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1. Introduction and a Theorem 

For  a sequence x~, ..., x,  of  n real numbers,  let f ,  dx i ,  ..., x , )=x j  if [xjl is the r- 
th max imum of IXl], ..., [x,I. More  precisely let m,(j), 1 <j<=n, be the number  of  
xi's satisfying either Ix~l > IxjJ, 1 < i < n, or Jxi] = Ix~t, 1 < i <=j, and let f,~(Xl, ... , xn) 
= x j  if mn(j)=r. Let {X,,  n = l ,  2, ...} be a sequence of  i.i.d, r andom variables 
with c o m m o n  distribution function F(x) and put  ~(x)=P(JX1]  >x).  Write 

X(~)=f,,k(X ~ . . . .  , X.), S .=  ~ X~=(~ 
i=1 

and 

(nS, = S, - ~, X~ k) for 1 < r < n. 
k = l  

One of  the authors  [5], [6] has shown the strong law of  large numbers  for 
(r)S,. In this paper, we consider the rates of convergence in it. The main  theorem 
we are going to prove is the following. 

Theorem 1. (I) Let r>=O be an integer and let 0 < ~ < 2 ,  t >  1. I f  there exists a 
sequence {a,} of constants such that for every ~ > 0 

~, n ~- 2 p ( l r  _ a,,I > n ~/~ e) < 0% (1) 
n = l  

then 

co 
S X~(r+t)-- 1 ~ ' (  x ) r + l  dx < ~ .  

o 
(2) 
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(II) Conversely, i f  (2) holds then (1) holds for  every e>0 .  In this case the 

sequence {an} may be chosen according to the formula a , = n  ~ xd  F(x),  where 
[xl_-<n~ 

~ > 0  is an arbitrary constant. In particular, i f  0 < e <  1 then the constants a~ may 
be chosen to be zero. I f  1<c~<2 and EIXxl<oc then a~ may be chosen to be 
n E X  i. 

Remark  1. If (2) holds, then applying the dominated  convergence theorem to the 
right hand  side of the relationship 

x 

x = + t) ( g ( x )  t 
o \ ~ ( y )  ] dy, 

we have 

lim x ~(" § ~ (x) ~ + 1 =0,  
X ~ O 9  

that is, ~ ( x ) =  o(x -~(~+~ 1)) as x--,  oo. Therefore  if either 1 < c~ < 2  or e = 1, 
t >  1 then (2) implies E IX~l < oo. 

Remark 2. Our theorem extends a result of Baum-Katz  [-1] who studied the case 
r = 0 .  

In the last section, we shall apply the above theorem to obtain a result on 
ruled sums. 

2. Proof of (I) in Theorem 1 

We begin with some lemmas. 

Lemma 1. Let  r>O be an integer and 0<c~<2.  I f  (1) holds for  every e > 0  then 
there exists a sequence {cn} such that 

(~)Sn - c n 
lira nX/~ = 0  in probability (3) 
n ~ 3  

and 

• n t - z  P ( l ( r ) S . - c . [ > n a / ~ e ) <  oo. (4) 
n = l  

Proof. We first prove (3). When  r = 0 ,  the lemma is known. (See Baum-Katz  [1].) 
Suppose that  r > l .  Fo r  each n let (Tz(1) . . . . .  re(n)) be r andom permuta t ion  of 
(1 . . . .  ,n) such that  P((~(1), . . . ,Tr(n))=(i l ,  . . . , i , ) ) = l / n !  for every permuta t ion  
(il, . . . ,  in) of (1, . . . ,  n). Suppose that  (7z(1), . . . ,  re(n)) is independent  of {X,}. Let  

_ ~ ~(k) Xn-(k) __fnk(X~(1) . . . .  , X~(n) ) and ( @ , = S , -  _ __, . It suffices to prove 
k = l  

