) 2 
J 

is also bounded in P0-probability. Hence, by this result and Lemma 5.2, 

(max [p~3-1]) ~, ((p,2- 1) 2 -+0 in P0-probability. (5.12) 
J j=l 

Next, following the proof of Lemma 4.4 in Philippou and Roussas (1973), one 
also obtains, by means of (5.12), 

I ] l~ - 2  2 (q0,j-1)-�89 ~. (~o,~-1) 2 --+0 (5.13) 
j = l  U j= l  j=~  

in g-probability. Now, on account of (2.4), (5.1) and (5.2), 

A,=log %(0; 0,)+ ~ log rp2a, 
j = l  

and 

log%(0; 0,)--+0 in P0-probability, 



Asymptotic  Distribution of the Log-Likelihood Function 41 

by assumption (A4) and relation (4.1). Thus, 

A , -  ~ log (p,2--.0 in P0-probability. (5.14) 
j = l  

Relations (5.13) and (5.14) give then the desired result. 
By using standard arguments one can also show the following simple result. 

Namely, 

Lemma 5.4. For 1 <j < n, •o qo~j = 1. 

A somewhat more complicated result referring to convergence in the first 
mean will now be established. 

• 2 Lemma 5.5. max #o I n2 ((P,s- 1) - 2h' (bj[ -+0. 
J 

Proof. Consider the identity 

• 2 n~ (cp,j - 1 ) -2h '  ~bj 

= ~ O n j [ n � 8 9  - -  1)  - -  t1' s  -}- h '  ~Oj(~Onj - -  1)  -~" [ y I � 8 9  - -  1)  - -  h '  ([) j]  

and work as in the proof of Lemma 5.4 in Roussas (1972). One then obtains 

�89 2 t �9 t t max #0 In (cp,j- 1 ) - 2 h  (PjI <2  max # j  ]n~(q~ j -  1 ) -h '  (pi t  2 
J j 

+ [max d~ (h 4~j) 2] [max #~ loP,j- 112]. (5.15) 
J j 

From Lemma 5.1, 

max e o (~o.j- 132-~ (h' qbj) z --*0, (5.163 

so that 

maxEo,gO.j--1,-_ X < (~Onj--1)2--! J _mja (h'4~j.) z + max#0(h,c~j)2_..0 
J 

on account of (5.16) and the second relation in (5.4). This result, along with (5.7) 
and (5.15), establishes the lemma. 

Now, interpreting the expectation (conditional or not) of a random vector in 
the usual coordinatewise sense, one may formulate and prove the following 
result. 

Lemma 5.6. For j>=l, #0(~bj ld j_0=0  a.s. [Po] (so that #o(h'Oj)=O for every 
h~lRk). 

Proof By using standard arguments one can show that 

g0(cP,~[~4j_l)=l a.s. [P0], l< j<n .  

On the basis of this result and Lemma 5.5, the desired result is established as in 
the proof of Lemma 5.5 (i) in Roussas (1972). 
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For j = 1, ..., n, define the r.v.'s ~b,j as follows 

4 ' . i  = 4 'oi(0) = e0(~o. j  I d ~ _  1). (5 .17)  

Also, set 

- n  ~h ~b/-(O, j -1) ,  j = l ,  n. (5.18) = Y,j = ( ~ o , i -  1) - '- ' . . . ,  

Then the following lemma is true; that is, 

Lemma 5.7. Let the r.v.'s Y~, j = 1, ..., n be defined by (5.18). Then 

~ Yj ~O in Po-probability. 
j = l  

Proof. By well known properties of conditioning, Lemma 5.6 and relation (5.17), 
one has 

g0(Y~+llY1 . . . . .  Y~)--0 a.s. l-P0], j > l ,  (5.19) 

and, clearly, goYl=O by means of Lemma 5.6 and relations (5.17) and (5.18). 
Then by means of a well known inequality (see, for example, Lo6ve (1963), 
p. 386), one obtains 

< 2  ~ [go [n~(~~ 1) -h '  ~bj] 2 + g0 [n�89 1)12], (5.20) 
~ n 8 2  j = l  

the last inequality holding true by the cr-inequality applied with r = 2. At this 
point recall that, if X is a r.v. defined on the probability space (f2, d ,  P) and for 
which g X  exists, and if ~- is a sub-a-field of d ,  then 

Ig(Xlg)lr<=g([Xlrlg ) a.s., r > l .  

