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Let (Q, ~,  P) be a probability space, N =  {1, 2,. . .},  and let (J~),+~ be an increasing 
sequence of o--algebras contained in ~ A stopping time is a mapping 
z: ~2-- ,Nu{oo},  such that { z = n } ~ - ,  for all n o N .  The collection of bounded 
stopping times is denoted by T; under the natural ordering T is a directed set 
"filtering to the right". (The notation and the terminology of the present note 
are close to that of our longer article [7].) 

Let g be a Banach space and consider a sequence (X,),~ N of g-valued random 
variables adapted to (~),  i.e., such that X :  O- - ,g  is ~,~-strongly measurable. 
E X  (expectation of X) is the Pettis integral of X; E A X  denotes E(1 A �9 X). The 
sequence (X)  is called an amart iff each X is Pettis integrable and lira E(X+) 
exists in the strong topology of g. r 

Remark. Also the term "asymptotic martingale" introduced in [4] is in use. 
We at present feel that the notion is so simple and basic that it merits a short 
name. There are further several varieties of amarts; e.g. "weak amarts" and 
"weak sequential amarts"  introduced in [3], and "hyperamarts ' ,  appearing in 
our paper on the continuous parameter, see [7], Part B. Clearly the term 
"amar t "  is better suited to bear added qualifiers than "asymptotic martingale". 

The real Riesz decomposition theorem for amarts [7] asserts that an amart 
X, can be uniquely written as a sum of a martingale I1,, and an amart Z,  that 
converges to zero in nearly all possible ways: Z,-- ,  0 a.e. and in L 1, and Z ~  0 
in L 1. The Banach valued version of this theorem is the main result of the present 
note. 

The Pettis norm of a random variable X is 

[INN = sup E[f(X)[ .  (1) 
f ~ '  
If  I=<1 

It is known [9] that [iX ]] is equal to the semivariation of the measure E A X,  i.e., 

IpX H = sup I~, c~iEA~XI (2) 
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where the supremum is taken over all finite collections of scalars with [~i]< 1 
and all partitions of O into finitely many disjoint sets. One also has 

[[XI[ < 4 s u p  [EAX]. (3) 
As.~ 

This is a known result, which can be proved as follows: Let Y- P be the measure 
defined by 

(V. P)(A)= ~ YdP. 
A 

Then 

]IX]] = sup {variation I f (X) .  P]} =< sup 4 sup IS f (X)dR] 
[f]_-<l If  IN1 A A 

= 4 s u p  [ sup [f(~ XdP) l]=4sup  IS XdPI" 
A If I_-<1 A A A 

A potential is an amart that converges to zero in the Pettis norm. A sequence 
of adapted random variables is salt to be of class (B) iff 

supElX,]< ~ .  (B) 
T 

We prove 

Theorem 1 (Riesz decomposition). Let E be a Banach space with the Radon- 
Nikodym property and let (X,, ~,) be an E-valued amart such that 

lim infE [X,I < o9. (4) 

(i) X. can be uniquely written as the sum of a martingale Y. and a potential Z,. 
(Z~)~ r converges to zero in Pettis norm. 

(ii) I f  E' is separable and ( X ,  Y,) is of class (B), then Z, ~ 0 a.e. weakly. 

Proof of(i). The uniqueness of the decomposition follows from the observation 
that if an arbitrary sequence X, can be written as 

x.=r.+z =Y;+Z'. 

where Y, and Y,' are martingales and 

l imEAZo=limEaZ" 

for each A ~ U ~ , , ,  then the martingale Y ' - Y = Z n - Z ' , =  U, satisfies for A e Y  m 
m 

limEAU,=EAUm=O. 

Hence U,,=0 a.e.; thus Z,=Z' ,  a.e. and Y,= Y,' a.e. 
It will be useful to state for the purpose of reference the vector amart con- 

vergence theorem due to [4]. 

Theorem 2 ([4]; a proof is also given in [7], Section 5). Let C have the Radon- 
Nikodym property and a separable dual. An E-valued amart of class (B) converges 
weakly a.e. 
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We also need a Lemma. 