( r ) S n  __ C n 
lim nl/~ = 0  in probability,  (5) 

n ~ o o  

because (@, and (')S, are identically distributed. 
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In order to prove (5), we use the concentration function of ~')Sn/n 1/~ defined 
by 

tl(r)S" I h), >0. 
C:'J(h)=sup P { n~77- x < h 

It is easy to see that lira Cr 1 for every h>O if and only if (5) holds for a 
n ~ o o  

sequence {G}- Suppose that there exist an increasing sequence {ni} of integers 
and constants e > 0  and d o < l  such that C},~)(e)<do for i > l ,  Choose dl and p 
such that d o < d~ < / < 1. We may assume n ip  < n~+ 1. For n~ < n < [nip 'I ,  where 
p' =(1 +p)/2, and for an arbitrary x we have 

( (')S _ ~(k)_~(k) l < k < r )  P ~ - x  <-h, . ~  - ~ , , ,  

n n - 1  n - r + l  

On the other hand the probability on the left hand side of the above relationship 
is equal to 

( (r)Sni~-Sn-Sn X ~ y(k)__~(k) ~k ) 
P n~l~ ' h, 1 <r  

Hence we have for n i < n < [n/p ']  

di C:)(h) < C(r) ., 

and therefore by choosing h = pll~e we obtain 

G c(2(//" e) < c(2r < do 

so that 

C~r)(pll~e)<do/dl for ni<n<=Enl/p' 3. 
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Thus we have for every sequence {G} 

II('G ~ -a l  ) 
- |1  n n > - 1 / < ~  

x P t l  n - 5 7 ~ -  V 
n = l  n 

,:~ . . . .  n t[ n ' ~ [  
[nd,o'] 1 

i = 1  n=ni n 

- ,=~ n~. \p '  ~f = ~ 1 7 6  

which is a contradiction and concludes (3). 
In order to prove that (1) implies (4), it suffices to show 

P(l(~)S,-c.l>nl/~e)<=P (l(r)N,,-a,l>n~/~4) (6) 

{a , - c .  ~ a , - c ,  4-~ then (6) is trivially valid, and for all large n. If ( - e ,  e)~ \ nil- ~ 4' n 1/~ 

in the other case, using (3), we have for large n 

P(itr)S,-c,i>nl/~e)<=P (l(~)Sn-c,l<n'l~2) 

< P ( I")S,-GI > n~I~ 4 ), 

which is no more than (6). 

Lemma 2. I f  ((r)S, - c,)/n 1/~-+0 in probability, then 

lira x~(xll~)=O (7) 
x ~ o o  

and 

lira S"-C"=o in probability. (8) 
n ~  oo n 1 /a  

Proof. It suffices to show (7). In fact, (7) implies 

1 
P(IX~)[ > en11~)~! " ( n~  (enll~)) k--+O 

(see [5]), and therefore for every k>  1 lira X~k)/nZ/'=O in probability. Together 
n ~ c o  

with the assumption this implies (8). 
Suppose that (7) does not hold. Then there exist a constant c > 0  and an 

increasing sequence {hi} of positive integers such that n~(n~l~)>c. Choose 
x i > n~/~ so as to satisfy 

n i ~(xl)  < c/2 < n i ~ ( x  i - 0). 
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For fixed ~>0 let XI(~), ..., X,(~) denote a sequence of i.i.d, random variables 
each having the distribution function Fr where 

fr = P ( X  1 =<x [ IXal _-< ~). 

Let S~(~)= ~ Xk(~) and 
k = l  

f.(~, e)=P \1 nl/~ 

Then it is easy to see that 

l[~')S,-c,] 
elX. )=f . ( lX.  I,~) a.s. (9) 

On the other hand 

P(,X~:',=xl)= ~ (~ i )~(x i -O)k(1-g(x~-O))  ' ' k  
k ~ r  

> ~ (~i)(~_"/kil_ c ] '~'-k 
=k=~ \2rill \ 2nil  

(10) [ni](c ]r/ c \", -~ 1 (c)" e-c/2. 