On the basis of this fact, one has 

g0 In+(O,~ - 1)12 =g0 Irt�89 1)lsCj-112 <g0 In�89 - 1 ) -h '  (gjI 2 ---, 0, 

uniformly in j _>__ 1. Therefore, for e > 0, 

8 3 
go[n~(~b,j-1)12<~, n>=some N:N(8), l<j<n. (5.21) 

Also, 
2 3 

go[n~(~o,j-1)-h'(ojl2<~, n>=N, l<j<n. (5.22) 

On the basis of (5.21) and (5.22), relation (5.20) becomes as follows, for n > N and 
l<j<n, 
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as was to be shown. 
Now Corollary 5.2 states that 

• ( q • , j -  1 ) 2 + l h ' F h  in P0-probability. 
j = l  

It is also true that the above convergence is still true when the r.v.'s (~o,j-1) 2, 
j = 1 .. . .  , n are suitably conditioned. More precisely, the following lemma is true. 

Lemma 5.8. ~ #o[(q~.j- 1)2 [ ~r 1~ ~�88 in Po-probability. 
j = l  

Proof It can be seen that 

Po ~leOE(~%-l)21se,_1] - ~ #o[(h'4~,):lse,_l] >~ 
j j = l  

<=-- o~oln(q~nj-1)2-(h' (oj)2[. 
n / ~ j =  1 

From Lemma 5.1, 

2 t * 2 #o [n(~o,j- 1) - ( h  q~j) ]<e2, 

Therefore 

n>  some N=N(e),  l<j<=n. 

j = l  j = l  

in P0-probability. This result, along with relation (3.3), applied with t=h, gives 
then 

~0 E(~o.j- 1)21 d~_ 13 --*�88 
j = l  

in P0-probability, as was to be shown. 
The following simple result will also be needed below. Namely, 

Lemma 5.9. For j = 1,..., n, let the r.v.'s ~,j be defined by (5.17). Then 

2 ~, (~O,j-1)-~-lh ' lYh in Po-probability. 
j = l  

Proof It is the same as the proof of Lemma 5.5(ii) of Roussas (1972) on the basis 
of Lemma 5.6 and Lemma 5.8 herein. 

Finally, this section is closed with the following 
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Lemma 5.10. Let A,=A,(O) be defined by (2.6). Then 

2 ~ ( (P, i -1)-h '  A,~- �88  in Po-probability. 
j = l  

Proof Taking into consideration the definition of the r.v.'s 
(5.18), Lemma 5.7 states that 

2 ~ (~o.i- 1)-h'A.-2 ~ (~b.i- 1)--*0 
j = l  j = l  

Y~, j= l , . . . , n  by 

in P0-probability. This fact, in conjunction with Lemma 5.9, provides the desires 
result. 

6. Proof of Main Results 

The main results formulated in Sect. 4 can now be proved. 

Proof of Theorem 4.1. From Lemma 5.3, Corollary 5.2 and Lemma 5.10, one has, 
respectively, the following convergences in P0-probability: 

A . - 2  ~ (go.j-I)+ ~ (q~ j -  1)2--+0, 
j = l  j = l  

(~.i-  1) 2 +�88 Fh, 
i=1 

and 

2 ~ (~ . i -1) -h '  A.-*-�88 
j = l  

From these expressions, one obtains in an obvious manner that 

An-h'An-+-�89 in P0-probability, 

as was to be shown. 