Lemma 1 ([4]; a proof is also given in [7]). Let 8 be an arbitrary Banach space, 
(X,,  ~ )  an g-valued amart, m a f ixed integer. Then 

lira E~ x .  = ~m (A) (5) 

exists uniformly in A e~,~. 

Now by the Vitali-Hahn-Saks theorem (cf. [6], p. 321) #m is a (countably ad- 
ditive) measure on ~ .  We observe that (4) implies that 

variation #m < lira infElXn[ = M < oo. (6) 

To see this, given s > 0  choose disjoint sets Ai, i=  1, 2 . . . . .  k so that 

k 

variation #m-  ~ [#m(Ai)l < e. 
1 

Next find N so large that n > N implies for all i 

I~(A,)- EA, X.I <~. 

Now 
k k 

lim inf ~ lEA, X.] < lim inf ~ EA, I X~l _-< lim inf E I X.I -- M 
1 i=1 

implies that variation ~t  ___< M + 2e. Since e is arbitrary, (6) follows. 
d#m 

Thus the Radon-Nikodym derivative ~ - =  Ym exists. (Y~, .~ )  is a martingale, 
since for each A~Y~ 

EA • + ,  = # m + l  ( A ) =  #m(A)=EA Ym" 

Let Z m = X , , -  Ym; then for n-> m 

EAZn=EAXn--EA I'm, 

hence 

lira E A Z .  = O, A ~ ~ .  (7) 

Now let ei$0. For  each m choose A~c~. ,  so that 

sup ]EAZm]-]EAZ~] <~m" (8) 
AEo~m 

Because of (7) we can find an integer n m > m such that 

[Ea~ Zn~]<~m. 
Define a stopping time z m by 

"Cm=-m o n  A~, z,.=n,, on A~.. 
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Then for each m 

[EA.,Zm-EZ~,,.[ = ]EA~Z.m[ < era" 

Since Z.  is an amart, 

limm EZ~, = lim EZ,,=O. 

It follows that EA, Z m--'r 0; hence, by (8), 

sup IEAZm[ ~ 0  

(3) now implies that llZmll ~ 0 .  

For each increasing sequence of bounded stopping times , ,  (Z,~)n~N is an 
amart with respect to ( ~ ) ~  ([7], Proposition 1.6; the proof is valid also in 
the Banach-valued case). Therefore IIZ~ll-~0; it follows that lira IIZ~ll =0.  

T 

Proof of (ii). 

Lemma 2. Let g be an arbitrary Banach space, m a constant ~ N,  and (X,,  ~m),~N 
any sequence (not necessarily an amart) of class (B). Then E sup IXnl < ~ .  

Proof. Suppose that E s u p l X , [ = ~ .  Then for each integer M > 0  there is N M 
such that E max IX.I > M. Let 

n<Nm 

Lu=inf{k < NM: ISkl = max IX.l/, 
n<NM 

then E I X~, I > M. This contradicts (B). 

Observe that if #= IR  this lemma is va4id assuming only sup IEX~[ < ~ in- 
T 

stead of (B) (cf. the proof of Proposition 2.4, [7]). 
Now assume that (X ,  ~ )  is an amart of class (B); then ( ~ " X  

an amart for each m; hence by Lemma 2 

sup ]E ~"  X. It L 1 �9 (9) 
n 

Assume g' separable; by Theorem2, linmE~ exists a.e. in the weak 
topology. 

Integrating over sets A ~  m, as we may by (9), we obtain 

E A u = lim E A X n = E A ym. 