If we choose 8~ ~ 0 such that 

II(')S - c l  \ 
. . . .  =0 lim P ( ~ -  >e~ 

i ~ o o  

then it follows from (9) that 

inf f.<(~, el) P(I X ~  - ni ~ X i )  
~>x~ 

oo 

-<- ~f L,(~, e,)P(IX~2le(~, ~ + d @  
0 

as i+oo and therefore by (10) there exists a sequence {~} such that 7z>x~ and 
lims el) = 0. This implies 
i~oC 

lim S, ,_~(~)-c , ,_0 in probability. 
i ~ c o  g/1/c~ 
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If follows from the well-known necessary condition for the weak law of large 
numbers (see, e.g. Gnedenko-Kolmogorov [3], w that for every e >0  

lira (n i - r) {Fr - n~/~ a) + 1 -Fr (n~/~ e)} = 0 

and therefore 

lira nl { Y (nli /~ ~) - ~-(~i)} = 0. 
i ~ o o  

Since n i ~ ( ~ i )  < nl ~ ( x l )  < c/2, we have for 0 < z < 1 

nl { g ( n ~ / ~  ~) - g ( ~ i ) }  --> ni r - n~ g ( ~ )  

>= c - c/2 = c/2. 

This contradiction proves (7) and therefore the lemma. 
Let zs return to the proof of (I). We see from (8) that the weak law of large 

numbers holds for the truncated random variables, that is, for every 6 >0  

lim ~ X k I ( l X k l < n l / ~ 6 ) - - C ,  =0  in probability. (11) 
n ~ o e  , ,  k k =  1 

(See, e.g. Gnedenko-Kolmogorov [-3], w For a subset a = ( a l  . . . .  , a~+l) of I ,  
= {1, ..., n} let A(a ,  e) denote the event 

A(a ,  e )={lx~l  > 2nl/~e for l ea ,  IXil < 2nl/~e for iea '  

a n d [ ~  X j - c , l < n a / ' e } ,  

where o-' is the complement of o- in I, .  Then we have 

P(A(o-, e ) ) > Y ( 2 n l / ~ ) { P ( [  ~ X j - c , ]  < n  1/~ e ) -  1 +(1 - J ~ ( 2 n  1/~ e))"-~+ 1}. 

From (8) it follows easily that (c,+ k -  c , ) / n ~ / ~  0 for each k. Thus 

P(I ~ X j - c . I  < n l / ~ )  
jea' 

- ~1 k=l 
- .1  as ///---+oo, 

because of (11). From (7) we have 

lim (1 - ~ (2n 1/~ e)) . . . .  1 = 1. 
n ~ c o  

It is easy to see that 
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where the union on the right hand  side extends over  all subsets cr = I ,  of  size r 
+ 1. Since A(o-, e)' s are disjoint, we have  

) 
>cons t .  �9 ~ n ~-2 n ~(2nl /~e)~+l  

n = l  r + l  

const. �9 ~ n t + r - 2  ~ ( 2 n  1/~ ~)~+ i 
n = l  

Thus 

oo oc 

0(2) > f X t + r - 2  ~  d x  = f X ~ ( r + t ) -  1 ~ ( x ) r +  1 d x ,  

o o 

which completes  the p roof  of  (I). 

3. Proof of (II) in Theorem 1 

L e m m a  3. Let a(.) be a positive nonincreasing right-continuous fimction and let 
b(t)=inf{s;a(s)<t}.  The function b(t) is then positive nonincreasing left-con- 
tinuous and satisfies 

co a ( + 0 )  

- ~f(t)  da(t)= ~ f(b(s)) ds 
0 a(oo) 

for  every nonnegative Baire fimction f (.). 

Proof See, e.g. Meyer  [4], p. 108. 

As was shown in R e m a r k  1, (2) implies 

lira x ~ ~.~(x) = 0. (12) 
x ~ o o  

Define ~ by q(x)=(x~/~(x))  1/2, x>_O. ~ is a r ight-cont inuous nondecreas ing 
funct ion with 6 ( 0 ) = 0  and ~ ( o o ) =  ~ .  Let  (p(x)=inf{y;  6 ( y ) > x } ,  x > 0 .  Then go 
is also r ight-cont inuous  nondecreas ing and satisfies (p(0)=0. It  is seen f rom (12) 
that  l imx~/$(x)=O and therefore limcp(x)/xl/~=O. By choosing a(x) 

x ~ c o  x ~ o o  

= g,(x) - 2 r - 2  in L e m m a  3, we have 

b (y) = inf {x; ~ (x)-  a t -  2 < y} _ inf {x; ~ (x) > y -  1/(2r + 2)} = g0 0 ' -  1/(2r + 2)) 