Proof of Theorem 4.2. Set S n = ~ t' q0 i," n ~ 1. Then, by well known properties of 
j=l 

conditioning and Lemma 5.6, 

r ~ a.s. [Po]. 

Thus, for each 0cO, {S,, d,}, n=>l, is a martingale on the probability space 
(~, d ,  P0) with S O =0. Consider the quantities defined in (3.4). Then, by (3.5) and 
(3.7) in Lemmas 3.1 and 3.2, Conditions (1) and (2) in Brown (1971) are satisfied. 
Therefore Theorem 2 in the reference just cited holds true. Namely, 

It' A.(r' ~ 0- ~ I Po] ~ N(0, 1). 
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This convergence and the fact that t ' ~ t ~ t ' f f t  give then 

~ ( t '  A, I Po) ~ N(0, t' fit). 

Since this last convergence is true for every t~lR k, one concludes that 

~ ( A ,  [P o) ~ N(O, F), 

as was to be seen. 

Proof of Theorem 4.3. Immediate from Theorems 4.1, 4.2 and the standard 
Slutsky theorems. 

The proofs of Theorems 4.4-4.6 follow from those of the preceeding theo- 
rems and the proposition below about contiguity of the sequences of probability 
measures {P0} (={P~,0}) and {P0,} (=  {P~, 0,}). More precisely, the following 
proposition holds true. 

_ - � 8 9  * Proposition 6.1. I f  {h*} is a bounded sequence in IR ~ and if O*-O+n h,, then 
the sequences of probability measures {P,,, o} and {P,, o,} are contiguous. 

Proof. See Proposition 6.1 in Roussas (1972). 

We may now complete the proofs of the remaining theorems. 

Proof of Theorem 4.4. By the preceeding proposition the sequences {P0} and {P0,} 
are contiguous. This fact, along with Theorem 4.1 and the definition of con- 
tiguity, provides the required proof. 

Proof of 77worem 4.5. As in the proof of Theorem 4.5 in Roussas (1972), it is a 
consequence of Theorem 4.3, the contiguity of the sequences {P0} and {P0,} and 
Corollary 7.2, p. 35, in Roussas (1972). 

This section is concluded with the proof of the last theorem, namely, 

Proof of Theorem 4.6. Once again, one refers to the proof of the corresponding 
theorem in Roussas (1972). Namely, the assumptions of Lemma 7.1, p. 36, in the 
reference just cited are fulfilled with P, =P0, P,' =P0~, T,=A, and F=F. This is so 
because of Theorems 4.2 and 4.1 herein. Then Theorem 7.2 in Roussas (1972), 
p. 38, gives the desirable result. 

7. Examples 

In this closing section, three examples are mentioned, where assumptions (A 1)- 
(A4) of the present paper are met. Relevant details can be found in Stamatelos 
(1976). 

Example 7.1. The r.v.'s X n, n > 0, constitute a Gaussian process such that 

~ox.=o, ~(x~ Co(X.,,x.)=p ~m "f, Ip[<l. 

Then the process is a stationary Markov process (see, for example, Doob 
(1953), Example 4, p. 218 and pp. 223-224). 
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Example 7.2. The r.v.'s X, ,  n > 0, satisfy the relation 

Xn=~Xn- 1 +un, 

where I~] < 1 is known and the r.v.'s u,, n >  1, are independent ly  distributed as 
N(O, 1), and X o = 0 .  

Example 7.3. The r.v.'s X, ,  n > 0 ,  are coming from a Gaussian processes such 
that:  

(i) goX,=O or 20 according as n is odd or even, 
(ii) Co(X m, X,)=c (known) for all m and 12 (mq=n), 

(iii) a z ( x , ) = 2 c  for all n. 

This process is neither Markovian  nor  stationary. 

Acknowledgement. The author wishes to thank one of the referees for providing some constructive 
remarks which helped improve a previous version of this paper. 
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