Thus Ym = lira E ~ X,. Since E ~ is an L 1 contraction and X,  is of class (B), it 

follows that (Ym)m~ is L 1 bounded. Now (] Y,I),~N is a (numerical) submartingale, 
hence El Y~I is an increasing function of ~ T .  Therefore Ll-boundedness of Y, 
implies that Y, is of class (B); thus Z~ is also of class (B). By Theorem 2, weak 
limit a.e. of Z,  exists; this limit is necessarily zero, since [IZ, ll--~0. [] 

Remark 1. Let (X,, o~) be an amart taking values in an arbitrary Banach space. 
Then by Lemma I l imEAX,=#m(A)  exists for each m and is a measure on f f  m. 
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The necessary and sufficient condition that X have the Riesz decomposition is 
d#m d#m 

that the Radon-Nikodym derivative ~p-  exist for each m. Indeed, i f ~ -  exists, 

the proof given above applies; conversely, if X = Y,,, + Zm is the Riesz decomposi- 

Xm, Ym is easily seen to be ~p~. In particular, if all the a-algebras ~,, are tion of  

atomic, then the Riesz decomposition holds whether or not do has the Radon- 
Nikodym property and whether or not (4) holds. 

In general, the assumption that d o have the R-N property cannot be omitted. 
This is already known for Theorem 2, even if all the a-algebras ~,~ agree ([7], 
Section 5, example 3), and in fact the same example applies to Theorem 1. 

Let {ei,, n EN 1 < i N  2"} be the standard basis for the Banach space c o (in any 
order). Let 

J _  A~.c~A.-fJ if i=t=j, 

and P(Ai)= 2- ' .  Let 

X,,= ~ ~e~lAi  ~. 
k = l  i = 1  

Let {ei, h e n  1 _<i_<2 "} be the standard basis for the Banach space c o (in any 
order). Let 

d#m- ~ ~ ei lA~, 
dP k 

k = l  i = 1  

" l exists as an do"-valued random variable (do = ~), but not as an do-valued random 
variable. Therefore the Riesz decomposition fails (cf. Remark 1 above). 

The first example of [4] (repeated in [7]) shows that there is a bounded 
potential that fails to converge strongly a.e. or in L~ norm. 

The second example in [4J, appearing also in [7], contributed by W.J. Davis, 
shows that in part (ii) of Theorem 1 the assumption that X, is of class (B) cannot 
be replaced by the assumption that X is Ll-bounded, i.e., supE[Xn[< oo. 

The following question is still open: Is do' necessarily separable if do is separable 
and has the Radon-Nikodym property and each do-valued amart of class (B) 
converges weakly a.e.? Theorem 1 shows that to prove that do is a counterexample 
to this conjecture, it suffices to prove that each do-valued potential of class (B) 
converges weakly a.e. This follows because the separability of the dual is not 
needed for the convergence a.e. of martingales (theorem of Chatterji; a simple 
proof is sketched in [4]). 

We now show that in part (i) of the theorem the assumption lim infEIX,[ < oo 
cannot be omitted. 

Example 1. An amart in I v, p fixed, l=<p=<2, with no Riesz decomposition. I f  
do = l p, then do has the Radon-Nikodym property and, except in case p-- 1, separable 
dual. 
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P -  Let Z.  be inde- Given p, choose numbers a . > 0  with ~ a . - 0 %  ~ 2 a n < ~ .  
n i,t 

pendent real random variables with P(Z.= 1)=P(Z.  = -  1)=�89 Set 

X n ~ ~ ak  e kZ  k 
k = l  

where (e.) is the usual unit basis for 1 p. Then 

/ n \ l / p  

\ k =  1 / 

for all ~o, so that E[X,,[ ~ oe. Thus the boundedness condition (4) is violated. 

We claim that X, is an amart for the constant sequence of o--algebras ~ = ~ .  
Given g>0,  choose N e N  so large that 

4 ~ a~ <~2. 
k = N  

Let z ~ T, z > N. Then 

X~ = ~ a k e k Z k 1Bk 
k = l  

where B k = {z > k}. Thus 

k = l  k = N  

since EZk=O, and Bk=O for k<N. Now, with % =  +_ak, one has 

[EX f = k=N ~" [akE(Zk 12~)[P < (k~=N [akE(Zk l~)[)P 

= [ ~ %E(Z klSk )]p_< [E (:up ~=N%Zg )]P. 
k = N  J - -  = k 

n 

Observe that Y, = ~ ( Z k Z  k is a martingale. Dooh's (or Kolmogorov's) dominated 
N 

estimates give (cf. ]-5], p. 317) 

E(suply.l)<[E(suplY.t)2]~/2<2 a~ <~, 
n > N  n > N  k 

hence [EX~[ <e. This shows that EX~-+ 0; thus (X,, o~) is an amart. 