and therefore 

oc co 

-- ~ f (x) d(@(x)- 2r- 2)= ~ f (cp(y-1/(2~ + 2))) d y 
0 0 

=(2r + 2l y f (cp(x)) x - 2 " - 3  dx 
0 

(13) 
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for every Baire function f ( . ) > 0 .  Suppose that (2) holds. Let f(x)=X ~(2r+~+l), 
then f(0)  = 0 and 

lim f (x )  r -2 r -  2 = lim x ~'~ ~ (x) ' + a = O. 
x ~ c o  0 ~ c o  

Thus integrating by parts, we find that the left hand side of (13) is equal to 

co 

_ .[ x , (~,+,+ 1 ) d ( O ( x ) - ~ , -  ~) 
0 

co 

o \ x "  ] dx  

oo 

= e ( 2 r + t + l ) j x ~ ( r + t ) - l  ~ ( x )  '+1 dx, 
0 

that is 

~ @ ( X )  ~ ( 2 ' + t +  X - 2 r - 3  d x  1) 

0 
co 

_ e ( 2 r + t +  1) ~ x~(r+~)_ 1 ~(x)r+ 1 d x <  ~ .  (147 
2 r + 2  o 

Remark 3. Mori [5-[, [-6] used (14) to prove the strong law of large numbers for 
(r)S,. In those papers (14) was proved under the unnecessary assumption that 
(x) is positive and differentiable. 

Proof  of  ( I I ) .  Given e > 0 choose 6 such that 0 < 6 < e/(2r + t + 1). Define S', and 
S~,' by 

S',,= ~, XkI ( IXk l<nl /~6)  
k = l  

and 

S'~= k XkI(IXkl<q~(n)),  
k = l  

respectively. Let z > 0 be fixed and a, = n 
Ixl <<_n.c 

n =  1 (11 (2) (3) 

where 

Z = <L , '-~ P(l(')s.-s'.l >,<~ ~), 
t l )  n =  1 

, X,,I > nl/~ 0 Z= nt-2p(Is,-_., 
(2) n ~  1 

j" x d F ( x  7. We have 

(15) 

(16) 
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and 

~ =  ~ nt-2 p( Is ' . ' -a . l>nl /~e) .  
13) n=  1 

At first we show that  (15) is finite. Since n ~ ( n  ~/~ 6 ) ~ 0 ,  we have 

P(I(')S. - S'ol > n ~/~ ~) <= P([( ')s.  - S'.l > n 1/~ r fi) 

1 <= p ( I x ~  + 1) I > nl/~6) ( n ~  (na/~ g)))r + a, 

and therefore 

2=<const .  �9 ~ nr+t-l .~(rll /a(~)r+l< 00, 
(1) n= 1 

( r + l ) !  

because 

oO cJo 

S x ' + ' -  1 ~-(xl/~) ~+1 d x = ~  S x~('+~l- l~ ' ( x )  " + l d x <  co. 
0 0 

To show that  (16) is finite, let n be so large that  na/~6>cp(n). Let N, denote  
the n u m b e r  of Xj  such that  I xjI > ~o(n), j < n. Then  we have 

P (I S'. - S~' 1 > n 1/~ ~) < p (n 1/~ 6 N. > n 1/~ ~) = p (N. > ~/6) 

<P(N,>=s), 

where s = 2 r + t +  1. It is easy to see that  xY(cp(x))<cp(x)~/x<xJ~(~o(x)-O) .  This 
shows that  

P (N. > s) ~ const. . ( n 2  (cp (n))S < const. �9 ( ~o~n)~ f . 

Thus by (14) we have 

< const. - ~, n t -  2 - ~  (p (n) ,~  < oo.  
(2) n=  i 

Finally we show that  ~ <  ~.~. Let, for a fixed n, X'~=X~l(IXi[<cp(n)) 1 < i N n ,  
(3) 

t !  I t  / t r / /  and let X t . . . .  , X .  be independent  copy of X a . . . .  , X. .  Let  Y ~ = X i - X  i be the 

symmet r iza t ion  of X; and write T . =  ~ IT//, t ~ = E T . Z = n E Y ( .  By (2) and Lem-  
m a  4 of Mor i  [6] we have i= 1 

t 2 = 2 n  S yZdF(y)=~176 �9 (17) 
Jyl < ~p(n) 

Let q = e n 1/~/2 t. and c = 2 (p (n)/t.. By Prokhorov ' s  inequali ty [7] we have 
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< 2 e x p  - ~  arcsinh 
\ t, l-- 

gn~/~ arcsinh = 2  exp 8(p(n) " --~- ' 2t, 

{ e n l / ~ p ( n ) )  >1,  then Ifarcsinh - --~ = 
2t. e 

P ~n~7;>5) < 2  exp ( 8q3(n)J' 

/enl/= qo(n) ~ 1 
If arcsinh i --~ 1 < - ,  then 

\ 2t. ] e 

arcsinh \ 2t 2 ] >C~ 2t 2 , 

(18) 

1)_1 
since a r c s i n h x > C ~ x  for 0_<x<sinh -1, where C+= 8sinh7 . Thus from (17) 
we have e 

P tn~7~>~) < 2  exp - K ~  ~ - } _ < 2  exp -K+  
- t .  3 -  \~o(n)! J' 

where K ~ = ~ C e e  2. (18) and (19) prove that 

P t T;> j __<r �9 ! 

(19) 

(20) 

for every large n. On the other hand, by Mori [-6], (2) implies that 

S.  - a. = 0 lira nl/~ in probability, 
n ~ c o  

where a . = n  S xdF(x ) .  This in turn shows 
Ixl<=n~ 

, ~ t t  - -  a 

lim -" --"=0 in probability. 
n ~ m  tl 1/a 

Therefore 

lim med (S~,') - a. 
.~oo n 1/~ =0, (21) 

and for large n we have from (20), (21) and the symmetrization inequality that 

P(]S" - a.I > ~n 1/~) <= P(]S': - reed (S~,') I > �89 gn 1/~) 

<2P(IT, I >�89 1/~) < const. �9 \ n i l  ~ ] . 
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Consequently 

2 < c o n s t .  �9 ~ n N - 2  (p(n)S~< oo. 
(3 )  n =  1 

This completes the proof of (II). 

11 

4. An Application to Ruled Sums 

Following Baum-Katz-Stratton [2], we define the ruled sum S(,) = ~ Xi, where a 
i~(n) 

rule (n) is some collection of n distinct positive integers for each n. We let R 
denote the set of all rules. If (n)= {1, 2, ..., n}, then S(,)=S,. In this last section, 
as an application of Theoreml, we shall give the law of large numbers for (~)S~,), 
where (~)S(,) is the ruled sum from which extreme terms are excluded and defined 
in the way similar to the one when we defined (~)S,. 

Theorem 2. Let r > 0 be an integer and let 0 < ~ < 2. The following two statements 
are equivalent." 

(i) For some sequence of real numbers {an}, 

lim (*)S(,)-a, =0 a.s. for all ()~R. 
n~oo n 1/~ 

oO 

(ii) ~x~(~+2)-~Y(x) r+l dx<oo.  
0 

Remark 4. The case r=0,  c~= 1 has been proved by Baum-Katz-Stratton [2]. 

Proof We first note that 

• P([(~)S~ > 1/~ - a , I  n e)<o'.~ 
I t=  1 

is equivalent to 

~P(l(~)S(,)-a,I  >nl/~0 < o% (22) 
n = l  

because P(l~r)S,-a,l>nl/~s)=P(J(~)S(,)-a,l>nl/~e). Therefore it follows from 
Theorem 1 with t =2  that (22) is equivalent to (ii). Furthermore it is seen by the 
first Borel-Cantelli lemma that (22) implies (i). Hence it remains to show that (i) 
implies (22). We note that (i) means 

P(ff)S(.)-a.I  >nl/=e, i.o.)=0. (23) 

If we take a particular rule () such that (n) c~ (m) = f)' if n4=m, then (r)S(ll, 
(r)S(2), ..., (r)S(n) are independent. Thus (22) follows from (23) by the second Borel- 
Cantelli lemma. This completes the proof. 
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