Therefore for all A~ ,~  = ~ ,  lz(A)=limEAX ~ exists and defines a measure 

on l p. We now claim that this measure does not have a (r-finite variation. Let 
F 6 ~ ,  P(F)>0.  We will show that # has infinite variation on F. Fix n, let 
{A~ . . . . .  A2, } be the atoms of the algebra generated by Z 1, Z 2, ..., Z,.  Thus 
P(A~)=2 -~ for i = 1 , 2  . . . .  ,2". Let F~=Fc~A~. For k<n, Zg is constant on F~, 
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hence IEFiZkl =P(F/). Thus for m>n 

IE(1F, Xm)lp p= ~ a~lEe, Zkl p> i a~P(Fy. 
k = l  k = l  

Hence 
[ n \l/p 

Thus the variation of # on F is at least 

2 n / .  \1/p2 n (~= )l/p 
Ig(F~) I __> { ~, a p) ~ P(F~)= a~ P(F). 

i = l  \ k = l  / i = 1  1 

Since ~, akP= 00, this shows that # has infinite variation on F. 
k = l  

Therefore # does not have a-finite variation. This shows that the Radon- 
/ \d/ /  

Nikodym derivative ,~.~TPJ_ ~. does not exist, since if it did,/~ would have variation 
- -  z 

at most 2 on the set { ~-~ <2}. Remark 1 above now implies that (X) does not 

have the Riesz decomposition. [] 
Our final result may be considered as a consequence of the real Riesz de- 

composition theorem stated in the beginning of the paper. The proof also uses 
the first important result obtained about the (then still nameless) amarts: the 
amart convergence theorem which asserts that an Ll-bounded real amart con- 
verges a.e. [1]. To see the analogy of what follows with martingales, recall that 
(X,  ~ )  is a martingale if and only if for each n, each bounded stopping time 
z ,>n,  o n e h a s E : - X  - X = O .  

Theorem 3. A sequence of real-valued adapted random variables (Xn, J~) is an 
amart if and only if for each increasing sequence of bounded stopping times z,>n, 
one has 

E:"X - X  ~O a.e. and in L 1. (10) 

Proof. The "if" part is immediate and only requires in (10) convergence in Ll: 
On integrating (10) one obtains E ( X - X ) ~  0, hence the net E X  is Cauchy 
and converges. Conversely, suppose that X is an amart. If X, = Y~ + Z~ is the 
Riesz decomposition of X ,  then the martingale Y, clearly satisfies (10); it remains 
to show that the potential Z, does. Since (Z,, ~ )  is an amart, (Z~, J~)  is, where 
~ =  {A: Ac~ {z~ =k} ~ k Vk} ([73, Proposition 1.6). Since n<z,, one has ~ _ ~ ,  
which implies that ( E ~ Z ,  ~ )  is an amart. The conditional expectation is an 
L~-contraction; therefore E[Z~n[--*0 implies that EIE~~ by the amart 
convergence theorem, E ~ Z ~ O  a.e. Hence also E : ~ Z ~ - Z - , O  in L 1 and 
a.e. [] 

An adapted family (X~, J~) is called a game fairer with time [10] iff for every 
e>0 

P [ I E ~ X , - X , I  >e] --*0 
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as n, p ~ ~ with p >  n. Theorem 3 implies that an amart is a game fairer with 
time. So clearly is every adapted sequence converging in L 1 (and vice-versa, if 
X,  is uniformly integrable, as shown in [10]). Therefore there are games fairer 
with time which are not amarts. 
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1 The authors of 1-3] wish to use the present occasion to make the following slight correction. 
On page 1014 the parenthetical expressions "(ou stationnaire)" and "(ou le th6or6me ergodique)" 
should be deleted 


